1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
|
#!/usr/bin/python
"""
Tests for Pyclipper wrapper library.
"""
from __future__ import print_function
try:
from unittest2 import TestCase, main
except ImportError:
from unittest import TestCase, main
import sys
if sys.version_info < (3,):
integer_types = (int, long)
else:
integer_types = (int,)
import pyclipper
# Example polygons from http://www.angusj.com/delphi/clipper.php
PATH_SUBJ_1 = [[180, 200], [260, 200], [260, 150], [180, 150]] # square, orientation is False
PATH_SUBJ_2 = [[215, 160], [230, 190], [200, 190]] # triangle
PATH_CLIP_1 = [[190, 210], [240, 210], [240, 130], [190, 130]] # square
PATH_SIGMA = [[300, 400], [100, 400], [200, 300], [100, 200], [300, 200]] # greek letter sigma
PATTERN = [[4, -6], [6, -6], [-4, 6], [-6, 6]]
INVALID_PATH = [[1, 1], ] # less than 2 vertices
class TestPyclipperModule(TestCase):
def test_has_classes(self):
self.assertTrue(hasattr(pyclipper, 'Pyclipper'))
self.assertTrue(hasattr(pyclipper, 'PyclipperOffset'))
def test_has_namespace_methods(self):
for method in ('Orientation', 'Area', 'PointInPolygon', 'SimplifyPolygon', 'SimplifyPolygons',
'CleanPolygon', 'CleanPolygons', 'MinkowskiSum', 'MinkowskiSum2', 'MinkowskiDiff',
'PolyTreeToPaths', 'ClosedPathsFromPolyTree', 'OpenPathsFromPolyTree',
'ReversePath', 'ReversePaths'):
self.assertTrue(hasattr(pyclipper, method))
class TestNamespaceMethods(TestCase):
def test_orientation(self):
self.assertFalse(pyclipper.Orientation(PATH_SUBJ_1))
self.assertTrue(pyclipper.Orientation(PATH_SUBJ_1[::-1]))
def test_area(self):
# area less than 0 because orientation is False
area_neg = pyclipper.Area(PATH_SUBJ_1)
area_pos = pyclipper.Area(PATH_SUBJ_1[::-1])
self.assertLess(area_neg, 0)
self.assertGreater(area_pos, 0)
self.assertEqual(abs(area_neg), area_pos)
def test_point_in_polygon(self):
# on polygon
self.assertEqual(pyclipper.PointInPolygon((180, 200), PATH_SUBJ_1), -1)
# in polygon
self.assertEqual(pyclipper.PointInPolygon((200, 180), PATH_SUBJ_1), 1)
# outside of polygon
self.assertEqual(pyclipper.PointInPolygon((500, 500), PATH_SUBJ_1), 0)
def test_minkowski_sum(self):
solution = pyclipper.MinkowskiSum(PATTERN, PATH_SIGMA, False)
self.assertGreater(len(solution), 0)
def test_minkowski_sum2(self):
solution = pyclipper.MinkowskiSum2(PATTERN, [PATH_SIGMA], False)
self.assertGreater(len(solution), 0)
def test_minkowski_diff(self):
solution = pyclipper.MinkowskiDiff(PATH_SUBJ_1, PATH_SUBJ_2)
self.assertGreater(len(solution), 0)
def test_reverse_path(self):
solution = pyclipper.ReversePath(PATH_SUBJ_1)
manualy_reversed = PATH_SUBJ_1[::-1]
self.check_reversed_path(solution, manualy_reversed)
def test_reverse_paths(self):
solution = pyclipper.ReversePaths([PATH_SUBJ_1])
manualy_reversed = [PATH_SUBJ_1[::-1]]
self.check_reversed_path(solution[0], manualy_reversed[0])
def check_reversed_path(self, path_1, path_2):
if len(path_1) is not len(path_2):
return False
for i in range(len(path_1)):
self.assertEqual(path_1[i][0], path_2[i][0])
self.assertEqual(path_1[i][1], path_2[i][1])
def test_simplify_polygon(self):
solution = pyclipper.SimplifyPolygon(PATH_SUBJ_1)
self.assertEqual(len(solution), 1)
def test_simplify_polygons(self):
solution = pyclipper.SimplifyPolygons([PATH_SUBJ_1])
solution_single = pyclipper.SimplifyPolygon(PATH_SUBJ_1)
self.assertEqual(len(solution), 1)
self.assertEqual(len(solution), len(solution_single))
_do_solutions_match(solution, solution_single)
def test_clean_polygon(self):
solution = pyclipper.CleanPolygon(PATH_CLIP_1)
self.assertEqual(len(solution), len(PATH_CLIP_1))
def test_clean_polygons(self):
solution = pyclipper.CleanPolygons([PATH_CLIP_1])
self.assertEqual(len(solution), 1)
self.assertEqual(len(solution[0]), len(PATH_CLIP_1))
class TestFilterPyPolyNode(TestCase):
def setUp(self):
tree = pyclipper.PyPolyNode()
tree.Contour.append(PATH_CLIP_1)
tree.IsOpen = True
child = pyclipper.PyPolyNode()
child.IsOpen = False
child.Parent = tree
child.Contour = PATH_SUBJ_1
tree.Childs.append(child)
child = pyclipper.PyPolyNode()
child.IsOpen = True
child.Parent = tree
child.Contour = PATH_SUBJ_2
tree.Childs.append(child)
child2 = pyclipper.PyPolyNode()
child2.IsOpen = False
child2.Parent = child
child2.Contour = PATTERN
child.Childs.append(child2)
# empty contour should not
# be included in filtered results
child2 = pyclipper.PyPolyNode()
child2.IsOpen = False
child2.Parent = child
child2.Contour = []
child.Childs.append(child2)
self.tree = tree
def test_polytree_to_paths(self):
paths = pyclipper.PolyTreeToPaths(self.tree)
self.check_paths(paths, 4)
def test_closed_paths_from_polytree(self):
paths = pyclipper.ClosedPathsFromPolyTree(self.tree)
self.check_paths(paths, 2)
def test_open_paths_from_polytree(self):
paths = pyclipper.OpenPathsFromPolyTree(self.tree)
self.check_paths(paths, 2)
def check_paths(self, paths, expected_nr):
self.assertEqual(len(paths), expected_nr)
self.assertTrue(all((len(path) > 0 for path in paths)))
class TestPyclipperAddPaths(TestCase):
def setUp(self):
self.pc = pyclipper.Pyclipper()
def test_add_path(self):
# should not raise an exception
self.pc.AddPath(PATH_CLIP_1, poly_type=pyclipper.PT_CLIP)
def test_add_paths(self):
# should not raise an exception
self.pc.AddPaths([PATH_SUBJ_1, PATH_SUBJ_2], poly_type=pyclipper.PT_SUBJECT)
def test_add_path_invalid_path(self):
self.assertRaises(pyclipper.ClipperException, self.pc.AddPath, INVALID_PATH, pyclipper.PT_CLIP, True)
def test_add_paths_invalid_path(self):
self.assertRaises(pyclipper.ClipperException, self.pc.AddPaths, [INVALID_PATH, INVALID_PATH],
pyclipper.PT_CLIP, True)
try:
self.pc.AddPaths([INVALID_PATH, PATH_CLIP_1], pyclipper.PT_CLIP)
self.pc.AddPaths([PATH_CLIP_1, INVALID_PATH], pyclipper.PT_CLIP)
except pyclipper.ClipperException:
self.fail("add_paths raised ClipperException when not all paths were invalid")
class TestClassProperties(TestCase):
def check_property_assignment(self, pc, prop_name, values):
for val in values:
setattr(pc, prop_name, val)
self.assertEqual(getattr(pc, prop_name), val)
def test_pyclipper_properties(self):
pc = pyclipper.Pyclipper()
for prop_name in ('ReverseSolution', 'PreserveCollinear', 'StrictlySimple'):
self.check_property_assignment(pc, prop_name, [True, False])
def test_pyclipperoffset_properties(self):
pc = pyclipper.PyclipperOffset()
for prop_name in ('MiterLimit', 'ArcTolerance'):
self.check_property_assignment(pc, prop_name, [2.912, 132.12, 12, -123])
class TestPyclipperExecute(TestCase):
def setUp(self):
self.pc = pyclipper.Pyclipper()
self.add_default_paths(self.pc)
self.default_args = [pyclipper.CT_INTERSECTION, pyclipper.PFT_EVENODD, pyclipper.PFT_EVENODD]
@staticmethod
def add_default_paths(pc):
pc.AddPath(PATH_CLIP_1, pyclipper.PT_CLIP)
pc.AddPaths([PATH_SUBJ_1, PATH_SUBJ_2], pyclipper.PT_SUBJECT)
@staticmethod
def add_paths(pc, clip_path, subj_paths, addend=None, multiplier=None):
pc.AddPath(_modify_vertices(clip_path, addend=addend, multiplier=multiplier), pyclipper.PT_CLIP)
for subj_path in subj_paths:
pc.AddPath(_modify_vertices(subj_path, addend=addend, multiplier=multiplier), pyclipper.PT_SUBJECT)
def test_get_bounds(self):
bounds = self.pc.GetBounds()
self.assertIsInstance(bounds, pyclipper.PyIntRect)
self.assertEqual(bounds.left, 180)
self.assertEqual(bounds.right, 260)
self.assertEqual(bounds.top, 130)
self.assertEqual(bounds.bottom, 210)
def test_execute(self):
solution = self.pc.Execute(*self.default_args)
self.assertEqual(len(solution), 2)
def test_execute2(self):
solution = self.pc.Execute2(*self.default_args)
self.assertIsInstance(solution, pyclipper.PyPolyNode)
self.check_pypolynode(solution)
def test_execute_empty(self):
pc = pyclipper.Pyclipper()
with self.assertRaises(pyclipper.ClipperException):
pc.Execute(pyclipper.CT_UNION,
pyclipper.PFT_NONZERO,
pyclipper.PFT_NONZERO)
def test_clear(self):
self.pc.Clear()
with self.assertRaises(pyclipper.ClipperException):
self.pc.Execute(*self.default_args)
def test_exact_results(self):
"""
Test whether coordinates passed into the library are returned exactly, if they are not affected by the
operation.
"""
pc = pyclipper.Pyclipper()
# Some large triangle.
path = [[[0, 1], [0, 0], [15 ** 15, 0]]]
pc.AddPaths(path, pyclipper.PT_SUBJECT, True)
result = pc.Execute(pyclipper.PT_CLIP, pyclipper.PFT_EVENODD, pyclipper.PFT_EVENODD)
assert result == path
def check_pypolynode(self, node):
self.assertTrue(len(node.Contour) == 0 or len(node.Contour) > 2)
# check vertex coordinate, should not be an iterable (in that case
# that means that node.Contour is a list of paths, should be path
if node.Contour:
self.assertFalse(hasattr(node.Contour[0][0], '__iter__'))
for child in node.Childs:
self.check_pypolynode(child)
class TestPyclipperOffset(TestCase):
@staticmethod
def add_path(pc, path):
pc.AddPath(path, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
def test_execute(self):
pc = pyclipper.PyclipperOffset()
self.add_path(pc, PATH_CLIP_1)
solution = pc.Execute(2.0)
self.assertIsInstance(solution, list)
self.assertEqual(len(solution), 1)
def test_execute2(self):
pc = pyclipper.PyclipperOffset()
self.add_path(pc, PATH_CLIP_1)
solution = pc.Execute2(2.0)
self.assertIsInstance(solution, pyclipper.PyPolyNode)
self.assertEqual(len(pyclipper.OpenPathsFromPolyTree(solution)), 0)
self.assertEqual(len(pyclipper.ClosedPathsFromPolyTree(solution)), 1)
def test_clear(self):
pc = pyclipper.PyclipperOffset()
self.add_path(pc, PATH_CLIP_1)
pc.Clear()
solution = pc.Execute(2.0)
self.assertIsInstance(solution, list)
self.assertEqual(len(solution), 0)
class TestScalingFunctions(TestCase):
scale = 2 ** 31
path = [(0, 0), (1, 1)]
paths = [path] * 3
def test_value_scale_to(self):
value = 0.5
res = pyclipper.scale_to_clipper(value, self.scale)
assert isinstance(res, integer_types)
assert res == int(value * self.scale)
def test_value_scale_from(self):
value = 1000000000000
res = pyclipper.scale_from_clipper(value, self.scale)
assert isinstance(res, float)
# Convert to float to get "normal" division in Python < 3.
assert res == float(value) / self.scale
def test_path_scale_to(self):
res = pyclipper.scale_to_clipper(self.path)
assert len(res) == len(self.path)
assert all(isinstance(i, list) for i in res)
assert all(isinstance(j, integer_types) for i in res for j in i)
def test_path_scale_from(self):
res = pyclipper.scale_from_clipper(self.path)
assert len(res) == len(self.path)
assert all(isinstance(i, list) for i in res)
assert all(isinstance(j, float) for i in res for j in i)
def test_paths_scale_to(self):
res = pyclipper.scale_to_clipper(self.paths)
assert len(res) == len(self.paths)
assert all(isinstance(i, list) for i in res)
assert all(isinstance(j, list) for i in res for j in i)
assert all(isinstance(k, integer_types) for i in res for j in i for k in j)
def test_paths_scale_from(self):
res = pyclipper.scale_from_clipper(self.paths)
assert len(res) == len(self.paths)
assert all(isinstance(i, list) for i in res)
assert all(isinstance(j, list) for i in res for j in i)
assert all(isinstance(k, float) for i in res for j in i for k in j)
class TestNonStandardNumbers(TestCase):
def test_sympyzero(self):
try:
from sympy import Point2D
from sympy.core.numbers import Zero
except ImportError:
self.skipTest("Skipping, sympy not available")
path = [(0,0), (0,1)]
path = [Point2D(v) for v in [(0,0), (0,1)]]
assert type(path[0].x) == Zero
path = pyclipper.scale_to_clipper(path)
assert path == [[0, 0], [0, 2147483648]]
class TestPackageVersion(TestCase):
def test__version__(self):
assert hasattr(pyclipper, "__version__")
assert isinstance(pyclipper.__version__, str)
def _do_solutions_match(paths_1, paths_2, factor=None):
if len(paths_1) != len(paths_2):
return False
paths_1 = [_modify_vertices(p, multiplier=factor, converter=round if factor else None) for p in paths_1]
paths_2 = [_modify_vertices(p, multiplier=factor, converter=round if factor else None) for p in paths_2]
return all(((p_1 in paths_2) for p_1 in paths_1))
def _modify_vertices(path, addend=0.0, multiplier=1.0, converter=None):
path = path[:]
def convert_coordinate(c):
if multiplier is not None:
c *= multiplier
if addend is not None:
c += addend
if converter:
c = converter(c)
return c
return [[convert_coordinate(c) for c in v] for v in path]
def run_tests():
main()
if __name__ == '__main__':
run_tests()
|