1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871
|
#LyX 1.5.5 created this file. For more info see http://www.lyx.org/
\lyxformat 276
\begin_document
\begin_header
\textclass book
\language american
\inputencoding auto
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\paperfontsize default
\spacing single
\papersize custom
\use_geometry true
\use_amsmath 1
\use_esint 0
\cite_engine basic
\use_bibtopic false
\paperorientation portrait
\paperwidth 21cm
\paperheight 24cm
\leftmargin 3cm
\topmargin 1.5cm
\rightmargin 3cm
\bottommargin 1.5cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\author ""
\author ""
\end_header
\begin_body
\begin_layout Standard
\lang english
\begin_inset ERT
status open
\begin_layout Standard
\backslash
thispagestyle{empty}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset VSpace 0.5in*
\end_inset
\end_layout
\begin_layout Standard
\align center
\size huge
Python for Education
\end_layout
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/ylm20.png
width 8cm
\end_inset
\end_layout
\begin_layout Standard
\align center
\shape italic
\size large
Learning Maths & Science using Python
\end_layout
\begin_layout Standard
\align center
\shape italic
\size large
and
\end_layout
\begin_layout Standard
\align center
\shape italic
\size large
writing them in LaTeX
\end_layout
\begin_layout Standard
\begin_inset VSpace 0.5in
\end_inset
\end_layout
\begin_layout Standard
\align center
\size large
Ajith Kumar B.P.
\end_layout
\begin_layout Standard
\align center
\size large
Inter University Accelerator Centre
\end_layout
\begin_layout Standard
\align center
\size large
New Delhi 110067
\end_layout
\begin_layout Standard
\align center
\size large
www.iuac.res.in
\end_layout
\begin_layout Standard
\align center
\begin_inset VSpace 0.3in
\end_inset
\end_layout
\begin_layout Standard
\align center
June 2010
\end_layout
\begin_layout Standard
\newpage
\end_layout
\begin_layout Standard
\align center
Preface
\end_layout
\begin_layout Standard
\begin_inset Quotes eld
\end_inset
Mathematics, rightly viewed, possesses not only truth, but supreme beauty
-- a beauty cold and austere, like that of sculpture, without appeal to
any part of our weaker nature, without the gorgeous trappings of painting
or music, yet sublimely pure, and capable of a stern perfection such as
only the greatest art can show
\begin_inset Quotes erd
\end_inset
, wrote Bertrand Russell about the beauty of mathematics.
All of us may not reach such higher planes, probably reserved for Russels
and Ramanujans, but we also have beautiful curves and nice geometrical
figures with intricate symmetries, like fractals, generated by seemingly
dull equations.
This book attempts to explore it using a simple tool, the Python programming
language.
\end_layout
\begin_layout Standard
I started using Python for the Phoenix project (www.iuac.res.in).
Phoenix was driven in to Python by Pramode CE (pramode.net) and I followed.
Writing this document was triggered by some of my friends who are teaching
mathematics at Calicut University.
\end_layout
\begin_layout Standard
In the first chapter, a general introduction about computers and high level
programming languages is given.
Basics of Python language, Python modules for array and matrix manipulation,
2D and 3D data visualization, type-setting mathematical equations using
latex and numerical methods in Python are covered in the subsequent chapters.
Example programs are given for every topic discussed.
This document is meant for those who want to try out these examples and
modify them for better understanding.
Huge amount of material is already available online on the topics covered,
and the references to many resources on the Internet are given for the
benefit of the serious reader.
\end_layout
\begin_layout Standard
This book comes with a live CD, containing a modified version of Ubuntu
GNU/Linux operating system.
You can boot any PC from this CD and practice Python.
Click on the 'Learn by Coding' icon on the desktop to browse through a
collection of Python programs, run any of them with a single click.
You can practice Python very easily by modifying and running these example
programs.
\end_layout
\begin_layout Standard
This document is prepared using LyX, a LaTeX front-end.
It is distributed under the GNU Free Documentation License (www.gnu.org).
Feel free to make verbatim copies of this document and distribute through
any media.
For the LyX source files please contact the author.
\end_layout
\begin_layout Standard
Ajith Kumar
\end_layout
\begin_layout Standard
IUAC , New Delhi
\end_layout
\begin_layout Standard
ajith at iuac.res.in
\end_layout
\begin_layout Standard
\newpage
\end_layout
\begin_layout Standard
\begin_inset LatexCommand tableofcontents
\end_inset
\end_layout
\begin_layout Chapter
Introduction
\end_layout
\begin_layout Standard
Primary objective of this book is to explore the possibilities of using
Python language as a tool for learning mathematics and science.
The reader is not assumed to be familiar with computer programming.
Ability to think logically is enough.
Before getting into Python programming, we will briefly explain some basic
concepts and tools required.
\end_layout
\begin_layout Standard
Computer is essentially an electronic device like a radio or a television.
What makes it different from a radio or a TV is its ability to perform
different kinds of tasks using the same electronic and mechanical components.
This is achieved by making the electronic circuits flexible enough to work
according to a set of instructions.
The electronic and mechanical parts of a computer are called the Hardware
and the set of instructions is called Software (or computer program).
Just by changing the Software, computer can perform vastly different kind
of tasks.
The instructions are stored in binary format using electronic switches.
\end_layout
\begin_layout Section
Hardware Components
\end_layout
\begin_layout Standard
Central Processing Unit (CPU), Memory and Input/Output units are the main
hardware components of a computer.
CPU
\begin_inset Foot
status collapsed
\begin_layout Standard
The cabinet that encloses most of the hardware is called CPU by some, mainly
the computer vendors.
They are not referring to the actual CPU chip.
\end_layout
\end_inset
can be called the brain of the computer.
It contains a Control Unit and an Arithmetic and Logic Unit, ALU.
The control unit brings the instructions stored in the main memory one
by one and acts according to it.
It also controls the movement of data between memory and input/output units.
The ALU can perform arithmetic operations like addition, multiplication
and logical operations like comparing two numbers.
\end_layout
\begin_layout Standard
Memory stores the instructions and data, that is processed by the CPU.
All types of information are stored as binary numbers.
The smallest unit of memory is called a binary digit or Bit.
It can have a value of zero or one.
A group of eight bits are called a Byte.
A computer has Main and Secondary types of memory.
Before processing, data and instructions are moved into the main memory.
Main memory is organized into words of one byte size.
CPU can select any memory location by using it's address.
Main memory is made of semiconductor switches and is very fast.
There are two types of Main Memory.
Read Only Memory and Read/Write Memory.
Read/Write Memory is also called Random Access Memory.
All computers contains some programs in ROM which start running when you
switch on the machine.
Data and programs to be stored for future use are saved to Secondary memory,
mainly devices like Hard disks, floppy disks, CDROM or magnetic tapes.
\end_layout
\begin_layout Standard
The Input devices are for feeding the input data into the computer.
Keyboard is the most common input device.
Mouse, scanner etc.
are other input devices.
The processed data is displayed or printed using the output devices.
The monitor screen and printer are the most common output devices.
\end_layout
\begin_layout Section
Software components
\end_layout
\begin_layout Standard
An ordinary user expects an easy and comfortable interaction with a computer,
and most of them are least inclined to learn even the basic concepts.
To use modern computers for common applications like browsing and word
processing, all you need to do is to click on some icons and type on the
keyboard.
However, to write your own computer programs, you need to learn some basic
concepts, like the operating system, editors, compilers, different types
of user interfaces etc.
This section describes the basics from that point of view.
\end_layout
\begin_layout Subsection
The Operating System
\end_layout
\begin_layout Standard
Operating system (OS) is the software that interacts with the user and makes
the hardware resources available to the user.
It starts running when you switch on the computer and remains in control.
On user request, operating system loads other application programs from
disk to the main memory and executes them.
OS also provides a file system, a facility to store information on devices
like floppy disk and hard disk.
In fact the OS is responsible for managing all the hardware resources.
\end_layout
\begin_layout Standard
GNU/Linux and MS Windows are two popular operating systems.
Based on certain features, operating systems can be classified as:
\end_layout
\begin_layout Itemize
Single user, single process systems like MS DOS.
Only one process can run at a time.
Such operating systems do not have much control over the application programs.
\end_layout
\begin_layout Itemize
Multi-tasking systems like MS Windows, where more than one processe can
run at a time.
\end_layout
\begin_layout Itemize
Multi-user, multi-tasking systems like GNU/Linux, Unix etc.
More than one person can use the computer at the same time.
\end_layout
\begin_layout Itemize
Real-time systems, mostly used in control applications, where the response
time to any external input is maintained under specified limits.
\end_layout
\begin_layout Subsection
The User Interface
\end_layout
\begin_layout Standard
Interacting with a computer involves, starting various application programs
and managing them on the computer screen.
The software that manages these actions is called the user interface.
The two most common forms of user interface have historically been the
Command-line Interface, where computer commands are typed out line-by-line,
and the Graphical User Interface (GUI), where a visual environment (consisting
of windows, menus, buttons, icons, etc.) is present.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/terminal.png
width 12cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
A GNU/Linux Terminal
\begin_inset LatexCommand label
name "fig:The-command-terminal"
\end_inset
.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection
The Command Terminal
\end_layout
\begin_layout Standard
To run any particular program, we need to request the operating system to
do so.
Under a Graphical User Interface, we do this by choosing the desired applicatio
n from a menu.
It is possible only because someone has added it to the menu earlier.
When you start writing your own programs, obviously they will not appear
in any menu.
Another way to request the operating system to execute a program is to
enter the name of the program (more precisely, the name of the file containing
it) at the Command Terminal.
On an Ubuntu GNU/Linux system, you can start a Terminal from the menu names
Applications->Accessories->Terminal.
Figure
\begin_inset LatexCommand ref
reference "fig:The-command-terminal"
\end_inset
shows a Terminal displaying the list of files in a directory (output of
the command 'ls -l' , the -l option is for long listing).
\end_layout
\begin_layout Standard
The command processor offers a host of features to make the interaction
more comfortable.
It keeps track of the history of commands and we can recall previous commands,
modify and reuse them using the cursor keys.
There is also a completion feature implemented using the Tab key that reduces
typing.
Use the tab key to complete command and filenames.
To run
\shape italic
hello.py
\shape default
from our test directory, type
\shape italic
python h
\shape default
and then press the tab key to complete it.
If there are more than one file starting with 'h', you need to type more
characters until the ambiguity is removed.
Always use the up-cursor key to recall the previous commands and re-issue
it.
\end_layout
\begin_layout Standard
The commands given at the terminal are processed by a program called the
\shape italic
shell
\shape default
.
(The version now popular under GNU/Linux is called bash, the Bourne again
shell).
Some of the GNU/Linux commands are listed below.
\end_layout
\begin_layout Itemize
top : Shows the CPU and memory usage of all the processes started.
\end_layout
\begin_layout Itemize
cp filename filename : copies a file to another.
\end_layout
\begin_layout Itemize
mv : moves files from one folder to another, or rename a file.
\end_layout
\begin_layout Itemize
rm : deletes files or directories.
\end_layout
\begin_layout Itemize
man : display manual pages for a program.
For example 'man bash' will give help on the bash shell.
Press 'q' to come out of the help screen.
\end_layout
\begin_layout Itemize
info : A menu driven information system on various topics.
\end_layout
\begin_layout Standard
See the manual pages of 'mv', cp, 'rm' etc.
to know more about them.
Most of these commands are application programs, stored inside the folders
/bin or /sbin, that the shell starts for you and displays their output
inside the terminal window.
\end_layout
\begin_layout Subsection
The File-system
\end_layout
\begin_layout Standard
Before the advent of computers, people used to keep documents in files and
folders.
The designers of the Operating System have implemented the electronic counterpa
rts of the same.
The storage space is made to appear as files arranged inside folders (directory
is another term for folder).
A simplified schematic of the GNU/Linux file system is shown in figure
\begin_inset LatexCommand ref
reference "fig:The-GNU/Linux-file"
\end_inset
.
The outermost directory is called 'root' directory and represented using
the forward slash character.
Inside that we have folders named bin, usr, home, tmp etc., containing different
type of files.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/linux-tree.png
width 6cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
The GNU/Linux file system tree
\begin_inset LatexCommand label
name "fig:The-GNU/Linux-file"
\end_inset
.
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Subsubsection
Ownership & permissions
\end_layout
\begin_layout Standard
On a multi-user operating system, application programs and document files
must be protected against any misuse.
This is achieved by defining a scheme of ownerships and permissions.
Each and every file on the system will be owned by a specific user.
The read, write and execute permissions can be assigned to them, to control
the usage.
The concept of
\shape italic
group
\shape default
is introduced to share files between a selected group of users.
\end_layout
\begin_layout Standard
There is one special user named
\shape italic
root
\shape default
(also called the system administrator or the super user) , who has permission
to use all the resources.
Ordinary user accounts, with a username and password, are created for everyone
who wants to use the computer.
In a multi-user operating system, like GNU/Linux, every user will have
one directory inside which he can create sub-directories and files.
This is called the 'home directory' of that user.
Home directory of one user cannot be modified by another user.
\end_layout
\begin_layout Standard
The operating system files are owned by
\shape italic
root
\shape default
.
The /home directory contains subdirectories named after every ordinary
user, for example, the user
\shape italic
fred
\shape default
owns the directory
\shape italic
/home/fred
\shape default
(fig
\begin_inset LatexCommand ref
reference "fig:The-GNU/Linux-file"
\end_inset
) and its contents.
That is also called the user's home directory.
Every file and directory has three types of permissions : read, write and
execute.
To view them use the 'ls -l ' command.
The first character of output line tells the type of the file.
The next three characters show the
\shape italic
rwx
\shape default
(read, write, execute) permissions for the owner of that file.
Next three for the users belonging to the same group and the next three
for other users.
A hyphen character (-) means the permission corresponding to that field
is not granted.
For example, the figure
\begin_inset LatexCommand ref
reference "fig:The-command-terminal"
\end_inset
shows a listing of five files:
\end_layout
\begin_layout Enumerate
asecret.dat : read & write for the owner.
No one else can even see it.
\end_layout
\begin_layout Enumerate
foo.png : rw for owner, but others can view the file.
\end_layout
\begin_layout Enumerate
hello.py : rwx for owner, others can view and execute.
\end_layout
\begin_layout Enumerate
share.tex : rw for owner and other members of the same group.
\end_layout
\begin_layout Enumerate
xdata is a directory.
Note that execute permission is required to view contents of a directory.
\end_layout
\begin_layout Standard
The system of ownerships and permissions also protects the system from virus
attacks
\begin_inset Foot
status collapsed
\begin_layout Standard
Do not expect this from the MS Windows system.
Even though it allows to create users, any user ( by running programs or
viruses) is allowed to modify the system files.
This may be because it grew from a single process system like MSDOS and
still keeps that legacy.
\end_layout
\end_inset
.
The virus programs damage the system by modifying some application program.
On a true multi-user system, for example GNU/Linux, the application program
and other system files are owned by the root user and ordinary users have
no permission to modify them.
When a virus attempts to modify an application, it fails due to this permission
and ownership scheme.
\end_layout
\begin_layout Subsubsection
Current Directory
\end_layout
\begin_layout Standard
There is a working directory for every user.
You can create subdirectories inside that and change your current working
directory to any of them.
While using the command-line interface, you can use the 'cd' command to
change the current working directory.
Figure
\begin_inset LatexCommand ref
reference "fig:The-command-terminal"
\end_inset
shows how to change the directory and come back to the parent directory
by using double dots.
We also used the command 'pwd' to print the name of the current working
directory.
\end_layout
\begin_layout Section
Text Editors
\end_layout
\begin_layout Standard
To create and modify files, we use different application programs depending
on the type of document contained in that file.
Text editors are used for creating and modifying plain text matter, without
any formatting information embedded inside.
Computer programs are plain text files and to write computer programs,
we need a text editor.
\shape italic
'gedit'
\shape default
is a simple, easy to use text editor available on GNU/Linux, which provides
syntax high-lighting for several programming languages.
\end_layout
\begin_layout Section
High Level Languages
\end_layout
\begin_layout Standard
In order to solve a problem using a computer, it is necessary to evolve
a detailed and precise step by step method of solution.
A set of these precise and unambiguous steps is called an Algorithm.
It should begin with steps accepting input data and should have steps which
gives output data.
For implementing any algorithm on a computer, each of it's steps must be
converted into proper machine language instructions.
Doing this process manually is called Machine Language Programming.
Writing machine language programs need great care and a deep understanding
about the internal structure of the computer hardware.
High level languages are designed to overcome these difficulties.
Using them one can create a program without knowing much about the computer
hardware.
\end_layout
\begin_layout Standard
We already learned that to solve a problem we require an algorithm and it
has to be executed step by step.
It is possible to express the algorithm using a set of precise and unambiguous
notations.
The notations selected must be suitable for the problems to be solved.
\shape italic
A high level programming language is a set of well defined notations which
is capable of expressing algorithms.
\end_layout
\begin_layout Standard
In general a high level language should have the following features.
\end_layout
\begin_layout Enumerate
Ability to represent different data types like characters, integers and
real numbers.
In addition to this it should also support a collection of similar objects
like character strings, arrays etc.
\end_layout
\begin_layout Enumerate
Arithmetic and Logical operators that acts on the supported data types.
\end_layout
\begin_layout Enumerate
Control flow structures for decision making, branching, looping etc.
\end_layout
\begin_layout Enumerate
A set of syntax rules that precisely specify the combination of words and
symbols permissible in the language.
\end_layout
\begin_layout Enumerate
A set of semantic rules that assigns a single, precise and unambiguous meaning
to each syntactically correct statement.
\end_layout
\begin_layout Standard
Program text written in a high level language is often called the Source
Code.
It is then translated into the machine language by using translator programs.
There are two types of translator programs, the Interpreter and the Compiler.
\shape italic
\size small
Interpreter reads the high level language program line by line, translates
and executes it.
Compilers convert the entire program in to machine language and stores
it to a file which can be executed.
\end_layout
\begin_layout Standard
High level languages make the programming job easier.
We can write programs that are machine independent.
For the same program different compilers can produce machine language code
to run on different types of computers and operating systems.
BASIC, COBOL, FORTRAN, C, C++, Python etc.
are some of the popular high level languages, each of them having advantages
in different fields.
\end_layout
\begin_layout Standard
To write any useful program for solving a problem, one has to develop an
algorithm.
The algorithm can be expressed in any suitable high level language.
\shape italic
Learning how to develop an algorithm is different from learning a programming
language.
\color black
Learning a programming language means learning the notations, syntax and
semantic rules of that language
\color inherit
.
\shape default
Best way to do this is by writing small programs with very simple algorithms.
After becoming familiar with the notations and rules of the language one
can start writing programs to implement more complicated algorithms.
\end_layout
\begin_layout Section
On Free Software
\end_layout
\begin_layout Standard
Software that can be used, studied, modified and redistributed in modified
or unmodified form without restriction is called Free Software.
In practice, for software to be distributed as free software, the human-readabl
e form of the program (the source code) must be made available to the recipient
along with a notice granting the above permissions.
\end_layout
\begin_layout Standard
The free software movement was conceived in 1983 by Richard Stallman to
give the benefit of "software freedom" to computer users.
Stallman founded the Free Software Foundation in 1985 to provide the organizati
onal structure to advance his Free Software ideas.
Later on, alternative movements like Open Source Software came.
\end_layout
\begin_layout Standard
Software for almost all applications is currently available under the pool
of Free Software.
GNU/Linux operating system, OpenOffice.org office suite, LaTeX typesetting
system, Apache web server, GIMP image editor, GNU compiler collection,
Python interpreter etc.
are some of the popular examples.
For more information refer to www.gnu.org website.
\end_layout
\begin_layout Section
Exercises
\end_layout
\begin_layout Enumerate
What are the basic hardware components of a computer.
\end_layout
\begin_layout Enumerate
Name the working directory of a user named 'ramu' under GNU/Linux.
\end_layout
\begin_layout Enumerate
What is the command to list the file names inside a directory (folder).
\end_layout
\begin_layout Enumerate
What is the command under GNU/Linux to create a new folder.
\end_layout
\begin_layout Enumerate
What is the command to change the working directory.
\end_layout
\begin_layout Enumerate
Can we install more than one operating systems on a single hard disk.
\end_layout
\begin_layout Enumerate
Name two most popular Desktop Environments for GNU/Linux.
\end_layout
\begin_layout Enumerate
How to open a command window from the main menu of Ubuntu GNU/Linux.
\end_layout
\begin_layout Enumerate
Explain the file ownership and permission scheme of GNU/Linux.
\end_layout
\begin_layout Chapter
Programming in Python
\end_layout
\begin_layout Standard
Python is a simple, high level language with a clean syntax.
It offers strong support for integration with other languages and tools,
comes with extensive standard libraries, and can be learned in a few days.
Many Python programmers report substantial productivity gains and feel
the language encourages the development of higher quality, more maintainable
code.
To know more visit the Python website.
\begin_inset Foot
status collapsed
\begin_layout Standard
http://www.python.org/
\end_layout
\begin_layout Standard
http://docs.python.org/tutorial/
\end_layout
\begin_layout Standard
This document, example programs and a GUI program to browse through them
are at
\end_layout
\begin_layout Standard
http://www.iuac.res.in/phoenix
\end_layout
\end_inset
\end_layout
\begin_layout Section
Getting started with Python
\end_layout
\begin_layout Standard
To start programming in Python, we have to learn how to type the source
code and save it to a file, using a text editor program.
We also need to know how to open a Command Terminal and start the Python
Interpreter.
The details of this process may vary from one system to another.
On an Ubuntu GNU/Linux system, you can open the
\shape italic
Text Editor
\shape default
and the
\shape italic
Terminal
\shape default
from the Applications->Accessories menu.
\end_layout
\begin_layout Subsection
Two modes of using Python Interpreter
\end_layout
\begin_layout Standard
If you issue the command 'python', without any argument, from the command
terminal, the Python interpreter will start and display a
\shape italic
'>>>'
\shape default
prompt where you can type Python statements.
Use this method only for viewing the results of single Python statements,
for example to use Python as a calculator.
It could be confusing when you start writing larger programs, having looping
and conditional statements.
The preferred way is to enter your source code in a text editor, save it
to a file (with .py extension) and execute it from the command terminal
using Python.
A screen-shot of the Desktop with Text Editor and Terminal is shown in
figure
\begin_inset LatexCommand ref
reference "fig:Text-Editor-and"
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/python_edit.png
lyxscale 50
width 12cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Text Editor and Terminal Windows.
\begin_inset LatexCommand label
name "fig:Text-Editor-and"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout Standard
In this document, we will start writing small programs showing the essential
elements of the language without going into the details.
The reader is expected to run these example programs and also to modify
them in different ways.It is like learning to drive a car, you master it
by practicing.
\end_layout
\begin_layout Standard
Let us start with a program to display the words
\emph on
\color black
Hello World
\emph default
\color inherit
on the computer screen.
This is the customary 'hello world' program.
There is another version that prints 'Goodbye cruel world', probably invented
by those who give up at this point.
The Python 'hello world' program is shown below.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example.
hello.py
\end_layout
\begin_layout LyX-Code
\shape italic
\emph on
\color black
print 'Hello World'
\end_layout
\begin_layout Standard
This should be entered into a text file using any text editor.
On a GNU/Linux system you may use the text editor like 'gedit' to create
the source file, save it as
\shape italic
\color black
hello.py
\shape default
\color inherit
.
The next step is to call the Python Interpreter to execute the new program.
For that, open a command terminal and (at the $ prompt) type:
\begin_inset Foot
status collapsed
\begin_layout Standard
For quick practicing, boot from the CD provided with this book and click
on the learn-by-coding icon to browse through the example programs given
in this book.
The browser allows you to run any of them with a single click, modify and
save the modified versions.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
$ python hello.py
\end_layout
\begin_layout Section
Variables and Data Types
\end_layout
\begin_layout Standard
As mentioned earlier, any high level programming language should support
several data types.
The problem to be solved is represented using variables belonging to the
supported data types.
Python supports numeric data types like integers, floating point numbers
and complex numbers.
To handle character strings, it uses the String data type.
Python also supports other compound data types like lists, tuples, dictionaries
etc.
\end_layout
\begin_layout Standard
In languages like C, C++ and Java, we need to explicitly declare the type
of a variable.
This is not required in Python.
The data type of a variable is decided by the value assigned to it.
This is called dynamic data typing.
The type of a particular variable can change during the execution of the
program.
If required, one type of variable can be converted in to another type by
explicit type casting, like
\begin_inset Formula $y=float(3)$
\end_inset
.
Strings are enclosed within single quotes or double quotes.
\end_layout
\begin_layout Standard
The program
\shape italic
first.py
\shape default
shows how to define variables of different data types.
It also shows how to embed comments inside a program.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example: first.py
\end_layout
\begin_layout LyX-Code
'''
\end_layout
\begin_layout LyX-Code
A multi-line comment, within a pair of three single quotes.
\end_layout
\begin_layout LyX-Code
In a line, anything after a # sign is also a comment
\end_layout
\begin_layout LyX-Code
'''
\end_layout
\begin_layout LyX-Code
x = 10
\end_layout
\begin_layout LyX-Code
print x, type(x) # print x and its type
\end_layout
\begin_layout LyX-Code
x = 10.4
\end_layout
\begin_layout LyX-Code
print x, type(x)
\end_layout
\begin_layout LyX-Code
x = 3 + 4j
\end_layout
\begin_layout LyX-Code
print x, type(x)
\end_layout
\begin_layout LyX-Code
x = 'I am a String '
\end_layout
\begin_layout LyX-Code
print x, type(x)
\end_layout
\begin_layout Standard
The output of the program is shown below.
Note that the type of the variable
\shape italic
x
\shape default
changes during the execution of the program, depending on the value assigned
to it.
\end_layout
\begin_layout LyX-Code
10 <type 'int'>
\end_layout
\begin_layout LyX-Code
10.4 <type 'float'>
\end_layout
\begin_layout LyX-Code
(3+4j) <type 'complex'>
\end_layout
\begin_layout LyX-Code
I am a String <type 'str'>
\end_layout
\begin_layout Standard
\align block
The program treats the variables like humans treat labelled envelopes.
We can pick an envelope, write some name on it and keep something inside
it for future use.
In a similar manner the program creates a variable, gives it a name and
keeps some value inside it, to be used in subsequent steps.
So far we have used four data types of Python: int, float, complex and
str.
To become familiar with them, you may write simple programs performing
arithmetic and logical operations using them.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example: oper.py
\end_layout
\begin_layout LyX-Code
x = 2
\end_layout
\begin_layout LyX-Code
y = 4
\end_layout
\begin_layout LyX-Code
print x + y * 2
\end_layout
\begin_layout LyX-Code
s = 'Hello '
\end_layout
\begin_layout LyX-Code
print s + s
\end_layout
\begin_layout LyX-Code
print 3 * s
\end_layout
\begin_layout LyX-Code
print x == y
\end_layout
\begin_layout LyX-Code
print y == 2 * x
\end_layout
\begin_layout Standard
Running the program
\shape italic
oper.py
\shape default
will generate the following output.
\end_layout
\begin_layout LyX-Code
10
\end_layout
\begin_layout LyX-Code
Hello Hello
\end_layout
\begin_layout LyX-Code
Hello Hello Hello
\end_layout
\begin_layout LyX-Code
False
\end_layout
\begin_layout LyX-Code
True
\end_layout
\begin_layout Standard
Note that a String can be added to another string and it can be multiplied
by an integer.
Try to understand the logic behind that and also try adding a String to
an Integer to see what is the error message you will get.
We have used the logical operator
\begin_inset Formula $==$
\end_inset
for comparing two variables.
\end_layout
\begin_layout Section
Operators and their Precedence
\end_layout
\begin_layout Standard
Python supports a large number of arithmetic and logical operators.
They are summarized in the table
\begin_inset LatexCommand ref
reference "tab:Operators-in-Python"
\end_inset
.
An important thing to remember is their precedence.
In the expression
\shape italic
2+3*4
\shape default
, is the addition done first or the multiplication? According to elementary
arithmetics, the multiplication should be done first.
It means that the multiplication operator has higher precedence than the
addition operator.
If you want the addition to be done first, enforce it by using parenthesis
like
\begin_inset Formula $(2+3)*4$
\end_inset
.
Whenever there is ambiguity in evaluation, use parenthesis to clarify the
order of evaluation.
\end_layout
\begin_layout Standard
\begin_inset Float table
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="16" columns="4">
<features>
<column alignment="center" valignment="top" leftline="true" width="0">
<column alignment="center" valignment="top" leftline="true" width="0">
<column alignment="center" valignment="top" leftline="true" width="0">
<column alignment="center" valignment="top" leftline="true" rightline="true" width="0">
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
Operator
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
Description
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
Expression
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
Result
\end_layout
\end_inset
</cell>
</row>
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
or
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
Boolean OR
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
0 or 4
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
4
\end_layout
\end_inset
</cell>
</row>
<row bottomline="true">
<cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
and
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
Boolean AND
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
3 and 0
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
0
\end_layout
\end_inset
</cell>
</row>
<row bottomline="true">
<cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
not x
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
Boolean NOT
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
not 0
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
True
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
in, not in
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
Membership tests
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
3 in [2.2,3,12]
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
True
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
<, <=, >, >=, !=, ==
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
Comparisons
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
2 > 3
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
False
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
|
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
Bitwise OR
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
1 | 2
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
3
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
^
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
Bitwise XOR
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
1 ^ 5
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
4
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
&
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
Bitwise AND
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
1 & 3
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
1
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
<<, >>
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
Bitwise Shifting
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
1 << 3
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
8
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
+ , -
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
Add, Subtract
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
6 - 4
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
2
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
*, /, %
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
Multiply, divide, reminder
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
5 % 2
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
1
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
+x , -x
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
Positive, Negative
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
-5*2
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
-10
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
~
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
Bitwise NOT
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
~1
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
-2
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
**
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
Exponentiation
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
2 ** 3
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
8
\end_layout
\end_inset
</cell>
</row>
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
x[index]
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
Subscription
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
a='abcd' ; a[1]
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
\shape italic
\size small
'b'
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Operators in Python listed according to their precedence.
\begin_inset LatexCommand label
name "tab:Operators-in-Python"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Section
Python Strings
\end_layout
\begin_layout Standard
So far we have come across four data types: Integer, Float, Complex and
String.
Out of which, String is somewhat different from the other three.
It is a collection of same kind of elements, characters.
The individual elements of a String can be accessed by indexing as shown
in
\shape italic
string.py
\shape default
.
String is a compound, or collection, data type.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example: string.py
\end_layout
\begin_layout LyX-Code
s = 'hello world'
\end_layout
\begin_layout LyX-Code
print s[0] # print first element, h
\end_layout
\begin_layout LyX-Code
print s[1] # print e
\end_layout
\begin_layout LyX-Code
print s[-1] # will print the last character
\end_layout
\begin_layout Standard
Addition and multiplication is defined for Strings, as demonstrated by string2.py.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example: string2.py
\end_layout
\begin_layout LyX-Code
a = 'hello'+'world'
\end_layout
\begin_layout LyX-Code
print a
\end_layout
\begin_layout LyX-Code
b = 'ha' * 3
\end_layout
\begin_layout LyX-Code
print b
\end_layout
\begin_layout LyX-Code
print a[-1] + b[0]
\end_layout
\begin_layout Standard
\align left
will give the output
\end_layout
\begin_layout Standard
helloworld
\end_layout
\begin_layout Standard
hahaha
\end_layout
\begin_layout Standard
dh
\end_layout
\begin_layout Standard
\align left
The last element of
\shape italic
a
\shape default
and first element of
\shape italic
b
\shape default
are added, resulting in the string 'dh'
\end_layout
\begin_layout Subsection
Slicing
\end_layout
\begin_layout Standard
Part of a String can be extracted using the slicing operation.
It can be considered as a modified form of indexing a single character.
Indexing using
\begin_inset Formula $s[a:b]$
\end_inset
extracts elements
\begin_inset Formula $s[a]$
\end_inset
to
\begin_inset Formula $s[b-1]$
\end_inset
.
We can skip one of the indices.
If the index on the left side of the colon is skipped, slicing starts from
the first element and if the index on right side is skipped, slicing ends
with the last element.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example: slice.py
\end_layout
\begin_layout Standard
a = 'hello world'
\end_layout
\begin_layout Standard
print a[3:5]
\end_layout
\begin_layout Standard
print a[6:]
\end_layout
\begin_layout Standard
print a[:5]
\end_layout
\begin_layout Standard
\align left
The reader can guess the nature of slicing operation from the output of
this code, shown below.
\end_layout
\begin_layout LyX-Code
'lo'
\end_layout
\begin_layout LyX-Code
'world'
\end_layout
\begin_layout LyX-Code
'hello'
\end_layout
\begin_layout Standard
Please note that specifying a right side index more than the length of the
string is equivalent to skipping it.
Modify
\shape italic
slice.py
\shape default
to print the result of
\begin_inset Formula $a[6:20]$
\end_inset
to demonstrate it.
\end_layout
\begin_layout Section
Python Lists
\end_layout
\begin_layout Standard
List is an important data type of Python.
It is much more flexible than String.
The individual elements can be of any type, even another list.
Lists are defined by enclosing the elements inside a pair of square brackets,
separated by commas.
The program
\shape italic
list1.py
\shape default
defines a list and print its elements.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example: list1.py
\end_layout
\begin_layout LyX-Code
a = [2.3, 3.5, 234] # make a list
\end_layout
\begin_layout LyX-Code
print a[0]
\end_layout
\begin_layout LyX-Code
a[1] = 'haha' # Change an element
\end_layout
\begin_layout LyX-Code
print a
\end_layout
\begin_layout Standard
The output is shown below
\begin_inset Foot
status collapsed
\begin_layout Standard
The floating point number 2.3 showing as 2.2999999999999998 is interesting.
This is the very nature of floting point representation of numbers, nothing
to do with Python.
With the precision we are using, the error in representing 2.3 is around
2.0e-16.
This becomes a concern in operations like inversion of big matrices.
\end_layout
\end_inset
.
\end_layout
\begin_layout Standard
2.3
\end_layout
\begin_layout Standard
[2.2999999999999998, 'haha', 234]
\end_layout
\begin_layout Standard
Lists can be sliced in a manner similar to that if Strings.
List addition and multiplication are demonstrated by the following example.
We can also have another list as an element of a list.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example: list2.py
\end_layout
\begin_layout LyX-Code
a = [1,2]
\end_layout
\begin_layout LyX-Code
print a * 2
\end_layout
\begin_layout LyX-Code
print a + [3,4]
\end_layout
\begin_layout LyX-Code
b = [10, 20, a]
\end_layout
\begin_layout LyX-Code
print b
\end_layout
\begin_layout Standard
The output of this program is shown below.
\end_layout
\begin_layout Standard
[1, 2, 1, 2]
\end_layout
\begin_layout Standard
[1, 2, 3, 4]
\end_layout
\begin_layout Standard
[10, 20, [1, 2] ]
\end_layout
\begin_layout Section
Mutable and Immutable Types
\end_layout
\begin_layout Standard
There is one major difference between String and List types, List is mutable
but String is not.
\shape italic
We can change the value of an element in a list, add new elements to it
and remove any existing element.
This is not possible with String type
\shape default
.
Uncomment the last line of
\shape italic
third.py
\shape default
and run it to clarify this point.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example: third.py
\end_layout
\begin_layout LyX-Code
s = [3, 3.5, 234] # make a list
\end_layout
\begin_layout LyX-Code
s[2] = 'haha' # Change an element
\end_layout
\begin_layout LyX-Code
print s
\end_layout
\begin_layout LyX-Code
x = 'myname' # String type
\end_layout
\begin_layout LyX-Code
#x[1] = 2 # uncomment to get ERROR
\end_layout
\begin_layout Standard
The List data type is very flexible, an element of a list can be another
list.
We will be using lists extensively in the coming chapters.
Tuple is another data type similar to List, except that it is immutable.
List is defined inside square brackets, tuple is defined in a similar manner
but inside parenthesis, like
\begin_inset Formula $(3,3.5,234)$
\end_inset
.
\end_layout
\begin_layout Section
Input from the Keyboard
\end_layout
\begin_layout Standard
Since most of the programs require some input from the user, let us introduce
this feature before proceeding further.
There are mainly two functions used for this purpose,
\emph on
\color black
input()
\emph default
\color inherit
for numeric type data and
\emph on
\color black
raw_input()
\emph default
\color inherit
for String type data.
A message to be displayed can be given as an argument while calling these
functions.
\begin_inset Foot
status collapsed
\begin_layout Standard
Functions will be introduced later.
For the time being, understand that it is an isolated piece of code, called
from the main program with some input arguments and returns some output.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example: kin1.py
\end_layout
\begin_layout LyX-Code
x = input('Enter an integer ')
\end_layout
\begin_layout LyX-Code
y = input('Enter one more ')
\end_layout
\begin_layout LyX-Code
print 'The sum is ', x + y
\end_layout
\begin_layout LyX-Code
s = raw_input('Enter a String ')
\end_layout
\begin_layout LyX-Code
print 'You entered ', s
\end_layout
\begin_layout Standard
It is also possible to read more than one variable using a single input()
statement.
\emph on
\color black
String
\emph default
\color inherit
type data read using raw_input() may be converted into
\emph on
\color black
integer
\emph default
\color inherit
or
\emph on
\color black
float
\emph default
\color inherit
type if they contain only the valid characters.
In order to show the effect of conversion explicitly, we multiply the variables
by 2 before printing.
Multiplying a String by 2 prints it twice.
If the String contains any other characters than
\shape italic
0..9, .
and e
\shape default
, the conversion to float will give an error.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example: kin2.py
\end_layout
\begin_layout LyX-Code
x,y = input('Enter x and y separated by comma ')
\end_layout
\begin_layout LyX-Code
print 'The sum is ', x + y
\end_layout
\begin_layout LyX-Code
s = raw_input('Enter a decimal number ')
\end_layout
\begin_layout LyX-Code
a = float(s)
\end_layout
\begin_layout LyX-Code
print s * 2 # prints string twice
\end_layout
\begin_layout LyX-Code
print a * 2 # converted value times 2
\end_layout
\begin_layout Standard
We have learned about the basic data types of Python and how to get input
data from the keyboard.
This is enough to try some simple problems and algorithms to solve them.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example:
\emph default
\color inherit
area.py
\end_layout
\begin_layout LyX-Code
pi = 3.1416
\end_layout
\begin_layout LyX-Code
r = input('Enter Radius ')
\end_layout
\begin_layout LyX-Code
a = pi * r ** 2 #
\begin_inset Formula $A=\pi r^{2}$
\end_inset
\end_layout
\begin_layout LyX-Code
print 'Area = ', a
\end_layout
\begin_layout Standard
\align block
The above example calculates the area of a circle.
Line three calculates
\begin_inset Formula $r^{2}$
\end_inset
\InsetSpace ~
using the exponentiation operator
\begin_inset Formula $**$
\end_inset
, and multiply it with
\begin_inset Formula $\pi$
\end_inset
using the multiplication operator
\begin_inset Formula $*$
\end_inset
.
\begin_inset Formula $r^{2}$
\end_inset
is evaluated first because ** has higher precedence than *, otherwise the
result would be
\begin_inset Formula $(\pi r)^{2}$
\end_inset
.
\end_layout
\begin_layout Section
Iteration: while and for loops
\end_layout
\begin_layout Standard
If programs can only execute from the first line to the last in that order,
as shown in the previous examples, it would be impossible to write any
useful program.
For example, we need to print the multiplication table of eight.
Using our present knowledge, it would look like the following
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example:
\emph default
\color inherit
badtable.py
\end_layout
\begin_layout LyX-Code
print 1 * 8
\end_layout
\begin_layout LyX-Code
print 2 * 8
\end_layout
\begin_layout LyX-Code
print 3 * 8
\end_layout
\begin_layout LyX-Code
print 4 * 8
\end_layout
\begin_layout LyX-Code
print 5 * 8
\end_layout
\begin_layout Standard
Well, we are stopping here and looking for a better way to do this job.
\end_layout
\begin_layout Standard
The solution is to use the
\emph on
\color black
while
\emph default
\color inherit
loop of Python.
The logical expression in front of
\shape italic
while
\shape default
is evaluated, and if it is True, the body of the while loop (the indented
lines below the while statement) is executed.
The process is repeated until the condition becomes false.
We should have some statement inside the body of the loop that will make
this condition false after few iterations.
Otherwise the program will run in an infinite loop and you will have to
press Control-C to terminate it.
\end_layout
\begin_layout Standard
The program
\shape italic
table.py
\shape default
, defines a variable
\begin_inset Formula $x$
\end_inset
and assigns it an initial value of 1.
Inside the while loop
\begin_inset Formula $x*8$
\end_inset
is printed and the value of
\begin_inset Formula $x$
\end_inset
is incremented.
This process will be repeated until the value of
\begin_inset Formula $x$
\end_inset
becomes greater than 10.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example:
\emph default
\color inherit
table.py
\end_layout
\begin_layout LyX-Code
x = 1
\end_layout
\begin_layout LyX-Code
while x <= 10:
\end_layout
\begin_layout LyX-Code
print x * 8
\end_layout
\begin_layout LyX-Code
x = x + 1
\end_layout
\begin_layout Standard
As per the Python syntax, the while statement ends with a colon and the
code inside the
\emph on
\color black
while
\emph default
\color inherit
loop is indented.
Indentation can be done using tab or few spaces.
In this example, we have demonstrated a simple algorithm.
\end_layout
\begin_layout Subsection
Python Syntax, Colon & Indentation
\end_layout
\begin_layout Standard
Python was designed to be a highly readable language.
It has a relatively uncluttered visual layout, uses English keywords frequently
where other languages use punctuation, and has notably fewer syntactic
constructions than other popular structured languages.
\end_layout
\begin_layout Standard
There are mainly two things to remember about Python syntax:
\shape italic
indentation and colon
\shape default
.
\shape italic
Python uses indentation to delimit blocks of code
\shape default
.
Both space characters and tab characters are currently accepted as forms
of indentation in Python.
Mixing spaces and tabs can create bugs that are hard to find, since the
text editor does not show the difference.
There should not be any extra white spaces in the beginning of any line.
\end_layout
\begin_layout Standard
\shape italic
The line before any indented block must end with a colon character
\shape default
.
\end_layout
\begin_layout Subsection
Syntax of 'for loops'
\end_layout
\begin_layout Standard
Python
\shape italic
for
\shape default
loops are slightly different from the for loops of other languages.
Python
\shape italic
for
\shape default
loop iterates over a compound data type like a String, List or Tuple.
During each iteration, one member of the compound data is assigned to the
loop variable.
The flexibility of this can be seen from the examples below.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example:
\emph default
\color inherit
forloop.py
\end_layout
\begin_layout LyX-Code
a = 'Hello'
\end_layout
\begin_layout LyX-Code
for ch in a: # ch is the loop variable
\end_layout
\begin_layout LyX-Code
print ch
\end_layout
\begin_layout LyX-Code
b = ['haha', 3.4, 2345, 3+5j]
\end_layout
\begin_layout LyX-Code
for item in b:
\end_layout
\begin_layout LyX-Code
print item
\end_layout
\begin_layout Standard
which gives the output :
\end_layout
\begin_layout Standard
H
\end_layout
\begin_layout Standard
e
\end_layout
\begin_layout Standard
l
\end_layout
\begin_layout Standard
l
\end_layout
\begin_layout Standard
o
\end_layout
\begin_layout Standard
haha
\end_layout
\begin_layout Standard
3.4
\end_layout
\begin_layout Standard
2345
\end_layout
\begin_layout Standard
(3+5j)
\end_layout
\begin_layout Standard
For constructing for loops that executes a fixed number of times, we can
create a list using the range() function and run the for loop over that.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example:
\emph default
\color inherit
forloop2.py
\end_layout
\begin_layout LyX-Code
mylist = range(5)
\end_layout
\begin_layout LyX-Code
print mylist
\end_layout
\begin_layout LyX-Code
for item in mylist:
\end_layout
\begin_layout LyX-Code
print item
\end_layout
\begin_layout Standard
The output will look like :
\end_layout
\begin_layout Standard
[0, 1, 2, 3, 4]
\end_layout
\begin_layout Standard
0
\end_layout
\begin_layout Standard
1
\end_layout
\begin_layout Standard
2
\end_layout
\begin_layout Standard
3
\end_layout
\begin_layout Standard
4
\end_layout
\begin_layout Standard
The range function in the above example generates the list
\begin_inset Formula $[0,1,2,3,4]$
\end_inset
and the for loop walks thorugh it printing each member.
It is possible to specify the starting point and increment as arguments
in the form range(start, end+1, step).
The following example prints the table of 5 using this feature.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example:
\emph default
\color inherit
forloop3.py
\end_layout
\begin_layout LyX-Code
mylist = range(5,51,5)
\end_layout
\begin_layout LyX-Code
for item in mylist:
\end_layout
\begin_layout LyX-Code
print item ,
\end_layout
\begin_layout Standard
The output is shown below.
\end_layout
\begin_layout Standard
5 10 15 20 25 30 35 40 45 50
\end_layout
\begin_layout Standard
The print statement inserts a newline at the end by default.
We can suppress this behaviour by adding a comma character at the end as
done in the previous example.
\end_layout
\begin_layout Standard
In some cases, we may need to traverse the list to modify some or all of
the elements.
This can be done by looping over a list of indices generated by the range()
function.For example, the program
\emph on
\emph default
forloop4.py
\size large
\emph on
\size default
\emph default
zeros all the elements of the list.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example:
\emph default
\color inherit
forloop4.py
\end_layout
\begin_layout LyX-Code
a = [2, 5, 3, 4, 12]
\end_layout
\begin_layout LyX-Code
size = len(a)
\end_layout
\begin_layout LyX-Code
for k in range(size):
\end_layout
\begin_layout LyX-Code
a[k] = 0
\end_layout
\begin_layout LyX-Code
print a
\end_layout
\begin_layout Section
Conditional Execution: if, elif and else
\end_layout
\begin_layout Standard
In some cases, we may need to execute some section of the code only if certain
conditions are true.
Python implements this feature using the
\emph on
\color black
if, elif
\emph default
\color inherit
and
\emph on
\color black
else
\emph default
\color inherit
keywords, as shown in the next example.
The indentation levels of
\shape italic
if
\shape default
and the corresponding
\shape italic
elif
\shape default
and
\shape italic
else
\shape default
must be kept the same.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example:
\emph default
\color inherit
compare.py
\end_layout
\begin_layout LyX-Code
x = raw_input('Enter a string ')
\end_layout
\begin_layout LyX-Code
if x == 'hello':
\end_layout
\begin_layout LyX-Code
print 'You typed ', x
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example:
\emph default
\color inherit
big.py
\end_layout
\begin_layout LyX-Code
x = input('Enter a number ')
\end_layout
\begin_layout LyX-Code
if x > 10:
\end_layout
\begin_layout LyX-Code
print 'Bigger Number'
\end_layout
\begin_layout LyX-Code
elif x < 10:
\end_layout
\begin_layout LyX-Code
print 'Smaller Number'
\end_layout
\begin_layout LyX-Code
else:
\end_layout
\begin_layout LyX-Code
print 'Same Number'
\end_layout
\begin_layout Standard
The statement
\shape italic
x > 10 and x < 15
\shape default
can be expressed in a short form, like
\shape italic
10 < x < 15
\shape default
.
\end_layout
\begin_layout Standard
The next example uses
\emph on
\color black
while
\emph default
\color inherit
and
\emph on
\color black
if
\emph default
\color inherit
keywords in the same program.
Note the level of indentation when the if statement comes inside the while
loop.
Remember that, the
\shape italic
if
\shape default
statement must be aligned with the corresponding
\shape italic
elif and else.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example:
\emph default
\color inherit
big2.py
\end_layout
\begin_layout LyX-Code
x = 1
\end_layout
\begin_layout LyX-Code
while x < 11:
\end_layout
\begin_layout LyX-Code
if x < 5:
\end_layout
\begin_layout LyX-Code
print 'Small ', x
\end_layout
\begin_layout LyX-Code
else:
\end_layout
\begin_layout LyX-Code
print 'Big ', x
\end_layout
\begin_layout LyX-Code
x = x + 1
\end_layout
\begin_layout LyX-Code
print 'Done'
\end_layout
\begin_layout Section
Modify loops : break and continue
\end_layout
\begin_layout Standard
We can use the
\emph on
\color black
break
\emph default
\color inherit
statement to terminate a loop, if some condition is met.
The
\shape italic
continue
\shape default
statement is used to skip the rest of the block and go to the beginning
again.
Both are demonstrated in the program
\shape italic
big3.py
\shape default
shown below.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example:
\emph default
\color inherit
big3.py
\end_layout
\begin_layout LyX-Code
x = 1
\end_layout
\begin_layout LyX-Code
while x < 10:
\end_layout
\begin_layout LyX-Code
if x < 3:
\end_layout
\begin_layout LyX-Code
print 'skipping work', x
\end_layout
\begin_layout LyX-Code
x = x + 1
\end_layout
\begin_layout LyX-Code
continue
\end_layout
\begin_layout LyX-Code
print x
\end_layout
\begin_layout LyX-Code
if x == 4:
\end_layout
\begin_layout LyX-Code
print 'Enough of work'
\end_layout
\begin_layout LyX-Code
break
\end_layout
\begin_layout LyX-Code
x = x + 1
\end_layout
\begin_layout LyX-Code
print 'Done'
\end_layout
\begin_layout Standard
The output of big3.py is listed below.
\end_layout
\begin_layout Standard
skipping work 1
\end_layout
\begin_layout Standard
skipping work 2
\end_layout
\begin_layout Standard
3
\end_layout
\begin_layout Standard
4
\end_layout
\begin_layout Standard
Enough of work
\end_layout
\begin_layout Standard
Done
\end_layout
\begin_layout Standard
\align block
Now let us write a program to find out the largest positive number entered
by the user.
The algorithm works in the following manner.
To start with, we assume that the largest number is zero.
After reading a number, the program checks whether it is bigger than the
current value of the largest number.
If so the value of the largest number is replaced with the current number.
The program terminates when the user enters zero.
Modify max.py to work with negative numbers also.
\end_layout
\begin_layout Standard
\align left
Example: max.py
\end_layout
\begin_layout LyX-Code
max = 0
\end_layout
\begin_layout LyX-Code
while True: # Infinite loop
\end_layout
\begin_layout LyX-Code
x = input('Enter a number ')
\end_layout
\begin_layout LyX-Code
if x > max:
\end_layout
\begin_layout LyX-Code
max = x
\end_layout
\begin_layout LyX-Code
if x == 0:
\end_layout
\begin_layout LyX-Code
print max
\end_layout
\begin_layout LyX-Code
break
\end_layout
\begin_layout Section
Line joining
\end_layout
\begin_layout Standard
Python interpreter processes the code line by line.
A program may have a long line of code that may not physically fit in the
width of the text editor.
In such cases, we can split a logical line of code into more than one physical
lines, using backslash characters (
\backslash
), in other words multiple physical lines are joined to form a logical line
before interpreting it.
\end_layout
\begin_layout LyX-Code
if 1900 < year < 2100 and 1 <= month <= 12 :
\end_layout
\begin_layout Standard
can be split like
\end_layout
\begin_layout LyX-Code
if 1900 < year < 2100
\backslash
\end_layout
\begin_layout LyX-Code
and 1 <= month <= 12 :
\end_layout
\begin_layout Standard
Do not split in the middle of words except for Strings.
A long String can be split as shown below.
\end_layout
\begin_layout LyX-Code
longname = 'I am so long and will
\backslash
\end_layout
\begin_layout LyX-Code
not fit in a single line'
\end_layout
\begin_layout LyX-Code
print longname
\end_layout
\begin_layout Section
Exercises
\end_layout
\begin_layout Standard
We have now covered the minimum essentials of Python; defining variables,
performing arithmetic and logical operations on them and the control flow
statements.
These are sufficient for handling most of the programming tasks.
It would be better to get a grip of it before proceeding further, by writing
some code.
\end_layout
\begin_layout Enumerate
Modify the expression
\shape italic
print 5+3*2
\shape default
to get a result of 16
\end_layout
\begin_layout Enumerate
What will be the output of
\shape italic
print type(4.5)
\end_layout
\begin_layout Enumerate
Print all even numbers upto 30, suffixed by a * if the number is a multiple
of 6.
(hint: use % operator)
\end_layout
\begin_layout Enumerate
Write Python code to remove the last two characters of 'I am a long string'
by slicing, without counting the characters.
(hint: use negative indexing)
\end_layout
\begin_layout Enumerate
s = '012345' .
(a) Slice it to remove last two elements (b) remove first two element.
\end_layout
\begin_layout Enumerate
a = [1,2,3,4,5].
Use Slicing and multiplication to generate [2,3,4,2,3,4] from it.
\end_layout
\begin_layout Enumerate
Compare the results of 5/2, 5.0/2 and 2.0/3.
\end_layout
\begin_layout Enumerate
Print the following pattern using a while loop
\newline
+
\newline
++
\newline
+++
\newline
++++
\end_layout
\begin_layout Enumerate
Write a program to read inputs like 8A, 10C etc.
and print the integer and alphabet parts separately.
\end_layout
\begin_layout Enumerate
Write code to print a number in the binary format (for example 5 will be
printed as 101)
\end_layout
\begin_layout Enumerate
Write code to print all perfect cubes upto 2000.
\end_layout
\begin_layout Enumerate
Write a Python program to print the multiplication table of 5.
\end_layout
\begin_layout Enumerate
Write a program to find the volume of a box with sides 3,4 and 5 inches
in
\begin_inset Formula $cm^{3}$
\end_inset
( 1 inch = 2.54 cm)
\end_layout
\begin_layout Enumerate
Write a program to find the percentage of volume occupied by a sphere of
diameter
\begin_inset Formula $r$
\end_inset
fitted in a cube of side
\begin_inset Formula $r$
\end_inset
.
Read
\begin_inset Formula $r$
\end_inset
from the keyboard.
\end_layout
\begin_layout Enumerate
Write a Python program to calculate the area of a circle.
\end_layout
\begin_layout Enumerate
Write a program to divide an integer by another without using the / operator.
(hint: use - operator)
\end_layout
\begin_layout Enumerate
Count the number of times the character 'a' appears in a String read from
the keyboard.
Keep on prompting for the string until there is no 'a' in the input.
\end_layout
\begin_layout Enumerate
Create an integer division machine that will ask the user for two numbers
then divide and give the result.
The program should give the result in two parts: the whole number result
and the remainder.
Example: If a user enters 11 / 4, the computer should give the result 2
and remainder 3.
\end_layout
\begin_layout Enumerate
Modify the previous program to avoid division by zero error.
\end_layout
\begin_layout Enumerate
Create an adding machine that will keep on asking the user for numbers,
add them together and show the total after each step.
Terminate when user enters a zero.
\end_layout
\begin_layout Enumerate
Modify the adding machine to use raw_input() and check for errors like user
entering invalid characters.
\end_layout
\begin_layout Enumerate
Create a script that will convert Celsius to Fahrenheit.
The program should ask the users to enter the temperature in Celsius and
should print out the temperature in Fahrenheit, using
\begin_inset Formula $f=\frac{9}{5}c+32$
\end_inset
.
\end_layout
\begin_layout Enumerate
Write a program to convert Fahrenheit to Celsius.
\end_layout
\begin_layout Enumerate
Create a script that uses a variable and will write 20 times "I will not
talk in class." Make each sentence on a separate line.
\end_layout
\begin_layout Enumerate
Define
\begin_inset Formula $2+5j$
\end_inset
and
\begin_inset Formula $2-5j$
\end_inset
as complex numbers , and find their product.
Verify the result by defining the real and imaginary parts separately and
using the multiplication formula.
\end_layout
\begin_layout Enumerate
Write the multiplication table of 12 using while loop.
\end_layout
\begin_layout Enumerate
Write the multiplication table of a number, from the user, using for loop.
\end_layout
\begin_layout Enumerate
Print the powers of 2 up to 1024 using a for loop.
(only two lines of code)
\end_layout
\begin_layout Enumerate
Define the list a = [123, 12.4, 'haha', 3.4]
\newline
a) print all members using a for
loop
\newline
b) print the float type members ( use type() function)
\newline
c) insert a member
after 12.4
\newline
d) append more members
\end_layout
\begin_layout Enumerate
Make a list containing 10 members using a for loop.
\end_layout
\begin_layout Enumerate
Generate multiplication table of 5 with two lines of Python code.
(hint: range function)
\end_layout
\begin_layout Enumerate
Write a program to find the sum of five numbers read from the keyboard.
\end_layout
\begin_layout Enumerate
Write a program to read numbers from the keyboard until their sum exceeds
200.
Modify the program to ignore numbers greater than 99.
\end_layout
\begin_layout Enumerate
Write a Python function to calculate the GCD of two numbers
\end_layout
\begin_layout Enumerate
Write a Python program to find annual compound interest.
Get P,N and R from user
\end_layout
\begin_layout Section
Functions
\end_layout
\begin_layout Standard
Large programs need to be divided into small logical units.
A function is generally an isolated unit of code that has a name and does
a well defined job.
A function groups a number of program statements into a unit and gives
it a name.
This unit can be invoked from other parts of a program.
Python allows you to define functions using the
\shape italic
def
\shape default
keyword.
A function may have one or more variables as arguments, which receive their
values from the calling program.
\end_layout
\begin_layout Standard
In the example shown below, function arguments (a and b) get the values
3 and 4 respectively from the caller.
One can specify more than one variables in the return statement, separated
by commas.
The function will return a tuple containing those variables.
Some functions may not have any arguments, but while calling them we need
to use an empty parenthesis, otherwise the function will not be invoked.
If there is no return statement, a None is returned to the caller.
\end_layout
\begin_layout Standard
\align left
\emph on
Example func.py
\end_layout
\begin_layout LyX-Code
def sum(a,b): # a trivial function
\end_layout
\begin_layout LyX-Code
return a + b
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
print sum(3, 4)
\end_layout
\begin_layout Standard
The function
\shape italic
factorial.py
\shape default
calls itself recursively.
The value of argument is decremented before each call.
Try to understand the working of this by inserting print statements inside
the function.
\end_layout
\begin_layout Standard
\align left
\emph on
Example factor.py
\end_layout
\begin_layout LyX-Code
def factorial(n): # a recursive function
\end_layout
\begin_layout LyX-Code
if n == 0:
\end_layout
\begin_layout LyX-Code
return 1
\end_layout
\begin_layout LyX-Code
else:
\end_layout
\begin_layout LyX-Code
return n * factorial(n-1)
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
print factorial(10)
\end_layout
\begin_layout Standard
\align left
\emph on
Example fibanocci.py
\end_layout
\begin_layout LyX-Code
def fib(n): # print Fibonacci series up to n
\end_layout
\begin_layout LyX-Code
a, b = 0, 1
\end_layout
\begin_layout LyX-Code
while b < n:
\end_layout
\begin_layout LyX-Code
print b
\end_layout
\begin_layout LyX-Code
a, b = b, a+b
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
print fib(30)
\end_layout
\begin_layout Standard
Runing
\shape italic
fibanocci.py
\shape default
will print
\end_layout
\begin_layout Quotation
1 1 2 3 5 8 13 21
\end_layout
\begin_layout Standard
Modify it to replace
\begin_inset Formula $a,b=b,a+b$
\end_inset
by two separate assignment statements, if required introduce a third variable.
\end_layout
\begin_layout Subsection
Scope of variables
\end_layout
\begin_layout Standard
The variables defined inside a function are not known outside the function.
There could be two variables, one inside and one outside, with the same
name.
The program
\shape italic
scope.py
\shape default
demonstrates this feature.
\end_layout
\begin_layout Standard
\align left
\emph on
Example scope.py
\end_layout
\begin_layout LyX-Code
def change(x):
\end_layout
\begin_layout LyX-Code
counter = x
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
counter = 10
\end_layout
\begin_layout LyX-Code
change(5)
\end_layout
\begin_layout LyX-Code
print counter
\end_layout
\begin_layout Standard
The program will print 10 and not 5.
The two variables, both named counter, are not related to each other.
In some cases, it may be desirable to allow the function to change some
external variable.
This can be achieved by using the
\shape italic
global
\shape default
keyword, as shown in
\shape italic
global.py
\shape default
.
\end_layout
\begin_layout Standard
\align left
\emph on
Example global.py
\end_layout
\begin_layout LyX-Code
def change(x):
\end_layout
\begin_layout LyX-Code
global counter # use the global variable
\end_layout
\begin_layout LyX-Code
counter = x
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
counter = 10
\end_layout
\begin_layout LyX-Code
change(5)
\end_layout
\begin_layout LyX-Code
print counter
\end_layout
\begin_layout Standard
The program will now print 5.
Functions with global variables should be used carefully to avoid inadvertent
side effects.
\end_layout
\begin_layout Subsection
Optional and Named Arguments
\end_layout
\begin_layout Standard
Python allows function arguments to have default values; if the function
is called without a particular argument, its default value will be taken.
Due to this feature, the same function can be called with different number
of arguments.
The arguments without default values must appear first in the argument
list and they cannot be omitted while invoking the function.
The following example shows a function named power() that does exponentiation,
but the default value of exponent is set to 2.
\end_layout
\begin_layout Standard
\align left
\emph on
Example power.py
\end_layout
\begin_layout LyX-Code
def power(mant, exp = 2.0):
\end_layout
\begin_layout LyX-Code
return mant ** exp
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
print power(5., 3)
\end_layout
\begin_layout LyX-Code
print power(4.) # prints 16
\end_layout
\begin_layout LyX-Code
print power() # Gives Error
\end_layout
\begin_layout Standard
Arguments can be specified in any order by using named arguments.
\end_layout
\begin_layout Standard
\align left
\emph on
Example named.py
\end_layout
\begin_layout LyX-Code
def power(mant = 10.0, exp = 2.0):
\end_layout
\begin_layout LyX-Code
return mant ** exp
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
print power(5., 3)
\end_layout
\begin_layout LyX-Code
print power(4.) # prints 16
\end_layout
\begin_layout LyX-Code
print power(exp=3) # mant gets 10.0, prints 1000
\end_layout
\begin_layout Section
More on Strings and Lists
\end_layout
\begin_layout Standard
Before proceeding further, we will explore some of the functions provided
for manipulating strings and lists.
Python strings can be manipulated in many ways.
The following program prints the length of a string, makes an upper case
version for printing and prints a help message on the String class.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example: stringhelp.py
\end_layout
\begin_layout LyX-Code
s = 'hello world'
\end_layout
\begin_layout LyX-Code
print len(s)
\end_layout
\begin_layout LyX-Code
print s.upper()
\end_layout
\begin_layout LyX-Code
help(str) # press q to exit help
\end_layout
\begin_layout Standard
Python is an object oriented language and all variables are objects belonging
to various classes.
The method upper() (a function belonging to a class is called a method)
is invoked using the dot operator.
All we need to know at this stage is that there are several methods that
can be used for manipulating objects and they can be invoked like:
\shape italic
variable_name.method_name()
\shape default
.
\end_layout
\begin_layout Subsection
split and join
\end_layout
\begin_layout Standard
\align left
Splitting a String will result in a list of smaller strings.
If you do not specify the separator, the space character is assumed by
default.
To demonstrate the working of these functions, few lines of code and its
output are listed below.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example: split.py
\end_layout
\begin_layout LyX-Code
s = 'I am a long string'
\end_layout
\begin_layout LyX-Code
print s.split()
\end_layout
\begin_layout LyX-Code
a = 'abc.abc.abc'
\end_layout
\begin_layout LyX-Code
aa = a.split('.')
\end_layout
\begin_layout LyX-Code
print aa
\end_layout
\begin_layout LyX-Code
mm = '+'.join(aa)
\end_layout
\begin_layout LyX-Code
print mm
\end_layout
\begin_layout Standard
\align left
The result is shown below
\end_layout
\begin_layout Standard
['I', 'am', 'a', 'long', 'string']
\end_layout
\begin_layout Standard
['abc', 'abc', 'abc']
\end_layout
\begin_layout Standard
'abc+abc+abc'
\end_layout
\begin_layout Standard
\align left
The List of strings generated by split is joined using '+' character, resulting
in the last line of the output.
\end_layout
\begin_layout Subsection
Manipulating Lists
\end_layout
\begin_layout Standard
Python lists are very flexible, we can append, insert, delete and modify
elements of a list.
The program
\shape italic
list3.py
\shape default
demonstrates some of them.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example: list3.py
\end_layout
\begin_layout LyX-Code
a = [] # make an empty list
\end_layout
\begin_layout LyX-Code
a.append(3) # Add an element
\end_layout
\begin_layout LyX-Code
a.insert(0,2.5) # insert 2.5 as first element
\end_layout
\begin_layout LyX-Code
print a, a[0]
\end_layout
\begin_layout LyX-Code
print len(a)
\end_layout
\begin_layout Standard
The output is shown below.
\end_layout
\begin_layout Standard
[2.5, 3] 2.5
\end_layout
\begin_layout Standard
2
\end_layout
\begin_layout Subsection
Copying Lists
\end_layout
\begin_layout Standard
Lists cannot be copied like numeric data types.
The statement
\begin_inset Formula $b=a$
\end_inset
will not create a new list b from list a, it just make a reference to a.
The following example will clarify this point.
To make a duplicate copy of a list, we need to use the
\shape italic
copy
\shape default
module.
\end_layout
\begin_layout Standard
\align left
\emph on
\color black
Example: list_copy.py
\end_layout
\begin_layout LyX-Code
a = [1,2,3,4]
\end_layout
\begin_layout LyX-Code
print a
\end_layout
\begin_layout LyX-Code
b = a # b refers to a
\end_layout
\begin_layout LyX-Code
print a == b # True
\end_layout
\begin_layout LyX-Code
b[0] = 5 # Modifies a[0]
\end_layout
\begin_layout LyX-Code
print a
\end_layout
\begin_layout LyX-Code
import copy
\end_layout
\begin_layout LyX-Code
c = copy.copy(a)
\end_layout
\begin_layout LyX-Code
c[1] = 100
\end_layout
\begin_layout LyX-Code
print a is c # is False
\end_layout
\begin_layout LyX-Code
print a, c
\end_layout
\begin_layout Standard
The output is shown below.
\end_layout
\begin_layout Standard
[1, 2, 3, 4]
\end_layout
\begin_layout Standard
True
\end_layout
\begin_layout Standard
[5, 2, 3, 4]
\end_layout
\begin_layout Standard
False
\end_layout
\begin_layout Standard
[5, 2, 3, 4] [5, 100, 3, 4]
\end_layout
\begin_layout Section
Python Modules and Packages
\begin_inset Foot
status collapsed
\begin_layout Standard
While giving names to your Python programs, make sure that you are not directly
or indirectly importing any Python module having same name.
For example, if you create a program named
\emph on
math.py
\emph default
and keep it in your working directory, the
\emph on
import math
\emph default
statement from any other program started from that directory will try to
import your file named
\emph on
math.py
\emph default
and give error.
If you ever do that by mistake, delete all the files with .pyc extension
from your directory.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
One of the major advantages of Python is the availability of libraries for
various applications like graphics, networking and scientific computation.
The standard library distributed with Python itself has a large number
of modules: time, random, pickle, system etc.
are some of them.
The site http://docs.python.org/library/ has the complete reference.
\end_layout
\begin_layout Standard
Modules are loaded by using the
\shape italic
import
\shape default
keyword.
Several ways of using
\shape italic
import
\shape default
is explained below, using the math (containing mathematical functions)
module as an example.
\end_layout
\begin_layout Subsection
Different ways to import
\end_layout
\begin_layout Standard
simplest way to use import is shown in
\shape italic
mathsin.py
\shape default
, where the function is invoked using the form
\shape italic
module_name.function_name()
\shape default
.
In the next example, we use an alias for the module name.
\end_layout
\begin_layout Standard
\align left
\emph on
Example mathsin.py
\end_layout
\begin_layout LyX-Code
import math
\end_layout
\begin_layout LyX-Code
print math.sin(0.5) # module_name.method_name
\end_layout
\begin_layout Standard
\align left
\emph on
Example mathsin2.py
\end_layout
\begin_layout LyX-Code
import math as m # Give another name for math
\end_layout
\begin_layout LyX-Code
print m.sin(0.5) # Refer by the new name
\end_layout
\begin_layout Standard
We can also import the functions to behave like local (like the ones within
our source file) function, as shown below.
The character * is a wild card for importing all the functions.
\end_layout
\begin_layout Standard
\align left
\emph on
Example mathlocal.py
\end_layout
\begin_layout LyX-Code
from math import sin # sin is imported as local
\end_layout
\begin_layout LyX-Code
print sin(0.5)
\end_layout
\begin_layout Standard
\align left
\emph on
Example mathlocal2.py
\end_layout
\begin_layout LyX-Code
from math import * # import everything from math
\end_layout
\begin_layout LyX-Code
print sin(0.5)
\end_layout
\begin_layout Standard
In the third and fourth cases, we need not type the module name every time.
But there could be trouble if two modules imported contains a function
with same name.
In the program
\emph on
conflict.py
\emph default
, the
\begin_inset Formula $\sin()$
\end_inset
from
\emph on
numpy
\emph default
is capable of handling a list argument.
After importing
\shape italic
math.py
\shape default
, line 4, the
\begin_inset Formula $\sin$
\end_inset
function from
\shape italic
math
\shape default
module replaces the one from
\emph on
numpy
\emph default
.
The error occurs because the
\begin_inset Formula $\sin()$
\end_inset
from
\emph on
math
\emph default
can accept only a numeric type argument.
\end_layout
\begin_layout Standard
\align left
\emph on
Example conflict.py
\end_layout
\begin_layout LyX-Code
from numpy import *
\end_layout
\begin_layout LyX-Code
x = [0.1, 0.2, 0.3]
\end_layout
\begin_layout LyX-Code
print sin(x) # numpy's sin can handle lists
\end_layout
\begin_layout LyX-Code
from math import * # sin of math becomes effective
\end_layout
\begin_layout LyX-Code
print sin(x) # will give ERROR
\end_layout
\begin_layout Subsection
Packages
\end_layout
\begin_layout Standard
Packages are used for organizing multiple modules.
The module name A.B designates a submodule named B in a package named A.
The concept is demonstrated using the packages Numpy
\begin_inset Foot
status collapsed
\begin_layout Standard
NumPy will be discusssed later in chapter
\begin_inset LatexCommand ref
reference "sec:Arrays-and-Matrices"
\end_inset
.
\end_layout
\end_inset
and Scipy.
\end_layout
\begin_layout Standard
\align left
\emph on
Example submodule.py
\end_layout
\begin_layout LyX-Code
import numpy
\end_layout
\begin_layout LyX-Code
print numpy.random.normal()
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
import scipy.special
\end_layout
\begin_layout LyX-Code
print scipy.special.j0(.1)
\end_layout
\begin_layout Standard
In this example
\shape italic
random
\shape default
is a module inside the package
\shape italic
NumPy
\shape default
.
Similarly
\shape italic
special
\shape default
is a module inside the package
\shape italic
Scipy.
\shape default
We use both of them in the package.module.function() format.
But there is some difference.
In the case of Numpy, the random module is loaded by default, importing
scipy does not import the module special by default.
This behavior can be defined while writing the Package and it is upto the
package author.
\end_layout
\begin_layout Section
File Input/Output
\end_layout
\begin_layout Standard
Disk files can be opened using the function named open() that returns a
File object.
Files can be opened for reading or writing.
There are several methods belonging to the File class that can be used
for reading and writing data.
\end_layout
\begin_layout Standard
\align left
\emph on
Example wfile.py
\end_layout
\begin_layout LyX-Code
f = open('test.dat' , 'w')
\end_layout
\begin_layout LyX-Code
f.write ('This is a test file')
\end_layout
\begin_layout LyX-Code
f.close()
\end_layout
\begin_layout Standard
Above program creates a new file named 'test.dat' (any existing file with
the same name will be deleted) and writes a String to it.
The following program opens this file for reading the data.
\end_layout
\begin_layout Standard
\align left
\emph on
Example rfile.py
\end_layout
\begin_layout LyX-Code
f = open('test.dat' , 'r')
\end_layout
\begin_layout LyX-Code
print f.read()
\end_layout
\begin_layout LyX-Code
f.close()
\end_layout
\begin_layout Standard
Note that the data written/read are character strings.
read() function can also be used to read a fixed number of characters,
as shown below.
\end_layout
\begin_layout Standard
\align left
\emph on
Example rfile2.py
\end_layout
\begin_layout LyX-Code
f = open('test.dat' , 'r')
\end_layout
\begin_layout LyX-Code
print f.read(7) # get first seven characters
\end_layout
\begin_layout LyX-Code
print f.read() # get the remaining ones
\end_layout
\begin_layout LyX-Code
f.close()
\end_layout
\begin_layout Standard
Now we will examine how to read a text data from a file and convert it into
numeric type.
First we will create a file with a column of numbers.
\end_layout
\begin_layout Standard
\align left
\emph on
Example wfile2.py
\end_layout
\begin_layout LyX-Code
f = open('data.dat' , 'w')
\end_layout
\begin_layout LyX-Code
for k in range(1,4):
\end_layout
\begin_layout LyX-Code
s = '%3d
\backslash
n' %(k)
\end_layout
\begin_layout LyX-Code
f.write(s)
\end_layout
\begin_layout LyX-Code
f.close()
\end_layout
\begin_layout Standard
The contents of the file created will look like this.
\end_layout
\begin_layout Standard
1
\end_layout
\begin_layout Standard
2
\end_layout
\begin_layout Standard
3
\end_layout
\begin_layout Standard
\align left
Now we write a program to read this file, line by line, and convert the
string type data to integer type, and print the numbers.
\begin_inset Foot
status collapsed
\begin_layout Standard
This will give error if there is a blank line in the data file.
This can be corrected by changing the comparison statement to if
\shape italic
len(s) < 1:
\shape default
, so that the processing stops at a blank line.
Modify the code to skip a blank line instead of exiting (hint: use continue
).
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align left
\emph on
Example rfile3.py
\end_layout
\begin_layout LyX-Code
f = open('data.dat' , 'r')
\end_layout
\begin_layout LyX-Code
while 1: # infinite loop
\end_layout
\begin_layout LyX-Code
s = f.readline()
\end_layout
\begin_layout LyX-Code
if s == '' : # Empty string means end of file
\end_layout
\begin_layout LyX-Code
break # terminate the loop
\end_layout
\begin_layout LyX-Code
m = int(s) # Convert to integer
\end_layout
\begin_layout LyX-Code
print m * 5
\end_layout
\begin_layout LyX-Code
f.close()
\end_layout
\begin_layout Subsection
The pickle module
\end_layout
\begin_layout Standard
Strings can easily be written to and read from a file.
Numbers take a bit more effort, since the read() method only returns Strings,
which will have to be converted in to a number explicitly.
However, when you want to save and restore data types like lists, dictionaries,
or class instances, things get a lot more complicated.
Rather than have the users constantly writing and debugging code to save
complicated data types, Python provides a standard module called pickle.
\end_layout
\begin_layout Standard
\align left
\emph on
Example pickledump.py
\end_layout
\begin_layout LyX-Code
import pickle
\end_layout
\begin_layout LyX-Code
f = open('test.pck' , 'w')
\end_layout
\begin_layout LyX-Code
pickle.dump(12.3, f) # write a float type
\end_layout
\begin_layout LyX-Code
f.close()
\end_layout
\begin_layout Standard
\align left
Now write another program to read it back from the file and check the data
type.
\end_layout
\begin_layout Standard
\align left
\emph on
Example pickleload.py
\end_layout
\begin_layout LyX-Code
import pickle
\end_layout
\begin_layout LyX-Code
f = open('test.pck' , 'r')
\end_layout
\begin_layout LyX-Code
x = pickle.load(f)
\end_layout
\begin_layout LyX-Code
print x , type(x) # check the type of data read
\end_layout
\begin_layout LyX-Code
f.close()
\end_layout
\begin_layout Section
Formatted Printing
\end_layout
\begin_layout Standard
Formatted printing is done by using a format string followed by the % operator
and the values to be printed.
If format requires a single argument, values may be a single variable.
Otherwise, values must be a tuple (just place them inside parenthesis,
separated by commas) with exactly the number of items specified by the
format string.
\end_layout
\begin_layout Standard
\align left
\emph on
Example: format.py
\end_layout
\begin_layout LyX-Code
a = 2.0 /3 # 2/3 will print zero
\end_layout
\begin_layout LyX-Code
print a
\end_layout
\begin_layout LyX-Code
print 'a = %5.3f' %(a) # upto 3 decimal places
\end_layout
\begin_layout Standard
Data can be printed in various formats.
The conversion types are summarized in the following table.
There are several flags that can be used to modify the formatting, like
justification, filling etc.
\end_layout
\begin_layout Standard
\begin_inset Float table
wide false
sideways false
status open
\begin_layout Standard
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="8" columns="4">
<features>
<column alignment="center" valignment="top" leftline="true" width="0">
<column alignment="center" valignment="top" leftline="true" width="0">
<column alignment="center" valignment="top" leftline="true" width="0">
<column alignment="center" valignment="top" leftline="true" rightline="true" width="0">
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Conversion
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Conversion
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Example
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
Result
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
d , i
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
signed Integer
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
'%6d'%(12)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
'\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
12'
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
f
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
floating point decimal
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
'%6.4f'%(2.0/3)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
0.667
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
e
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
floating point exponential
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
'%6.2e'%(2.0/3)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
6.67e-01
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
x
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
hexadecimal
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
'%x'%(16)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
10
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
o
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
octal
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
'%o'%(8)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
10
\end_layout
\end_inset
</cell>
</row>
<row topline="true">
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
s
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
string
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
'%s'%('abcd')
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
abcd
\end_layout
\end_inset
</cell>
</row>
<row topline="true" bottomline="true">
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
0d
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
modified 'd'
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
'%05d'%(12)
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
\begin_inset Text
\begin_layout Standard
00012
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Formatted Printing in Python
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align left
The following example shows some of the features available with formatted
printing.
\end_layout
\begin_layout Standard
\align left
\emph on
Example: format2.py
\end_layout
\begin_layout LyX-Code
a = 'justify as you like'
\end_layout
\begin_layout LyX-Code
print '%30s'%a # right justified
\end_layout
\begin_layout LyX-Code
print '%-30s'%a # minus sign for left justification
\end_layout
\begin_layout LyX-Code
for k in range(1,11): # A good looking table
\end_layout
\begin_layout LyX-Code
print '5 x %2d = %2d' %(k, k*5)
\end_layout
\begin_layout Standard
The output of
\emph on
format2.py
\emph default
is given below.
\end_layout
\begin_layout LyX-Code
justify as you like
\end_layout
\begin_layout LyX-Code
justify as you like
\end_layout
\begin_layout LyX-Code
5 x 1 = 5
\end_layout
\begin_layout LyX-Code
5 x 2 = 10
\end_layout
\begin_layout LyX-Code
5 x 3 = 15
\end_layout
\begin_layout LyX-Code
5 x 4 = 20
\end_layout
\begin_layout LyX-Code
5 x 5 = 25
\end_layout
\begin_layout LyX-Code
5 x 6 = 30
\end_layout
\begin_layout LyX-Code
5 x 7 = 35
\end_layout
\begin_layout LyX-Code
5 x 8 = 40
\end_layout
\begin_layout LyX-Code
5 x 9 = 45
\end_layout
\begin_layout LyX-Code
5 x 10 = 50
\end_layout
\begin_layout Section
Exception Handling
\end_layout
\begin_layout Standard
Errors detected during execution are called exceptions, like divide by zero.
If the program does not handle exceptions, the Python Interpreter reports
the exception and terminates the program.
We will demonstrate handling exceptions using
\shape italic
try
\shape default
and
\shape italic
except
\shape default
keywords, in the example except.py.
\end_layout
\begin_layout Standard
\align left
\emph on
Example: except.py
\end_layout
\begin_layout LyX-Code
x = input('Enter a number ')
\end_layout
\begin_layout LyX-Code
try:
\end_layout
\begin_layout LyX-Code
print 10.0/x
\end_layout
\begin_layout LyX-Code
except:
\end_layout
\begin_layout LyX-Code
print 'Division by zero not allowed'
\end_layout
\begin_layout Standard
If any exception occurs while running the code inside the try block, the
code inside the except block is executed.
The following program implements error checking on input using exceptions.
\end_layout
\begin_layout Standard
\align left
\emph on
Example: except2.py
\end_layout
\begin_layout LyX-Code
def get_number():
\end_layout
\begin_layout LyX-Code
while 1:
\end_layout
\begin_layout LyX-Code
try:
\end_layout
\begin_layout LyX-Code
a = raw_input('Enter a number ')
\end_layout
\begin_layout LyX-Code
x = atof(a)
\end_layout
\begin_layout LyX-Code
return x
\end_layout
\begin_layout LyX-Code
except:
\end_layout
\begin_layout LyX-Code
print 'Enter a valid number'
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
print get_number()
\end_layout
\begin_layout Section
Turtle Graphics
\end_layout
\begin_layout Standard
Turtle Graphics have been noted by many psychologists and educators to be
a powerful aid in teaching geometry, spatial perception, logic skills,
computer programming, and art.
The language LOGO was specifically designed to introduce children to programmin
g, using turtle graphics.
An abstract drawing device, called the Turtle, is used to make programming
attractive for children by concentrating on doing turtle graphics.
It has been used with children as young as 3 and has a track record of
30 years of success in education.
\end_layout
\begin_layout Standard
We will use the Turtle module of Python to play with Turtle Graphics and
practice the logic required for writing computer programs.
Using this module, we will move a
\shape italic
Pen
\shape default
on a two dimensional screen to generate graphical patterns.
The Pen can be controlled using functions like forward(distance), backward(dist
ance), right(angle), left(angle) etc.
\begin_inset Foot
status collapsed
\begin_layout Standard
http://docs.python.org/library/turtle.html
\end_layout
\end_inset
.
Run the program turtle1.py to understand the functions.
This section is included only for those who want to practice programming
in a more interesting manner.
\end_layout
\begin_layout Standard
\align left
\emph on
Example turtle1.py
\end_layout
\begin_layout LyX-Code
from turtle import *
\end_layout
\begin_layout LyX-Code
a = Pen() # Creates a turtle in a window
\end_layout
\begin_layout LyX-Code
a.forward(50)
\end_layout
\begin_layout LyX-Code
a.left(45)
\end_layout
\begin_layout LyX-Code
a.backward(50)
\end_layout
\begin_layout LyX-Code
a.right(45)
\end_layout
\begin_layout LyX-Code
a.forward(50)
\end_layout
\begin_layout LyX-Code
a.circle(10)
\end_layout
\begin_layout LyX-Code
a.up()
\end_layout
\begin_layout LyX-Code
a.forward(50)
\end_layout
\begin_layout LyX-Code
a.down()
\end_layout
\begin_layout LyX-Code
a.color('red')
\end_layout
\begin_layout LyX-Code
a.right(90)
\end_layout
\begin_layout LyX-Code
a.forward(50)
\end_layout
\begin_layout LyX-Code
raw_input('Press Enter')
\end_layout
\begin_layout Standard
\align left
\emph on
Example turtle2.py
\end_layout
\begin_layout LyX-Code
from turtle import *
\end_layout
\begin_layout LyX-Code
a = Pen()
\end_layout
\begin_layout LyX-Code
for k in range(4):
\end_layout
\begin_layout LyX-Code
a.forward(50)
\end_layout
\begin_layout LyX-Code
a.left(90)
\end_layout
\begin_layout LyX-Code
a.circle(25)
\end_layout
\begin_layout LyX-Code
raw_input() # Wait for Key press
\end_layout
\begin_layout Standard
Outputs of the program turtle2.py and turtle3.py are shown in figure
\begin_inset LatexCommand ref
reference "fig:turtle2 and 3 outputs"
\end_inset
.
Try to write more programs like this to generate more complex patterns.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/turtle2.png
width 3cm
\end_inset
\begin_inset Graphics
filename pics/turtle3.png
width 3cm
\end_inset
\begin_inset Graphics
filename pics/turtle4.png
width 6cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Output of turtle2.py (b) turtle3.py (c) turtle4.py
\begin_inset LatexCommand label
name "fig:turtle2 and 3 outputs"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align left
\emph on
Example turtle3.py
\end_layout
\begin_layout LyX-Code
from turtle import *
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def draw_rectangle():
\end_layout
\begin_layout LyX-Code
for k in range(4):
\end_layout
\begin_layout LyX-Code
a.forward(50)
\end_layout
\begin_layout LyX-Code
a.left(90)
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
a = Pen()
\end_layout
\begin_layout LyX-Code
for k in range(36):
\end_layout
\begin_layout LyX-Code
draw_rectangle()
\end_layout
\begin_layout LyX-Code
a.left(10)
\end_layout
\begin_layout LyX-Code
raw_input()
\end_layout
\begin_layout Standard
The program turtle3.py creates a pattern by drwaing 36 squares, each drawn
tilted by
\begin_inset Formula $10^{\circ}$
\end_inset
from the previous one.
The program turtle4.py generates the fractal image as shown in figure
\begin_inset LatexCommand ref
reference "fig:turtle2 and 3 outputs"
\end_inset
(c).
\end_layout
\begin_layout Standard
\align left
\emph on
Example turtle4.py
\end_layout
\begin_layout LyX-Code
from turtle import *
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def f(length, depth):
\end_layout
\begin_layout LyX-Code
if depth == 0:
\end_layout
\begin_layout LyX-Code
forward(length)
\end_layout
\begin_layout LyX-Code
else:
\end_layout
\begin_layout LyX-Code
f(length/3, depth-1)
\end_layout
\begin_layout LyX-Code
right(60)
\end_layout
\begin_layout LyX-Code
f(length/3, depth-1)
\end_layout
\begin_layout LyX-Code
left(120)
\end_layout
\begin_layout LyX-Code
f(length/3, depth-1)
\end_layout
\begin_layout LyX-Code
right(60)
\end_layout
\begin_layout LyX-Code
f(length/3, depth-1)
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
f(500, 4)
\end_layout
\begin_layout LyX-Code
raw_input('Press any Key')
\end_layout
\begin_layout Section
Writing GUI Programs
\end_layout
\begin_layout Standard
Python has several modules that can be used for creating Graphical User
Interfaces.
The intention of this chapter is just to show the ease of making GUI in
Python and we have selected Tkinter
\begin_inset Foot
status collapsed
\begin_layout Standard
http://www.pythonware.com/library/an-introduction-to-tkinter.htm
\end_layout
\begin_layout Standard
http://infohost.nmt.edu/tcc/help/pubs/tkinter/
\end_layout
\begin_layout Standard
http://wiki.python.org/moin/TkInter
\end_layout
\end_inset
, one of the easiest to learn.
The GUI programs are event driven (movement of mouse, clicking a mouse
button, pressing and releasing a key on the keyboard etc.
are called events).
The execution sequence of the program is decided by the events, generated
mostly by the user.
For example, when the user clicks on a Button, the code associated with
that Button is executed.
GUI Programming is about creating Widgets like Button, Label, Canvas etc.
on the screen and executing selected functions in response to events.
After creating all the necessary widgets and displaying them on the screen,
the control is passed on to Tkinter by calling a function named
\shape italic
mainloop
\shape default
.
After that the program flow is decided by the events and associated callback
functions.
\end_layout
\begin_layout Standard
For writing GUI programs, the first step is to create a main graphics window
by calling the function Tk().
After that we create various Widgets and pack them inside the main window.
The example programs given below demonstrate the usage of some of the Tkinter
widgets.The program
\shape italic
tkmain.py
\shape default
is the smallest GUI program one can write using Tkinter.
The output of tkmain.py is shown in figure
\begin_inset LatexCommand ref
reference "fig:tkmain and tklabel outputs"
\end_inset
(a).
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/tkmain.png
width 4cm
\end_inset
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset Graphics
filename pics/tklabel.png
width 4cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Outputs of (a)tkmain.py (b)tklabel.py
\begin_inset LatexCommand label
name "fig:tkmain and tklabel outputs"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align left
\emph on
Example tkmain.py
\end_layout
\begin_layout LyX-Code
from Tkinter import *
\end_layout
\begin_layout LyX-Code
root = Tk()
\end_layout
\begin_layout LyX-Code
root.mainloop()
\end_layout
\begin_layout Standard
\align left
\emph on
Example tklabel.py
\end_layout
\begin_layout LyX-Code
from Tkinter import *
\end_layout
\begin_layout LyX-Code
root = Tk()
\end_layout
\begin_layout LyX-Code
w = Label(root, text="Hello, world")
\end_layout
\begin_layout LyX-Code
w.pack()
\end_layout
\begin_layout LyX-Code
root.mainloop()
\end_layout
\begin_layout Standard
The program tklabel.py will generate the output as shown in figure
\begin_inset LatexCommand ref
reference "fig:tkmain and tklabel outputs"
\end_inset
(b).
Terminate the program by clicking on the x displayed at the top right corner.
In this example, we used a Label widget to display some text.
The next example will show how to use a Button widget.
\end_layout
\begin_layout Standard
A Button widget can have a callback function, hello() in this case, that
gets executed when the user clicks on the Button.
The program will display a Button on the screen.
Every time you click on it, the function
\shape italic
hello
\shape default
will be executed.
The output of the program is shown in figure
\begin_inset LatexCommand ref
reference "fig:tkbutton and canvas"
\end_inset
(a).
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/tkbutton.png
width 4cm
\end_inset
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset Graphics
filename pics/tkcanvas.png
width 6cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Outputs of (a) tkbutton.py (b)tkcanvas.py
\begin_inset LatexCommand label
name "fig:tkbutton and canvas"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align left
\emph on
Example tkbutton.py
\end_layout
\begin_layout LyX-Code
from Tkinter import *
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def hello():
\end_layout
\begin_layout LyX-Code
print 'hello world'
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
w = Tk() # Creates the main Graphics window
\end_layout
\begin_layout LyX-Code
b = Button(w, text = 'Click Me', command = hello)
\end_layout
\begin_layout LyX-Code
b.pack()
\end_layout
\begin_layout LyX-Code
w.mainloop()
\end_layout
\begin_layout Standard
Canvas is another commonly used widget.
Canvas is a drawing area on which we can draw elements like line, arc,
rectangle, text etc.
The program tkcanvas.py creates a Canvas widget and binds the <Button-1>
event to the function draw().
When left mouse button is pressed, a small rectangle are drawn at the cursor
position.
The output of the program is shown in figure
\begin_inset LatexCommand ref
reference "fig:tkbutton and canvas"
\end_inset
(b).
\end_layout
\begin_layout Standard
\align left
\emph on
Example tkcanvas.py
\end_layout
\begin_layout LyX-Code
from Tkinter import *
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def draw(event):
\end_layout
\begin_layout LyX-Code
c.create_rectangle(event.x,
\backslash
\end_layout
\begin_layout LyX-Code
event.y, event.x+5, event.y+5)
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
w = Tk()
\end_layout
\begin_layout LyX-Code
c = Canvas(w, width = 300, height = 200)
\end_layout
\begin_layout LyX-Code
c.pack()
\end_layout
\begin_layout LyX-Code
c.bind("<Button-1>", draw)
\end_layout
\begin_layout LyX-Code
w.mainloop()
\end_layout
\begin_layout Standard
The next program is a modification of tkcanvas.py.
The right mouse-button is bound to remove().
Every time a rectangle is drawn, its return value is added to a list, a
global variable, and this list is used for removing the rectangles when
right button is pressed.
\end_layout
\begin_layout Standard
\align left
\emph on
Example tkcanvas2.py
\end_layout
\begin_layout LyX-Code
from Tkinter import *
\end_layout
\begin_layout LyX-Code
recs = [] # List keeping track of the rectangles
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def remove(event):
\end_layout
\begin_layout LyX-Code
global recs
\end_layout
\begin_layout LyX-Code
if len(recs) > 0:
\end_layout
\begin_layout LyX-Code
c.delete(recs[0]) # delete from Canvas
\end_layout
\begin_layout LyX-Code
recs.pop(0) # delete first item from list
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def draw(event):
\end_layout
\begin_layout LyX-Code
global recs
\end_layout
\begin_layout LyX-Code
r = c.create_rectangle(event.x,
\backslash
\end_layout
\begin_layout LyX-Code
event.y, event.x+5, event.y+5)
\end_layout
\begin_layout LyX-Code
recs.append(r)
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
w = Tk()
\end_layout
\begin_layout LyX-Code
c = Canvas(w, width = 300, height = 200)
\end_layout
\begin_layout LyX-Code
c.pack()
\end_layout
\begin_layout LyX-Code
c.bind("<Button-1>", draw)
\end_layout
\begin_layout LyX-Code
c.bind("<Button-3>", remove)
\end_layout
\begin_layout LyX-Code
w.mainloop()
\end_layout
\begin_layout Section
Object Oriented Programming in Python
\end_layout
\begin_layout Standard
OOP is a programming paradigm that uses
\emph on
objects
\emph default
(Structures consisting of variables and methods) and their interactions
to design computer programs.
Python is an object oriented language but it does not force you to make
all programs object oriented and there is no advantage in making small
programs object oriented.
In this section, we will discuss some features of OOP.
\end_layout
\begin_layout Standard
Before going to the new concepts, let us recollect some of the things we
have learned.
We have seen that the effect of operators on different data types is predefined.
For example
\begin_inset Formula $2*3$
\end_inset
results in
\begin_inset Formula $6$
\end_inset
and
\begin_inset Formula $2*'abc'$
\end_inset
results in
\begin_inset Formula $'abcabc'$
\end_inset
.
This behavior has been decided beforehand, based on some logic, by the
language designers.
One of the key features of OOP is the ability to create user defined data
types.
The user will specify, how the new data type will behave under the existing
operators like add, subtract etc.
and also define methods that will belong to the new data type.
\end_layout
\begin_layout Standard
We will design a new data type using the class keyword and define the behavior
of it.
In the program point.py, we define a class named Point.
The variables xpos and ypos are members of Point.
The __init__() function is executed whenever we create an instance of this
class, the member variables are initialized by this function.
The way in which an object belonging to this class is printed is decided
by the __str__ function.
We also have defined the behavior of add (+) and subtract (-) operators
for this class.
The + operator returns a new Point by adding the x and y coordinates of
two Points.
Subtracting a Point from another gives the distance between the two.
The method dist() returns the distance of a Point object from the origin.
We have not defined the behavior of Point under copy operation.
We can use the copy module of Python to copy objects.
\end_layout
\begin_layout Standard
\align left
\emph on
Example point.py
\end_layout
\begin_layout LyX-Code
class Point:
\end_layout
\begin_layout LyX-Code
'''
\end_layout
\begin_layout LyX-Code
This is documentation comment.
\end_layout
\begin_layout LyX-Code
help(Point) will display this.
\end_layout
\begin_layout LyX-Code
'''
\end_layout
\begin_layout LyX-Code
def __init__(self, x=0, y=0):
\end_layout
\begin_layout LyX-Code
self.xpos = x
\end_layout
\begin_layout LyX-Code
self.ypos = y
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def __str__(self): # overloads print
\end_layout
\begin_layout LyX-Code
return 'Point at (%f,%f)'%(self.xpos, self.ypos)
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def __add__(self, other): #overloads +
\end_layout
\begin_layout LyX-Code
xpos = self.xpos + other.xpos
\end_layout
\begin_layout LyX-Code
ypos = self.ypos + other.ypos
\end_layout
\begin_layout LyX-Code
return Point(xpos,ypos)
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def __sub__(self, other): #overloads -
\end_layout
\begin_layout LyX-Code
import math
\end_layout
\begin_layout LyX-Code
dx = self.xpos - other.xpos
\end_layout
\begin_layout LyX-Code
dy = self.ypos - other.ypos
\end_layout
\begin_layout LyX-Code
return math.sqrt(dx**2+dy**2)
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def dist(self):
\end_layout
\begin_layout LyX-Code
import math
\end_layout
\begin_layout LyX-Code
return math.sqrt(self.xpos**2 + self.ypos**2)
\end_layout
\begin_layout Standard
The program point1.py imports the file point.py to use the class Point defined
inside it to demonstrate the properties of the class.
A self.
is prefixed when a method refers to member of the same object.
It refers to the variable used for invoking the method.
\end_layout
\begin_layout Standard
\align left
\emph on
Example point1.py
\end_layout
\begin_layout LyX-Code
from point import *
\end_layout
\begin_layout LyX-Code
origin = Point()
\end_layout
\begin_layout LyX-Code
print origin
\end_layout
\begin_layout LyX-Code
p1 = Point(4,4)
\end_layout
\begin_layout LyX-Code
p2 = Point(8,7)
\end_layout
\begin_layout LyX-Code
print p1
\end_layout
\begin_layout LyX-Code
print p2
\end_layout
\begin_layout LyX-Code
print p1 + p2
\end_layout
\begin_layout LyX-Code
print p1 - p2
\end_layout
\begin_layout LyX-Code
print p1.dist()
\end_layout
\begin_layout Standard
Output of program point1.py is shown below.
\end_layout
\begin_layout Quotation
Point at (0.000000,0.000000)
\end_layout
\begin_layout Quotation
Point at (4.000000,4.000000)
\end_layout
\begin_layout Quotation
Point at (8.000000,7.000000)
\end_layout
\begin_layout Quotation
Point at (12.000000,11.000000)
\end_layout
\begin_layout Quotation
5.0
\end_layout
\begin_layout Quotation
5.65685424949
\end_layout
\begin_layout Standard
In this section, we have demonstrated the OO concepts like class, object
and operator overloading.
\end_layout
\begin_layout Subsection
Inheritance, reusing code
\end_layout
\begin_layout Standard
\align left
Reuse of code is one of the main advantages of object oriented programming.
We can define another class that inherits all the properties of the Point
class, as shown below.
The __init__ function of colPoint calls the __init__ function of Point,
to get all work except initilization of color done.
All other methods and operator overloading defined for Point is inherited
by colPoint.
\end_layout
\begin_layout Standard
\align left
\emph on
Example cpoint.py
\end_layout
\begin_layout LyX-Code
class colPoint(Point): #colPoint inherits Point
\end_layout
\begin_layout LyX-Code
color = 'black'
\end_layout
\begin_layout LyX-Code
def __init__(self,x=0,y=0,col='black'):
\end_layout
\begin_layout LyX-Code
Point.__init__(self,x,y)
\end_layout
\begin_layout LyX-Code
self.color = col
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def __str__(self):
\end_layout
\begin_layout LyX-Code
return '%s colored Point at (%f,%f)'%
\backslash
\end_layout
\begin_layout LyX-Code
(self.color,self.xpos, self.ypos)
\end_layout
\begin_layout Standard
\align left
\emph on
Example point2.py
\end_layout
\begin_layout LyX-Code
from cpoint import *
\end_layout
\begin_layout LyX-Code
p1 = Point(5,5)
\end_layout
\begin_layout LyX-Code
rp1 = colPoint(2,2,'red')
\end_layout
\begin_layout LyX-Code
print p1
\end_layout
\begin_layout LyX-Code
print rp1
\end_layout
\begin_layout LyX-Code
print rp1 + p1
\end_layout
\begin_layout LyX-Code
print rp1.dist()
\end_layout
\begin_layout Standard
The output of point2.py is listed below.
\end_layout
\begin_layout Standard
Point at (5.000000,5.000000)
\end_layout
\begin_layout Standard
red colored Point at (2.000000,2.000000)
\end_layout
\begin_layout Standard
Point at (7.000000,7.000000)
\end_layout
\begin_layout Standard
2.82842712475
\end_layout
\begin_layout Standard
\align left
For a detailed explanation on the object oriented features of Python, refer
to chapters 13, 14 and 15 of the online book http://openbookproject.net//thinkCS
py/
\end_layout
\begin_layout Subsection
A graphics example program
\end_layout
\begin_layout Standard
Object Oriented programming allows us to write Classes with a well defined
external interface hiding all the internal details.
This example shows a Class named 'disp', for drawing curves, providing
the xy coordinates within an arbitrary range .
The the world-to-screen coordinate conversion is performed internally.
The method named line() accepts a list of xy coordinates.
The file
\shape italic
tkplot_class.py
\shape default
defines the 'disp' class and is listed below.
\end_layout
\begin_layout Standard
\align left
\emph on
Example tkplot_class.py
\end_layout
\begin_layout LyX-Code
from Tkinter import *
\end_layout
\begin_layout LyX-Code
from math import *
\end_layout
\begin_layout LyX-Code
class disp:
\end_layout
\begin_layout LyX-Code
def __init__(self, parent, width=400., height=200.):
\end_layout
\begin_layout LyX-Code
self.parent = parent
\end_layout
\begin_layout LyX-Code
self.SCX = width
\end_layout
\begin_layout LyX-Code
self.SCY = height
\end_layout
\begin_layout LyX-Code
self.border = 1
\end_layout
\begin_layout LyX-Code
self.canvas = Canvas(parent, width=width, height=height)
\end_layout
\begin_layout LyX-Code
self.canvas.pack(side = LEFT)
\end_layout
\begin_layout LyX-Code
self.setWorld(0 , 0, self.SCX, self.SCY) # scale factors
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def setWorld(self, x1, y1, x2, y2):
\end_layout
\begin_layout LyX-Code
self.xmin = float(x1)
\end_layout
\begin_layout LyX-Code
self.ymin = float(y1)
\end_layout
\begin_layout LyX-Code
self.xmax = float(x2)
\end_layout
\begin_layout LyX-Code
self.ymax = float(y2)
\end_layout
\begin_layout LyX-Code
self.xscale = (self.xmax - self.xmin) / (self.SCX)
\end_layout
\begin_layout LyX-Code
self.yscale = (self.ymax - self.ymin) / (self.SCY)
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def w2s(self, p): #world-to-screen before plotting
\end_layout
\begin_layout LyX-Code
ip = []
\end_layout
\begin_layout LyX-Code
for xy in p:
\end_layout
\begin_layout LyX-Code
ix = self.border + int( (xy[0] - self.xmin) / self.xscale)
\end_layout
\begin_layout LyX-Code
iy = self.border + int( (xy[1] - self.ymin) / self.yscale)
\end_layout
\begin_layout LyX-Code
iy = self.SCY - iy
\end_layout
\begin_layout LyX-Code
ip.append((ix,iy))
\end_layout
\begin_layout LyX-Code
return ip
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def line(self, points, col='blue'):
\end_layout
\begin_layout LyX-Code
ip = self.w2s(points)
\end_layout
\begin_layout LyX-Code
t = self.canvas.create_line(ip, fill=col)
\end_layout
\begin_layout Standard
The program
\shape italic
tkplot.py
\shape default
imports tkplot_class.py and plots two graphs.
The advantage of code reuse is evident from this example.
\begin_inset Foot
status collapsed
\begin_layout Standard
A more sophisticated version of the
\shape italic
disp
\shape default
class program (draw.py) is included in the package 'learn-by-coding', available
on the CD.
\end_layout
\end_inset
.
Output of
\shape italic
tkplot.py
\shape default
is shown in figure
\begin_inset LatexCommand ref
reference "fig:Output-of-tkplot.py"
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/tkplot.png
width 10cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Output of tkplot.py
\begin_inset LatexCommand label
name "fig:Output-of-tkplot.py"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align left
\emph on
Example tkplot.py
\end_layout
\begin_layout LyX-Code
from tkplot_class import *
\end_layout
\begin_layout LyX-Code
from math import *
\end_layout
\begin_layout LyX-Code
w = Tk()
\end_layout
\begin_layout LyX-Code
gw1 = disp(w)
\end_layout
\begin_layout LyX-Code
xy = []
\end_layout
\begin_layout LyX-Code
for k in range(200):
\end_layout
\begin_layout LyX-Code
x = 2 * pi * k/200
\end_layout
\begin_layout LyX-Code
y = sin(x)
\end_layout
\begin_layout LyX-Code
xy.append((x,y))
\end_layout
\begin_layout LyX-Code
gw1.setWorld(0, -1.0, 2*pi, 1.0)
\end_layout
\begin_layout LyX-Code
gw1.line(xy)
\end_layout
\begin_layout LyX-Code
gw2 = disp(w)
\end_layout
\begin_layout LyX-Code
gw2.line([(10,10),(100,100),(350,50)], 'red')
\end_layout
\begin_layout LyX-Code
w.mainloop()
\end_layout
\begin_layout Section
Exercises
\end_layout
\begin_layout Enumerate
Generate multiplication table of eight and write it to a file.
\end_layout
\begin_layout Enumerate
Make a list and write it to a file using the pickle module.
\end_layout
\begin_layout Enumerate
Write a Python program to open a file and write 'hello world' to it.
\end_layout
\begin_layout Enumerate
Write a Python program to open a text file and read all lines from it.
\end_layout
\begin_layout Enumerate
Write a program to generate the multiplication table of a number from the
user.
The output should be formatted as shown below
\newline
\InsetSpace ~
\InsetSpace ~
1 x 5 = \InsetSpace ~
\InsetSpace ~
\InsetSpace ~
5
\newline
\InsetSpace ~
\InsetSpace ~
2 x 5 = \InsetSpace ~
10
\end_layout
\begin_layout Enumerate
Define the list [1,2,3,4,5,6] using the range function.
Write code to insert a 10 after 2, delete 4, add 0 at the end and sort
it in the ascending order.
\end_layout
\begin_layout Enumerate
Write Python code to generate the sequence of numbers
\newline
25 20 15 10 5
\newline
using
range function .
Delete 15 from the result and sort it.
Print it using a for loop.
\end_layout
\begin_layout Enumerate
Define a string
\shape italic
s = 'mary had a little lamb'.
\newline
\shape default
a) print it in reverse order
\newline
b) split it using space character as sepatator
\end_layout
\begin_layout Enumerate
Join the elements of the list ['I', 'am', 'in', 'pieces'] using + character.
Do the same using a for loop also.
\end_layout
\begin_layout Enumerate
Create a window with five buttons.
Make each button a different color.
Each button should have some text on it.
\end_layout
\begin_layout Enumerate
Create a program that will put words in alphabetical order.
The program should allow the user to enter as many words as he wants to.
\end_layout
\begin_layout Enumerate
Create a program that will check a sentence to see if it is a palindrome.
A palindrome is a sentence that reads the same backwards and forwards ('malayal
am').
\end_layout
\begin_layout Enumerate
A text file contains two columns of numbers.
Write a program to read them and print the sum of numbers in each row.
\end_layout
\begin_layout Enumerate
Read a String from the keyboard.
Multiply it by an integer to make its length more than 50.
How do you find out the smallest number that does the job.
\end_layout
\begin_layout Enumerate
Write a program to find the length of the hypotenuse of a right triangle
from the length of other two sides, get the input from the user.
\end_layout
\begin_layout Enumerate
Write a program displaying 2 labels and 2 buttons.
It should print two different messages when clicked on the two buttons.
\end_layout
\begin_layout Enumerate
Write a program with a Canvas and a circle drawn on it.
\end_layout
\begin_layout Enumerate
Write a program using for loop to reverse a string.
\end_layout
\begin_layout Enumerate
Write a Python function to calculate the GCD of two numbers
\end_layout
\begin_layout Enumerate
Write a program to print the values of sine function from
\begin_inset Formula $0$
\end_inset
to
\begin_inset Formula $2\pi$
\end_inset
with 0.1 increments.
Find the mean value of them.
\end_layout
\begin_layout Enumerate
Generate N random numbers using random.random() and find out howmay are below
0.5 .
Repeat the same for different values of N to draw some conclusions.
\end_layout
\begin_layout Enumerate
Use the equation
\begin_inset Formula $x=(-b\pm\sqrt{b^{2}-4ac})/2a$
\end_inset
to find the roots of
\begin_inset Formula $3x^{2}+6x+12=0$
\end_inset
\end_layout
\begin_layout Enumerate
Write a program to calculate the distance between points (x1,y1) and (x2,y2)
in a Cartesian plane.
Get the coordinates from the user.
\end_layout
\begin_layout Enumerate
Write a program to evaluate
\begin_inset Formula $y$
\end_inset
=
\begin_inset Formula $\sqrt{2.3a}+a^{2}+34.5$
\end_inset
for a = 1, 2 and 3.
\end_layout
\begin_layout Enumerate
Print Fibanocci numbers upto 100, without using multiple assignment statement.
\end_layout
\begin_layout Enumerate
Draw a chess board pattern using turtle graphics.
\end_layout
\begin_layout Enumerate
Find the syntax error in the following code and correct it.
\newline
x=1
\newline
while x <=
10:
\newline
print x * 5
\end_layout
\begin_layout Chapter
Arrays and Matrices
\begin_inset LatexCommand label
name "sec:Arrays-and-Matrices"
\end_inset
\end_layout
\begin_layout Standard
In the previous chapter, we have learned the essential features of Python
language.
We also used the
\shape italic
math
\shape default
module to calculate trigonometric functions.
Using the tools introduced so far, let us generate the data points to plot
a sine wave.
The program sine.py generates the coordinates to plot a sine wave.
\end_layout
\begin_layout Standard
\align left
\emph on
Example sine.py
\end_layout
\begin_layout LyX-Code
import math
\end_layout
\begin_layout LyX-Code
x = 0.0
\end_layout
\begin_layout LyX-Code
while x < 2 * math.pi:
\end_layout
\begin_layout LyX-Code
print x , math.sin(x)
\end_layout
\begin_layout LyX-Code
x = x + 0.1
\end_layout
\begin_layout Standard
The output to the screen can be redirected to a file as shown below, from
the command prompt.
You can plot the data using some program like xmgrace.
\end_layout
\begin_layout Standard
$ python sine.py > sine.dat
\end_layout
\begin_layout Standard
$ xmgrace sine.dat
\end_layout
\begin_layout Standard
It would be better if we could write such programs without using loops explicitl
y.
Serious scientific computing requires manipulating of large data structures
like matrices.
The
\shape italic
list
\shape default
data type of Python is very flexible but the performance is not acceptable
for large scale computing.
The need of special tools is evident even from the simple example shown
above.
\shape italic
NumPy
\shape default
is a package widely used for scientific computing with Python.
\begin_inset Foot
status collapsed
\begin_layout Standard
http://numpy.scipy.org/
\end_layout
\begin_layout Standard
http://www.scipy.org/Tentative_NumPy_Tutorial
\end_layout
\begin_layout Standard
http://www.scipy.org/Numpy_Functions_by_Category
\end_layout
\begin_layout Standard
http://www.scipy.org/Numpy_Example_List_With_Doc
\end_layout
\end_inset
\end_layout
\begin_layout Section
The NumPy Module
\end_layout
\begin_layout Standard
The
\shape italic
\color black
numpy
\shape default
\color inherit
module supports operations on compound data types like arrays and matrices.
\shape italic
\color black
First thing to learn is how to create arrays and matrices using the numpy
package.
\shape default
\color inherit
Python lists can be converted into multi-dimensional arrays.
There are several other functions that can be used for creating matrices.
The mathematical functions like sine, cosine etc.
of numpy accepts array objects as arguments and return the results as arrays
objects.
NumPy arrays can be indexed, sliced and copied like Python Lists.
\end_layout
\begin_layout Standard
In the examples below, we will import numpy functions as local (using the
syntax
\shape italic
from numpy import *
\shape default
).
Since it is the only package used there is no possibility of any function
name conflicts.
\end_layout
\begin_layout Standard
\align left
\emph on
Example numpy1.py
\end_layout
\begin_layout LyX-Code
from numpy import *
\end_layout
\begin_layout LyX-Code
x = array( [1, 2, 3] ) # Make array from list
\end_layout
\begin_layout LyX-Code
print x , type(x)
\end_layout
\begin_layout Standard
In the above example, we have created an array from a list.
\end_layout
\begin_layout Subsection
Creating Arrays and Matrices
\end_layout
\begin_layout Standard
We can also make multi-dimensional arrays.
Remember that a member of a list can be another list.
The following example shows how to make a two dimensional array.
\end_layout
\begin_layout Standard
\align left
\emph on
Example numpy3.py
\end_layout
\begin_layout LyX-Code
from numpy import *
\end_layout
\begin_layout LyX-Code
a = [ [1,2] , [3,4] ] # make a list of lists
\end_layout
\begin_layout LyX-Code
x = array(a) # and convert to an array
\end_layout
\begin_layout LyX-Code
print a
\end_layout
\begin_layout Standard
Other than than
\shape italic
array(),
\shape default
there are several other functions that can be used for creating different
types of arrays and matrices.
Some of them are described below.
\end_layout
\begin_layout Subsubsection
arange(start, stop, step, dtype = None)
\end_layout
\begin_layout Standard
Creates an evenly spaced one-dimensional array.
Start, stop, stepsize and datatype are the arguments.
If datatype is not given, it is deduced from the other arguments.
Note that, the values are generated within the interval, including start
but excluding stop.
\end_layout
\begin_layout Standard
arange(2.0, 3.0, .1) makes the array([ 2.
, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9])
\end_layout
\begin_layout Subsubsection
linspace(start, stop, number of elements)
\end_layout
\begin_layout Standard
Similar to arange().
Start, stop and number of samples are the arguments.
\end_layout
\begin_layout Standard
linspace(1, 2, 11) is equivalent to array([ 1.
, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.
])
\end_layout
\begin_layout Subsubsection
zeros(shape, datatype)
\end_layout
\begin_layout Standard
Returns a new array of given shape and type, filled zeros.
The arguments are shape and datatype.
For example
\emph on
\color black
zeros( [3,2], 'float')
\emph default
\color inherit
generates a 3 x 2 array filled with zeros as shown below.
If not specified, the type of elements defaults to int.
\end_layout
\begin_layout Standard
\begin_inset Formula $\begin{array}{ccc}
0.0 & 0.0 & 0.0\\
0.0 & 0.0 & 0.0\end{array}$
\end_inset
\end_layout
\begin_layout Subsubsection
ones(shape, datatype)
\end_layout
\begin_layout Standard
Similar to zeros() except that the values are initialized to 1.
\end_layout
\begin_layout Subsubsection
random.random(shape)
\end_layout
\begin_layout Standard
Similar to the functions above, but the matrix is filled with random numbers
ranging from 0 to 1, of
\emph on
\color black
float
\emph default
\color inherit
type.
For example, random.random([3,3]) will generate the 3x3 matrix;
\end_layout
\begin_layout LyX-Code
array([[ 0.3759652 , 0.58443562, 0.41632997],
\end_layout
\begin_layout LyX-Code
[ 0.88497654, 0.79518478, 0.60402514],
\end_layout
\begin_layout LyX-Code
[ 0.65468458, 0.05818105, 0.55621826]])
\end_layout
\begin_layout Subsubsection
reshape(array, newshape)
\end_layout
\begin_layout Standard
We can also make multi-dimensions arrays by reshaping a one-dimensional
array.
The function
\shape italic
reshape()
\shape default
changes dimensions of an array.
The total number of elements must be preserved.
Working of
\shape italic
reshape()
\shape default
can be understood by looking at
\emph on
\color black
reshape.py
\emph default
\color inherit
and its result.
\end_layout
\begin_layout Standard
\align left
\emph on
Example reshape.py
\end_layout
\begin_layout LyX-Code
from numpy import *
\end_layout
\begin_layout LyX-Code
a = arange(20)
\end_layout
\begin_layout LyX-Code
b = reshape(a, [4,5])
\end_layout
\begin_layout LyX-Code
print b
\end_layout
\begin_layout Standard
The result is shown below.
\end_layout
\begin_layout LyX-Code
array([[ 0, 1, 2, 3, 4],
\end_layout
\begin_layout LyX-Code
[ 5, 6, 7, 8, 9],
\end_layout
\begin_layout LyX-Code
[10, 11, 12, 13, 14],
\end_layout
\begin_layout LyX-Code
[15, 16, 17, 18, 19]])
\end_layout
\begin_layout Standard
The program
\shape italic
numpy2.py
\shape default
demonstrates most of the functions discussed so far.
\end_layout
\begin_layout Standard
\align left
\emph on
Example numpy2.py
\end_layout
\begin_layout LyX-Code
from numpy import *
\end_layout
\begin_layout LyX-Code
a = arange(1.0, 2.0, 0.1)
\end_layout
\begin_layout LyX-Code
print a
\end_layout
\begin_layout LyX-Code
b = linspace(1,2,11)
\end_layout
\begin_layout LyX-Code
print b
\end_layout
\begin_layout LyX-Code
c = ones(5,'float')
\end_layout
\begin_layout LyX-Code
print c
\end_layout
\begin_layout LyX-Code
d = zeros(5, 'int')
\end_layout
\begin_layout LyX-Code
print d
\end_layout
\begin_layout LyX-Code
e = random.rand(5)
\end_layout
\begin_layout LyX-Code
print e
\end_layout
\begin_layout Standard
Output of this program will look like;
\end_layout
\begin_layout Standard
[ 1.
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9]
\end_layout
\begin_layout Standard
[ 1.
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.
]
\end_layout
\begin_layout Standard
[ 1.
1.
1.
1.
1.]
\end_layout
\begin_layout Standard
[ 0.
0.
0.
0.
0.]
\end_layout
\begin_layout Standard
[ 0.89039193 0.55640332 0.38962117 0.17238343 0.01297415]
\end_layout
\begin_layout Subsection
Copying
\end_layout
\begin_layout Standard
Numpy arrays can be copied using the copy method, as shown below.
\end_layout
\begin_layout Standard
\align left
\emph on
Example array_copy.py
\end_layout
\begin_layout LyX-Code
from mumpy import *
\end_layout
\begin_layout LyX-Code
a = zeros(5)
\end_layout
\begin_layout LyX-Code
print a
\end_layout
\begin_layout LyX-Code
b = a
\end_layout
\begin_layout LyX-Code
c = a.copy()
\end_layout
\begin_layout LyX-Code
c[0] = 10
\end_layout
\begin_layout LyX-Code
print a, c
\end_layout
\begin_layout LyX-Code
b[0] = 10
\end_layout
\begin_layout LyX-Code
print a,c
\end_layout
\begin_layout Standard
The output of the program is shown below.
The statement
\begin_inset Formula $b=a$
\end_inset
does not make a copy of a.
Modifying b affects a, but c is a separate entity.
\end_layout
\begin_layout Standard
[ 0.
0.
0.]
\end_layout
\begin_layout Standard
[ 0.
0.
0.] [ 10.
0.
0.]
\end_layout
\begin_layout Standard
[ 10.
0.
0.] [ 10.
0.
0.]
\end_layout
\begin_layout Subsection
Arithmetic Operations
\end_layout
\begin_layout Standard
Arithmetic operations performed on an array is carried out on all individual
elements.
Adding or multiplying an array object with a number will multiply all the
elements by that number.
However, adding or multiplying two arrays having identical shapes will
result in performing that operation with the corresponding elements.
To clarify the idea, have a look at
\emph on
\color black
aroper.py
\emph default
\color inherit
and its results.
\end_layout
\begin_layout Standard
\align left
\emph on
Example aroper.py
\end_layout
\begin_layout LyX-Code
from numpy import *
\end_layout
\begin_layout LyX-Code
a = array([[2,3], [4,5]])
\end_layout
\begin_layout LyX-Code
b = array([[1,2], [3,0]])
\end_layout
\begin_layout LyX-Code
print a + b
\end_layout
\begin_layout LyX-Code
print a * b
\end_layout
\begin_layout Standard
The output will be as shown below
\end_layout
\begin_layout LyX-Code
array([[3, 5],
\end_layout
\begin_layout LyX-Code
[7, 5]])
\end_layout
\begin_layout LyX-Code
array([[ 2, 6],
\end_layout
\begin_layout LyX-Code
[12, 0]])
\end_layout
\begin_layout Standard
Modifying this program for more operations is left as an exercise to the
reader.
\end_layout
\begin_layout Subsection
cross product
\end_layout
\begin_layout Standard
Returns the cross product of two vectors, defined by
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
A\times B=\left|\begin{array}{clc}
i & j & k\\
A_{1} & A_{2} & A_{3}\\
B_{1} & B_{2} & B_{3}\end{array}\right|=i(A_{2}B_{3}-A_{3}B_{2})+j(A_{1}B_{3}-A_{3}B_{1})+k(A_{1}B_{2}-A_{2}B_{1})\label{eq:cross product}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
It can be evaluated using the function cross((array1, array2).
The program
\shape italic
cross.py
\shape default
prints [-3, 6, -3]
\end_layout
\begin_layout Standard
\align left
\emph on
Example cross.py
\end_layout
\begin_layout LyX-Code
from numpy import *
\end_layout
\begin_layout LyX-Code
a = array([1,2,3])
\end_layout
\begin_layout LyX-Code
b = array([4,5,6])
\end_layout
\begin_layout LyX-Code
c = cross(a,b)
\end_layout
\begin_layout LyX-Code
print c
\end_layout
\begin_layout Subsection
dot product
\end_layout
\begin_layout Standard
Returns the dot product of two vectors defined by
\begin_inset Formula $A.B=A_{1}B_{1}+A_{2}B_{2}+A_{3}B_{3}$
\end_inset
.
If you change the fourth line of
\emph on
\color black
cross.py
\emph default
\color inherit
to
\begin_inset Formula $c=dot(a,b)$
\end_inset
, the result will be 32.
\end_layout
\begin_layout Subsection
Saving and Restoring
\end_layout
\begin_layout Standard
An array can be saved to text file using
\shape italic
array.tofile(filename)
\shape default
and it can be read back using
\shape italic
array=fromfile()
\shape default
methods, as shown by the code fileio.py
\end_layout
\begin_layout Standard
\align left
\emph on
Example fileio.py
\end_layout
\begin_layout LyX-Code
from numpy import *
\end_layout
\begin_layout LyX-Code
a = arange(10)
\end_layout
\begin_layout LyX-Code
a.tofile('myfile.dat')
\end_layout
\begin_layout LyX-Code
b = fromfile('myfile.dat',dtype = 'int')
\end_layout
\begin_layout LyX-Code
print b
\end_layout
\begin_layout Standard
The function fromfile() sets dtype='float' by default.
In this case we have saved an integer array and need to specify that while
reading the file.
We could have saved it as float the the statement a.tofile('myfile.dat',
'float').
\end_layout
\begin_layout Subsection
Matrix inversion
\end_layout
\begin_layout Standard
The function
\shape italic
linalg.inv(matrix)
\shape default
computes the inverse of a square matrix, if it exists.
We can verify the result by multiplying the original matrix with the inverse.
Giving a singular matrix as the argument should normally result in an error
message.
In some cases, you may get a result whose elements are having very high
values, and it indicates an error.
\end_layout
\begin_layout Standard
\align left
\emph on
Example inv.py
\end_layout
\begin_layout LyX-Code
from numpy import *
\end_layout
\begin_layout LyX-Code
a = array([ [4,1,-2], [2,-3,3], [-6,-2,1] ], dtype='float')
\end_layout
\begin_layout LyX-Code
ainv = linalg.inv(a)
\end_layout
\begin_layout LyX-Code
print ainv
\end_layout
\begin_layout LyX-Code
print dot(a,ainv)
\end_layout
\begin_layout Standard
Result of this program is printed below.
\end_layout
\begin_layout LyX-Code
[[ 0.08333333 0.08333333 -0.08333333]
\end_layout
\begin_layout LyX-Code
[-0.55555556 -0.22222222 -0.44444444]
\end_layout
\begin_layout LyX-Code
[-0.61111111 0.05555556 -0.38888889]]
\end_layout
\begin_layout LyX-Code
[[ 1.00000000e+00 -1.38777878e-17 0.00000000e+00]
\end_layout
\begin_layout LyX-Code
[-1.11022302e-16 1.00000000e+00 0.00000000e+00]
\end_layout
\begin_layout LyX-Code
[ 0.00000000e+00 2.08166817e-17 1.00000000e+00]]
\end_layout
\begin_layout Section
Vectorized Functions
\end_layout
\begin_layout Standard
The functions like sine, log etc.
from NumPy are capable of accepting arrays as arguments.
This eliminates the need of writing loops in our Python code.
\end_layout
\begin_layout Standard
\align left
\emph on
Example vfunc.py
\end_layout
\begin_layout LyX-Code
from numpy import *
\end_layout
\begin_layout LyX-Code
a = array([1,10,100,1000])
\end_layout
\begin_layout LyX-Code
print log10(a)
\end_layout
\begin_layout Standard
The output of the program is [ 0.
1.
2.
3.] , where the log of each element is calculated and returned in an array.
This feature simplifies the programs a lot.
Numpy also provides a function to vectorize functions written by the user.
\end_layout
\begin_layout Standard
\align left
\emph on
Example vectorize.py
\end_layout
\begin_layout LyX-Code
from numpy import *
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def spf(x):
\end_layout
\begin_layout LyX-Code
return 3*x
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
vspf = vectorize(spf)
\end_layout
\begin_layout LyX-Code
a = array([1,2,3,4])
\end_layout
\begin_layout LyX-Code
print vspf(a)
\end_layout
\begin_layout Standard
The output will be [ 3 6 9 12] .
\end_layout
\begin_layout Section
Exercises
\end_layout
\begin_layout Enumerate
Write code to make a one dimensional matrix with elements 5,10,15,20 and
25.
make another matrix by slicing the first three elements from it.
\end_layout
\begin_layout Enumerate
Create a
\begin_inset Formula $3\times2$
\end_inset
matrix and print the sum of its elements using for loops.
\end_layout
\begin_layout Enumerate
Create a
\begin_inset Formula $2\times3$
\end_inset
matrix and fill it with random numbers.
\end_layout
\begin_layout Enumerate
Use linspace to make an array from 0 to 10, with stepsize of 0.1
\end_layout
\begin_layout Enumerate
Use arange to make an 100 element array ranging from 0 to 10
\end_layout
\begin_layout Enumerate
Make an array a = [2,3,4,5] and copy it to
\shape italic
b
\shape default
.
change one element of
\shape italic
b
\shape default
and print both.
\end_layout
\begin_layout Enumerate
Make a 3x3 matrix and multipy it by 5.
\end_layout
\begin_layout Enumerate
Create two 3x3 matrices and add them.
\end_layout
\begin_layout Enumerate
Write programs to demonstrate the dot and cross products.
\end_layout
\begin_layout Enumerate
Using matrix inversion, solve the system of equations
\newline
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
4x1 − 2x2 + \InsetSpace ~
\InsetSpace ~
x3 = 11
\newline
−2x1
+ 4x2 − 2x3 = −16
\newline
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
x1 − 2x2 + 4x3 = 17
\end_layout
\begin_layout Enumerate
Find the new values of the coordinate (10,10) under a rotation by angle
\begin_inset Formula $\pi/4$
\end_inset
.
\end_layout
\begin_layout Enumerate
Write a vectorized function to evaluate
\begin_inset Formula $y=x^{2}$
\end_inset
and print the result for x=[1,2,3].
\end_layout
\begin_layout Chapter
Data visualization
\end_layout
\begin_layout Standard
A graph or chart is used to present numerical data in visual form.
A graph is one of the easiest ways to compare numbers.
They should be used to make facts clearer and more understandable.
Results of mathematical computations are often presented in graphical format.
In this chapter, we will explore the Python modules used for generating
two and three dimensional graphs of various types.
\end_layout
\begin_layout Section
The Matplotlib Module
\end_layout
\begin_layout Standard
Matplotlib is a python package that produces publication quality figures
in a variety of hardcopy formats.
It also provides many functions for matrix manipulation.
You can generate plots, histograms, power spectra, bar charts, error-charts,
scatter-plots, etc, with just a few lines of code and have full control
of line styles, font properties, axes properties, etc.
The data points to the plotting functions are supplied as Python lists
or Numpy arrays.
\end_layout
\begin_layout Standard
If you import matplotlib as
\emph on
\color black
pylab,
\emph default
\color inherit
the plotting functions from the submodules
\emph on
\color black
pyplot
\emph default
\color inherit
and matrix manipulation functions from the submodule
\emph on
\color black
mlab
\emph default
\color inherit
will be available as local functions.
Pylab also imports Numpy for you.
Let us start with some simple plots to become familiar with matplotlib.
\begin_inset Foot
status collapsed
\begin_layout Standard
http://matplotlib.sourceforge.net/
\end_layout
\begin_layout Standard
http://matplotlib.sourceforge.net/users/pyplot_tutorial.html
\end_layout
\begin_layout Standard
http://matplotlib.sourceforge.net/examples/index.html
\end_layout
\begin_layout Standard
http://matplotlib.sourceforge.net/api/axes_api.html
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align left
\emph on
Example plot1.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
data = [1,2,5]
\end_layout
\begin_layout LyX-Code
plot(data)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
In the above example, the x-axis of the three points is taken from 0 to
2.
We can specify both the axes as shown below.
\end_layout
\begin_layout Standard
\align left
\emph on
Example plot2.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
x = [1,2,5]
\end_layout
\begin_layout LyX-Code
y = [4,5,6]
\end_layout
\begin_layout LyX-Code
plot(x,y)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
By default, the color is blue and the line style is continuous.
This can be changed by an optional argument after the coordinate data,
which is the format string that indicates the color and line type of the
plot.
The default format string is ‘b-‘ (blue, continuous line).
Let us rewrite the above example to plot using red circles.
We will also set the ranges for x and y axes and label them.
\end_layout
\begin_layout Standard
\align left
\emph on
Example plot3.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
x = [1,2,5]
\end_layout
\begin_layout LyX-Code
y = [4,5,6]
\end_layout
\begin_layout LyX-Code
plot(x,y,'ro')
\end_layout
\begin_layout LyX-Code
xlabel('x-axis')
\end_layout
\begin_layout LyX-Code
ylabel('y-axis')
\end_layout
\begin_layout LyX-Code
axis([0,6,1,7])
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/plot4.png
lyxscale 40
width 4cm
\end_inset
\begin_inset Graphics
filename pics/subplot1.png
lyxscale 40
width 4cm
\end_inset
\begin_inset Graphics
filename pics/piechart.png
lyxscale 40
width 4cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Output of (a) plot4.py (b) subplot1.py (c) piechart.py
\begin_inset LatexCommand label
name "fig:Output-of-plot4.py"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The figure
\begin_inset LatexCommand ref
reference "fig:Output-of-plot4.py"
\end_inset
shows two different plots in the same window, using different markers and
colors.
\end_layout
\begin_layout Standard
\align left
\emph on
Example plot4.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
t = arange(0.0, 5.0, 0.2)
\end_layout
\begin_layout LyX-Code
plot(t, t**2,'x') #
\begin_inset Formula $t^{2}$
\end_inset
\end_layout
\begin_layout LyX-Code
plot(t, t**3,'ro') #
\begin_inset Formula $t^{3}$
\end_inset
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
We have just learned how to draw a simple plot using the pylab interface
of matplotlib.
\end_layout
\begin_layout Subsection
Multiple plots
\end_layout
\begin_layout Standard
Matplotlib allows you to have multiple plots in the same window, using the
subplot() command as shown in the example subplot1.py, whose output is shown
in figure
\begin_inset LatexCommand ref
reference "fig:Output-of-plot4.py"
\end_inset
(b).
\end_layout
\begin_layout Standard
\align left
\emph on
Example subplot1.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
subplot(2,1,1) # the first subplot
\end_layout
\begin_layout LyX-Code
plot([1,2,3,4])
\end_layout
\begin_layout LyX-Code
subplot(2,1,2) # the second subplot
\end_layout
\begin_layout LyX-Code
plot([4,2,3,1])
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
The arguments to subplot function are NR (number of rows) , NC (number of
columns) and a figure number, that ranges from 1 to
\begin_inset Formula $NR*NC$
\end_inset
.
The commas between the arguments are optional if
\begin_inset Formula $NR*NC<10$
\end_inset
, ie.
subplot(2,1,1) can be written as subplot(211).
\end_layout
\begin_layout Standard
Another example of subplot is given is
\shape italic
subplot2.py
\shape default
.
You can modify the variable NR and NC to watch the results.
Please note that the % character has different meanings.
In
\shape italic
(pn+1)%5
\shape default
, it is the reminder operator resulting in a number less than 5.
The % character also appears in the String formatting.
\end_layout
\begin_layout Standard
\align left
\emph on
Example subplot2.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
mark = ['x','o','^','+','>']
\end_layout
\begin_layout LyX-Code
NR = 2 # number of rows
\end_layout
\begin_layout LyX-Code
NC = 3 # number of columns
\end_layout
\begin_layout LyX-Code
pn = 1
\end_layout
\begin_layout LyX-Code
for row in range(NR):
\end_layout
\begin_layout LyX-Code
for col in range(NC):
\end_layout
\begin_layout LyX-Code
subplot(NR, NC, pn)
\end_layout
\begin_layout LyX-Code
a = rand(10) * pn
\end_layout
\begin_layout LyX-Code
plot(a, marker = mark[(pn+1)%5])
\end_layout
\begin_layout LyX-Code
xlabel('plot %d X'%pn)
\end_layout
\begin_layout LyX-Code
ylabel('plot %d Y'%pn)
\end_layout
\begin_layout LyX-Code
pn = pn + 1
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Subsection
Polar plots
\end_layout
\begin_layout Standard
Polar coordinates locate a point on a plane with one distance and one angle.
The distance ‘r’ is measured from the origin.
The angle
\begin_inset Formula $\theta$
\end_inset
is measured from some agreed starting point.
Use the positive part of the
\begin_inset Formula $x-axis$
\end_inset
as the starting point for measuring angles.
Measure positive angles anti-clockwise from the positive
\begin_inset Formula $x-axis$
\end_inset
and negative angles clockwise from it.
\end_layout
\begin_layout Standard
Matplotlib supports polar plots, using the polar(
\begin_inset Formula $\theta,r$
\end_inset
) function.
Let us plot a circle using polar().
For every point on the circle, the value of
\begin_inset Formula $radius$
\end_inset
is the same but the polar angle
\begin_inset Formula $\theta$
\end_inset
changes from
\begin_inset Formula $0$
\end_inset
to
\begin_inset Formula $2\pi$
\end_inset
.
Both the coordinate arguments must be arrays of equal size.
Since
\begin_inset Formula $\theta$
\end_inset
is having 100 points ,
\begin_inset Formula $r$
\end_inset
also must have the same number.
This array can be generated using the
\begin_inset Formula $ones()$
\end_inset
function.
The axis([
\begin_inset Formula $\theta_{min},\theta_{max},r_{min},r_{max}$
\end_inset
) function can be used for setting the scale.
\end_layout
\begin_layout Standard
\align left
\emph on
Example polar.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
th = linspace(0,2*pi,100)
\end_layout
\begin_layout LyX-Code
r = 5 * ones(100) # radius = 5
\end_layout
\begin_layout LyX-Code
polar(th,r)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Subsection
Pie Charts
\end_layout
\begin_layout Standard
An example of a pie chart is given below.
The percentage of different items and their names are given as arguments.
The output is shown in figure
\begin_inset LatexCommand ref
reference "fig:Output-of-plot4.py"
\end_inset
(c).
\end_layout
\begin_layout Standard
\align left
\emph on
Example piechart.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
\end_layout
\begin_layout LyX-Code
fracs = [25, 25, 30, 20]
\end_layout
\begin_layout LyX-Code
pie(fracs, labels=labels)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Section
Plotting mathematical functions
\end_layout
\begin_layout Standard
One of our objectives is to understand different mathematical functions
better, by plotting them graphically.
We will use the
\shape italic
arange
\shape default
,
\shape italic
linspace
\shape default
and
\shape italic
logspace
\shape default
functions from
\shape italic
numpy
\shape default
to generate the input data and also the vectorized versions of the mathematical
functions.
For arange(), the third argument is the stepsize.
The total number of elements is calculated from start, stop and stepsize.
In the case of linspace(), we provide start, stop and the total number
of points.
The step size is calculated from these three parameters.
Please note that to create a data set ranging from 0 to 1 (including both)
with a stepsize of 0.1, we need to specify linspace(0,1,11) and not linspace(0,1
,10).
\end_layout
\begin_layout Subsection
Sine function and friends
\end_layout
\begin_layout Standard
Let the first example be the familiar sine function.
The input data is from
\begin_inset Formula $-\pi$
\end_inset
to
\begin_inset Formula $+\pi$
\end_inset
radians
\begin_inset Foot
status collapsed
\begin_layout Standard
Why do we need to give the angles in radians and not in degrees.
Angle in radian is the length of the arc defined by the given angle, with
unit radius.
Degree is just an arbitrary unit.
\end_layout
\end_inset
.
To make it a bit more interesting we are plotting
\begin_inset Formula $\sin x^{2}$
\end_inset
also.
The objective is to explain the concept of odd and even functions.
Mathematically, we say that a function
\begin_inset Formula $f(x)$
\end_inset
is even if
\begin_inset Formula $f(x)=f(-x)$
\end_inset
and is odd if
\begin_inset Formula $f(-x)=-f(x)$
\end_inset
.
Even functions are functions for which the left half of the plane looks
like the mirror image of the right half of the plane.
From the figure
\begin_inset LatexCommand ref
reference "fig:Sine and Circ"
\end_inset
(a) you can see that
\begin_inset Formula $\sin x$
\end_inset
is odd and
\begin_inset Formula $\sin x^{2}$
\end_inset
is even.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/npsin.png
lyxscale 50
width 6cm
\end_inset
\begin_inset Graphics
filename pics/circ.png
lyxscale 50
width 6cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
(a) Output of npsin.py (b) Output of circ.py
\begin_inset LatexCommand label
name "fig:Sine and Circ"
\end_inset
.
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align left
\emph on
Example npsin.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
x = linspace(-pi, pi , 200)
\end_layout
\begin_layout LyX-Code
y = sin(x)
\end_layout
\begin_layout LyX-Code
y1 = sin(x*x)
\end_layout
\begin_layout LyX-Code
plot(x,y)
\end_layout
\begin_layout LyX-Code
plot(x,y1,'r')
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
Exercise: Modify the program
\emph on
\color black
npsin.py
\emph default
\color inherit
to plot
\begin_inset Formula $\sin^{2}x$
\end_inset
,
\begin_inset Formula $\cos x$
\end_inset
,
\begin_inset Formula $\sin x^{3}$
\end_inset
etc.
\end_layout
\begin_layout Subsection
Trouble with Circle
\end_layout
\begin_layout Standard
Equation of a circle is
\begin_inset Formula $x^{2}+y^{2}=a^{2}$
\end_inset
, where a is the radius and the circle is located at the origin of the
coordinate system.
In order to plot it using Cartesian coordinates, we need to express
\begin_inset Formula $y$
\end_inset
in terms of
\begin_inset Formula $x$
\end_inset
, and is given by
\begin_inset Formula \[
y=\sqrt{a^{2}-x^{2}}\]
\end_inset
\end_layout
\begin_layout Standard
We will create the x-coordinates ranging from
\begin_inset Formula $-a$
\end_inset
to
\begin_inset Formula $+a$
\end_inset
and calculate the corresponding values of y.
This will give us only half of the circle, since for each value of x, there
are two values of y (+y and -y).
The following program
\emph on
\color black
circ.py
\emph default
\color inherit
creates both to make the complete circle as shown in figure
\begin_inset LatexCommand ref
reference "fig:Sine and Circ"
\end_inset
(b).
Any multi-valued function will have this problem while plotting.
Such functions can be plotted better using parametric equations or using
the polar plot options, as explained in the coming sections.
\end_layout
\begin_layout Standard
\align left
\emph on
Example circ.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
a = 10.0
\end_layout
\begin_layout LyX-Code
x = linspace(-a, a , 200)
\end_layout
\begin_layout LyX-Code
yupper = sqrt(a**2 - x**2)
\end_layout
\begin_layout LyX-Code
ylower = -sqrt(a**2 - x**2)
\end_layout
\begin_layout LyX-Code
plot(x,yupper)
\end_layout
\begin_layout LyX-Code
plot(x,ylower)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Subsection
Parametric plots
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/circpar.png
lyxscale 50
width 6cm
\end_inset
\begin_inset Graphics
filename pics/arcs.png
lyxscale 50
width 6cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
(a)Output of circpar.py.
(b)Output of arcs.py
\begin_inset LatexCommand label
name "fig:(a)Circpar and Arc"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The circle can be represented using the equations
\begin_inset Formula $x=a\cos\theta$
\end_inset
and
\begin_inset Formula $y=a\sin\theta$
\end_inset
.
To get the complete circle
\begin_inset Formula $\theta$
\end_inset
should vary from zero to
\begin_inset Formula $2\pi$
\end_inset
radians.
The output of circpar.py is shown in figure
\begin_inset LatexCommand ref
reference "fig:(a)Circpar and Arc"
\end_inset
(a).
\end_layout
\begin_layout Standard
\align left
\emph on
Example circpar.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
a = 10.0
\end_layout
\begin_layout LyX-Code
th = linspace(0, 2*pi, 200)
\end_layout
\begin_layout LyX-Code
x = a * cos(th)
\end_layout
\begin_layout LyX-Code
y = a * sin(th)
\end_layout
\begin_layout LyX-Code
plot(x,y)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
Changing the range of
\begin_inset Formula $\theta$
\end_inset
to less than
\begin_inset Formula $2\pi$
\end_inset
radians will result in an arc.
The following example plots several arcs with different radii.
The
\emph on
\color black
for
\emph default
\color inherit
loop will execute four times with the values of radius 5,10,15 and 20.
The range of
\begin_inset Formula $\theta$
\end_inset
also depends on the loop variable.
For the next three values it will be
\begin_inset Formula $\pi,1.5\pi and2\pi$
\end_inset
respectively.
The output is shown in figure
\begin_inset LatexCommand ref
reference "fig:(a)Circpar and Arc"
\end_inset
(b).
\end_layout
\begin_layout Standard
\align left
\emph on
Example arcs.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
a = 10.0
\end_layout
\begin_layout LyX-Code
for a in range(5,21,5):
\end_layout
\begin_layout LyX-Code
th = linspace(0, pi * a/10, 200)
\end_layout
\begin_layout LyX-Code
x = a * cos(th)
\end_layout
\begin_layout LyX-Code
y = a * sin(th)
\end_layout
\begin_layout LyX-Code
plot(x,y)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Section
Famous Curves
\end_layout
\begin_layout Standard
Connection between different branches of mathematics like trigonometry,
algebra and geometry can be understood by geometrically representing the
equations.
You will find a large number of equations generating geometric patterns
having interesting symmetries.
A collection of them is available on the Internet
\begin_inset LatexCommand cite
key "wikipedia"
\end_inset
\begin_inset LatexCommand cite
key "gap-system"
\end_inset
.
We will select some of them and plot here.
Exploring them further is left as an exercise to the reader.
\end_layout
\begin_layout Subsection
Astroid
\end_layout
\begin_layout Standard
The astroid was first discussed by Johann Bernoulli in 1691-92.
It also appears in Leibniz's correspondence of 1715.
It is sometimes called the tetracuspid for the obvious reason that it has
four cusps.
A circle of radius 1/4 rolls around inside a circle of radius 1 and a point
on its circumference traces an astroid.
The Cartesian equation is
\begin_inset Formula \begin{equation}
x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}\label{eq:Astroid-cart}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
The parametric equations are
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
x=a\cos^{3}(t),y=a\sin^{3}(t)\label{eq:Astroid-Par}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
In order to plot the curve in the Cartesian system, we rewrite equation
\begin_inset LatexCommand ref
reference "eq:Astroid-cart"
\end_inset
as
\end_layout
\begin_layout Standard
\begin_inset Formula \[
y=(a^{\frac{2}{3}}-x^{\frac{2}{3}})^{\frac{3}{2}}\]
\end_inset
\end_layout
\begin_layout Standard
The program
\emph on
\color black
astro.py
\emph default
\color inherit
plots the part of the curve in the first quadrant.
The program
\emph on
\color black
astropar.py
\emph default
\color inherit
uses the parametric equation and plots the complete curve.
Both are shown in figure
\begin_inset LatexCommand ref
reference "fig:(a)Astro.py"
\end_inset
\end_layout
\begin_layout Standard
\align left
\emph on
Example astro.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
a = 2
\end_layout
\begin_layout LyX-Code
x = linspace(0,a,100)
\end_layout
\begin_layout LyX-Code
y = ( a**(2.0/3) - x**(2.0/3) )**(3.0/2)
\end_layout
\begin_layout LyX-Code
plot(x,y)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
\align left
\emph on
Example astropar.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
a = 2
\end_layout
\begin_layout LyX-Code
t = linspace(-2*a,2*a,101)
\end_layout
\begin_layout LyX-Code
x = a * cos(t)**3
\end_layout
\begin_layout LyX-Code
y = a * sin(t)**3
\end_layout
\begin_layout LyX-Code
plot(x,y)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Subsection
Ellipse
\end_layout
\begin_layout Standard
The ellipse was first studied by Menaechmus
\begin_inset LatexCommand cite
key "ellipse"
\end_inset
.
Euclid wrote about the ellipse and it was given its present name by Apollonius.
The focus and directrix of an ellipse were considered by Pappus.
Kepler, in 1602, said he believed that the orbit of Mars was oval, then
he later discovered that it was an ellipse with the sun at one focus.
In fact Kepler introduced the word
\emph on
\color black
focus
\emph default
\color inherit
and published his discovery in 1609.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/astro.png
lyxscale 30
width 4cm
\end_inset
\begin_inset Graphics
filename pics/astropar.png
lyxscale 40
width 4cm
\end_inset
\begin_inset Graphics
filename pics/lissa.png
lyxscale 40
width 4cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
(a)Output of astro.py (b) astropar.py (c) lissa.py
\begin_inset LatexCommand label
name "fig:(a)Astro.py"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The Cartesian equation is
\begin_inset Formula \begin{equation}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\label{eq:Ellipse-cart}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
The parametric equations are
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
x=a\cos(t),y=b\sin(t)\label{eq:Ellipse-Par}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
The program
\emph on
\color black
ellipse.py
\emph default
\color inherit
uses the parametric equation to plot the curve.
Modifying the parametric equations will result in Lissajous figures.
The output of lissa.py are shown in figure
\begin_inset LatexCommand ref
reference "fig:(a)Astro.py"
\end_inset
(c).
\end_layout
\begin_layout Standard
\align left
\emph on
Example ellipse.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
a = 2
\end_layout
\begin_layout LyX-Code
b = 3
\end_layout
\begin_layout LyX-Code
t = linspace(0, 2 * pi, 100)
\end_layout
\begin_layout LyX-Code
x = a * sin(t)
\end_layout
\begin_layout LyX-Code
y = b * cos(t)
\end_layout
\begin_layout LyX-Code
plot(x,y)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
\align left
\emph on
Example lissa.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
a = 2
\end_layout
\begin_layout LyX-Code
b = 3
\end_layout
\begin_layout LyX-Code
t= linspace(0, 2*pi,100)
\end_layout
\begin_layout LyX-Code
x = a * sin(2*t)
\end_layout
\begin_layout LyX-Code
y = b * cos(t)
\end_layout
\begin_layout LyX-Code
plot(x,y)
\end_layout
\begin_layout LyX-Code
x = a * sin(3*t)
\end_layout
\begin_layout LyX-Code
y = b * cos(2*t)
\end_layout
\begin_layout LyX-Code
plot(x,y)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
The Lissajous curves are closed if the ratio of the arguments for sine and
cosine functions is an integer.
Otherwise open curves will result, both are shown in figure
\begin_inset LatexCommand ref
reference "fig:(a)Astro.py"
\end_inset
(c).
\end_layout
\begin_layout Subsection
Spirals of Archimedes and Fermat
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/archi.png
lyxscale 50
width 6cm
\end_inset
\begin_inset Graphics
filename pics/fermat.png
lyxscale 50
width 6cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
(a)Archimedes Spiral (b)Fermat's Spiral (c)Polar Rose
\begin_inset LatexCommand label
name "fig:(a)Archimedes-Fermat"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The spiral of Archimedes is represented by the equation
\begin_inset Formula $r=a\theta$
\end_inset
.
Fermat's Spiral is given by
\begin_inset Formula $r^{2}=a^{2}\theta$
\end_inset
.
The output of archi.py and fermat.py are shown in figure
\begin_inset LatexCommand ref
reference "fig:(a)Archimedes-Fermat"
\end_inset
.
\end_layout
\begin_layout Standard
\align left
\emph on
Example archi.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
a = 2
\end_layout
\begin_layout LyX-Code
th= linspace(0, 10*pi,200)
\end_layout
\begin_layout LyX-Code
r = a*th
\end_layout
\begin_layout LyX-Code
polar(th,r)
\end_layout
\begin_layout LyX-Code
axis([0, 2*pi, 0, 70])
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
\align left
\emph on
Example fermat.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
a = 2
\end_layout
\begin_layout LyX-Code
th= linspace(0, 10*pi,200)
\end_layout
\begin_layout LyX-Code
r = sqrt(a**2 * th)
\end_layout
\begin_layout LyX-Code
polar(th,r)
\end_layout
\begin_layout LyX-Code
polar(th, -r)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Subsection
Polar Rose
\end_layout
\begin_layout Standard
A rose or rhodonea curve is a sinusoid
\begin_inset Formula $r=\cos(k\theta)$
\end_inset
plotted in polar coordinates.
If k is an even integer, the curve will have
\begin_inset Formula $2k$
\end_inset
petals and
\begin_inset Formula $k$
\end_inset
petals if it is odd.
If k is rational, then the curve is closed and has finite length.
If k is irrational, then it is not closed and has infinite length.
\end_layout
\begin_layout Standard
\align left
\emph on
Example rose.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
k = 4
\end_layout
\begin_layout LyX-Code
th = linspace(0, 10*pi,1000)
\end_layout
\begin_layout LyX-Code
r = cos(k*th)
\end_layout
\begin_layout LyX-Code
polar(th,r)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
There are dozens of other famous curves whose details are available on the
Internet.
It may be an interesting exercise for the reader.
For more details refer to
\begin_inset LatexCommand cite
key "gap-system,wikipedia,wolfram"
\end_inset
on the Internet.
\end_layout
\begin_layout Section
Power Series
\begin_inset LatexCommand label
name "sec:Power-Series"
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/series_sin.png
lyxscale 50
width 6cm
\end_inset
\begin_inset Graphics
filename pics/rose.png
lyxscale 50
width 6cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Outputs of (a)series_sin.py (b) rose.py
\begin_inset LatexCommand label
name "fig:Functions-Series"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Trigonometric functions like sine and cosine sounds very familiar to all
of us, due to our interaction with them since high school days.
However most of us would find it difficult to obtain the numerical values
of , say
\begin_inset Formula $\sin5^{0}$
\end_inset
, without trigonometric tables or a calculator.
We know that differentiating a sine function twice will give you the original
function, with a sign reversal, which implies
\end_layout
\begin_layout Standard
\begin_inset Formula \[
\frac{d^{2}y}{dx^{2}}+y=0\]
\end_inset
\end_layout
\begin_layout Standard
which has a series solution of the form
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
y=a_{0}\sum_{n=0}^{\infty}\left(-1\right)^{n}\frac{x^{2n}}{(2n)!}+a_{1}\sum_{n=0}^{\infty}\left(-1\right)^{n}\frac{x^{2n+1}}{(2n+1)!}\label{eq:Trig Series}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
These are the Maclaurin series for sine and cosine functions.
The following code plots several terms of the sine series and their sum.
\end_layout
\begin_layout Standard
\align left
\emph on
Example series_sin.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
from scipy import factorial
\end_layout
\begin_layout LyX-Code
x = linspace(-pi, pi, 50)
\end_layout
\begin_layout LyX-Code
y = zeros(50)
\end_layout
\begin_layout LyX-Code
for n in range(5):
\end_layout
\begin_layout LyX-Code
term = (-1)**(n) * (x**(2*n+1)) / factorial(2*n+1)
\end_layout
\begin_layout LyX-Code
y = y + term
\end_layout
\begin_layout LyX-Code
#plot(x,term) #uncomment to see each term
\end_layout
\begin_layout LyX-Code
plot(x, y, '+b')
\end_layout
\begin_layout LyX-Code
plot(x, sin(x),'r') # compare with the real one
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
The output of
\emph on
\color black
series_sin.py
\emph default
\color inherit
is shown in figure
\begin_inset LatexCommand ref
reference "fig:Functions-Series"
\end_inset
(a).
For comparison the
\begin_inset Formula $\sin$
\end_inset
function from the library is plotted.
The values calculated by using the series becomes closer to the actual
value with more and more number of terms.
The error can be obtained by adding the following lines to
\emph on
series_sin.py
\emph default
and the effect of number of terms on the error can be studied.
\end_layout
\begin_layout LyX-Code
err = y - sin(x)
\end_layout
\begin_layout LyX-Code
plot(x,err)
\end_layout
\begin_layout LyX-Code
for k in err:
\end_layout
\begin_layout LyX-Code
print k
\end_layout
\begin_layout Section
Fourier Series
\end_layout
\begin_layout Standard
A Fourier series is an expansion of a periodic function
\begin_inset Formula $f(x)$
\end_inset
in terms of an infinite sum of sines and cosines.
The computation and study of Fourier series is known as harmonic analysis
and is extremely useful as a way to break up an arbitrary periodic function
into a set of simple terms that can be plugged in, solved individually,
and then recombined to obtain the solution to the original problem or an
approximation to it to whatever accuracy is desired or practical.
\end_layout
\begin_layout Standard
The examples below shows how to generate a square wave and sawtooth wave
using this technique.
To make the output better, increase the number of terms by changing the
argument of the range() function, used in the for loop.
The output of the programs are shown in figure
\begin_inset LatexCommand ref
reference "fig:Square-and-Sawtooth"
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/sawtooth.png
lyxscale 50
width 6cm
\end_inset
\begin_inset Graphics
filename pics/square.png
lyxscale 50
width 6cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Sawtooth and Square waveforms generated using Fourier series
\begin_inset LatexCommand label
name "fig:Square-and-Sawtooth"
\end_inset
.
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align left
\emph on
Example fourier_square.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
N = 100 # number of points
\end_layout
\begin_layout LyX-Code
x = linspace(0.0, 2 * pi, N)
\end_layout
\begin_layout LyX-Code
y = zeros(N)
\end_layout
\begin_layout LyX-Code
for n in range(5):
\end_layout
\begin_layout LyX-Code
term = sin((2*n+1)*x) / (2*n+1)
\end_layout
\begin_layout LyX-Code
y = y + term
\end_layout
\begin_layout LyX-Code
plot(x,y)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
\align left
\emph on
Example fourier_sawtooth.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
N = 100 # number of points
\end_layout
\begin_layout LyX-Code
x = linspace(-pi, pi, N)
\end_layout
\begin_layout LyX-Code
y = zeros(N)
\end_layout
\begin_layout LyX-Code
for n in range(1,10):
\end_layout
\begin_layout LyX-Code
term = (-1)**(n+1) * sin(n*x) / n
\end_layout
\begin_layout LyX-Code
y = y + term
\end_layout
\begin_layout LyX-Code
plot(x,y)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Section
2D plot using colors
\end_layout
\begin_layout Standard
A two dimensional matrix can be represented graphically by assigning a color
to each point proportional to the value of that element.
The program imshow1.py makes a
\begin_inset Formula $50\times50$
\end_inset
matrix filled with random numbers and uses
\shape italic
imshow()
\shape default
to plot it.
The result is shown in figure
\begin_inset LatexCommand ref
reference "fig:Output-of-imshow1.py"
\end_inset
(a).
\end_layout
\begin_layout Standard
\align left
\emph on
Example imshow1.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
m = random([50,50])
\end_layout
\begin_layout LyX-Code
imshow(m)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/imshow.png
lyxscale 70
width 4cm
\end_inset
\begin_inset Graphics
filename pics/julia.png
lyxscale 40
width 4cm
\end_inset
\begin_inset Graphics
filename pics/mgrid2.png
lyxscale 70
width 4cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Outputs of (a) imshow1.py (b) julia.py (c) mgrid2.py
\begin_inset LatexCommand label
name "fig:Output-of-imshow1.py"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout Section
Fractals
\end_layout
\begin_layout Standard
Fractals
\begin_inset Foot
status collapsed
\begin_layout Standard
http://en.wikipedia.org/wiki/Fractal
\end_layout
\end_inset
are a part of fractal geometry, which is a branch of mathematics concerned
with irregular patterns made of parts that are in some way similar to the
whole (e.g.: twigs and tree branches).
A fractal is a design of infinite details.
It is created using a mathematical formula.
No matter how closely you look at a fractal, it never loses its detail.
It is infinitely detailed, yet it can be contained in a finite space.
Fractals are generally self-similar and independent of scale.
The theory of fractals was developed from Benoit Mandelbrot's study of
complexity and chaos.
Complex numbers are required to compute the Mandelbrot and Julia Set fractals
and it is assumed that the reader is familiar with the basics of complex
numbers.
\end_layout
\begin_layout Standard
To compute the basic Mandelbrot (or Julia) set one uses the equation
\begin_inset Formula $f(z)\rightarrow z^{2}+c$
\end_inset
, where both z and c are complex numbers.
The function is evaluated in an iterative manner, ie.
the result is assigned to
\begin_inset Formula $z$
\end_inset
and the process is repeated.
The purpose of the iteration is to determine the behavior of the values
that are put into the function.
If the value of the function goes to infinity (practically to some fixed
value, like 1 or 2) after few iterations for a particular value of
\begin_inset Formula $z$
\end_inset
, that point is considered to be outside the Set.
A Julia set can be defined as the set of all the complex numbers
\begin_inset Formula $(z)$
\end_inset
such that the iteration of
\begin_inset Formula $f(z)\rightarrow z^{2}+c$
\end_inset
is bounded for a particular value of c.
\end_layout
\begin_layout Standard
To generate the fractal the number of iterations required to diverge is
calculated for a set of points in the selected region in the complex plane.
The number of iterations taken for diverging decides the color of each
point.
The points that did not diverge, belonging to the set, are plotted with
the same color.
The program
\emph on
julia.py
\emph default
generates a fractal using a julia set.
The program creates a 2D array (200 x 200 elements).
For our calculations, this array represents a rectangular region on the
complex plane centered at the origin whose lower left corner is (-1,-j)
and the upper right corner is (1+j).
For 200x200 equidistant points in this plane the number of iterations are
calculated and that value is given to the corresponding element of the
2D matrix.
The plotting is taken care by the imshow function.
The output is shown in figure
\begin_inset LatexCommand ref
reference "fig:Output-of-imshow1.py"
\end_inset
(b).
Change the value of
\begin_inset Formula $c$
\end_inset
and run the program to generate more patterns.
The equation also may be changed.
\end_layout
\begin_layout Standard
\align left
\emph on
Example julia.py
\end_layout
\begin_layout LyX-Code
'''
\end_layout
\begin_layout LyX-Code
Region of a complex plane ranging from -1 to +1 in both real
\end_layout
\begin_layout LyX-Code
and imaginary axes is represented using a 2D matrix
\end_layout
\begin_layout LyX-Code
having X x Y elements.For X and Y equal to 200,the stepsize
\end_layout
\begin_layout LyX-Code
in the complex plane is 2.0/200 = 0.01.
\end_layout
\begin_layout LyX-Code
The nature of the pattern depends much on the value of c.
\end_layout
\begin_layout LyX-Code
'''
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
X = 200
\end_layout
\begin_layout LyX-Code
Y = 200
\end_layout
\begin_layout LyX-Code
MAXIT = 100
\end_layout
\begin_layout LyX-Code
MAXABS = 2.0
\end_layout
\begin_layout LyX-Code
c = 0.02 - 0.8j # The constant in equation z**2 + c
\end_layout
\begin_layout LyX-Code
m = zeros([X,Y]) # A two dimensional array
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def numit(x,y): # number of iterations to diverge
\end_layout
\begin_layout LyX-Code
z = complex(x,y)
\end_layout
\begin_layout LyX-Code
for k in range(MAXIT):
\end_layout
\begin_layout LyX-Code
if abs(z) <= MAXABS:
\end_layout
\begin_layout LyX-Code
z = z**2 + c
\end_layout
\begin_layout LyX-Code
else:
\end_layout
\begin_layout LyX-Code
return k # diverged after k trials
\end_layout
\begin_layout LyX-Code
return MAXIT # did not diverge,
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
for x in range(X):
\end_layout
\begin_layout LyX-Code
for y in range(Y):
\end_layout
\begin_layout LyX-Code
re = 0.01 * x - 1.0 # complex number for
\end_layout
\begin_layout LyX-Code
im = 0.01 * y - 1.0 # this (x,y) coordinate
\end_layout
\begin_layout LyX-Code
m[x][y] = numit(re,im) # get the color for (x,y)
\end_layout
\begin_layout LyX-Code
imshow(m) # Colored plot using the 2D matrix
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Section
Meshgrids
\end_layout
\begin_layout Standard
in order to make contour and 3D plots, we need to understand the meshgrid.
Consider a rectangular area on the X-Y plane.
Assume there are m divisions in the X direction and n divisions in the
Y direction.
We now have a
\begin_inset Formula $m\times n$
\end_inset
mesh.
A meshgrid is the coordinates of a grid in a 2D plane, x coordinates of
each mesh point is held in one matrix and y coordinates are held in another.
\end_layout
\begin_layout Standard
The NumPy function meshgrid() creates two 2x2 matrices from two 1D arrays,
as shown in the example below.
This can be used for plotting surfaces and contours, by assigning a Z coordinat
e to every mesh point.
\end_layout
\begin_layout Standard
\align left
\emph on
Example mgrid1.py
\end_layout
\begin_layout LyX-Code
from numpy import *
\end_layout
\begin_layout LyX-Code
x = arange(0, 3, 1)
\end_layout
\begin_layout LyX-Code
y = arange(0, 3, 1)
\end_layout
\begin_layout LyX-Code
gx, gy = meshgrid(x, y)
\end_layout
\begin_layout LyX-Code
print gx
\end_layout
\begin_layout LyX-Code
print gy
\end_layout
\begin_layout Standard
\align block
The outputs are as shown below, gx(i,j) contains the x-coordinate and gx(i,j)
contains the y-coordinate of the point (i,j).
\end_layout
\begin_layout Standard
[[0 1 2]
\end_layout
\begin_layout Standard
[0 1 2]
\end_layout
\begin_layout Standard
[0 1 2]]
\end_layout
\begin_layout Standard
[[0 0 0]
\end_layout
\begin_layout Standard
[1 1 1]
\end_layout
\begin_layout Standard
[2 2 2]]
\end_layout
\begin_layout Standard
\align block
We can evaluate a function at all points of the meshgrid by passing the
meshgrid as an argument.
The program mgrid2.py plots the sum of sines of the x and y coordinates,
using imshow to get a result as shown in figure
\begin_inset LatexCommand ref
reference "fig:Output-of-imshow1.py"
\end_inset
(c).
\end_layout
\begin_layout Standard
\align left
\emph on
Example mgrid2.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
x = arange(-3*pi, 3*pi, 0.1)
\end_layout
\begin_layout LyX-Code
y = arange(-3*pi, 3*pi, 0.1)
\end_layout
\begin_layout LyX-Code
xx, yy = meshgrid(x, y)
\end_layout
\begin_layout LyX-Code
z = sin(xx) + sin(yy)
\end_layout
\begin_layout LyX-Code
imshow(z)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Section
3D Plots
\end_layout
\begin_layout Standard
Matplotlib supports several types of 3D plots, using the Axes3D class.
The following three lines of code are required in every program making
3D plots using matplotlib.
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
from mpl_toolkits.mplot3d import Axes3D
\end_layout
\begin_layout LyX-Code
ax = Axes3D(figure())
\end_layout
\begin_layout Subsection
Surface Plots
\end_layout
\begin_layout Standard
The example mgrid2.py is re-written to make a surface plot using the same
equation in surface3d.py and the result is shown in figure
\begin_inset LatexCommand ref
reference "fig:Suface3d and Line3d"
\end_inset
(a).
\end_layout
\begin_layout Standard
\align left
\emph on
Example sufrace3d.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
from mpl_toolkits.mplot3d import Axes3D
\end_layout
\begin_layout LyX-Code
ax = Axes3D(figure())
\end_layout
\begin_layout LyX-Code
x = arange(-3*pi, 3*pi, 0.1)
\end_layout
\begin_layout LyX-Code
y = arange(-3*pi, 3*pi, 0.1)
\end_layout
\begin_layout LyX-Code
xx, yy = meshgrid(x, y)
\end_layout
\begin_layout LyX-Code
z = sin(xx) + sin(yy)
\end_layout
\begin_layout LyX-Code
ax.plot_surface(xx, yy, z, cmap=cm.jet, cstride=1)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/surface3d.png
width 5cm
\end_inset
\begin_inset Graphics
filename pics/line3d.png
width 5cm
\end_inset
\end_layout
\begin_layout Standard
Output of (a)surface3d.py (b)line3d.py
\begin_inset LatexCommand label
name "fig:Suface3d and Line3d"
\end_inset
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Line Plots
\end_layout
\begin_layout Standard
Example of a line plot is shown in line3d.py along with the output in figure
\begin_inset LatexCommand ref
reference "fig:Suface3d and Line3d"
\end_inset
(b).
\end_layout
\begin_layout Standard
\align left
\emph on
Example line3d.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
from mpl_toolkits.mplot3d import Axes3D
\end_layout
\begin_layout LyX-Code
ax = Axes3D(figure())
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
phi = linspace(0, 2*pi, 400)
\end_layout
\begin_layout LyX-Code
x = cos(phi)
\end_layout
\begin_layout LyX-Code
y = sin(phi)
\end_layout
\begin_layout LyX-Code
z = 0
\end_layout
\begin_layout LyX-Code
ax.plot(x, y, z, label = 'x')# circle
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
z = sin(4*phi) # modulated in z plane
\end_layout
\begin_layout LyX-Code
ax.plot(x, y, z, label = 'x')
\end_layout
\begin_layout LyX-Code
ax.set_xlabel('X')
\end_layout
\begin_layout LyX-Code
ax.set_ylabel('Y')
\end_layout
\begin_layout LyX-Code
ax.set_zlabel('Z')
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
Modify the code to make x = sin(2*phi) to observe Lissajous figures
\end_layout
\begin_layout Subsection
Wire-frame Plots
\end_layout
\begin_layout Standard
Data for a sphere is generated using the outer product of matrices and plotted,
by sphere.py.
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
from mpl_toolkits.mplot3d import Axes3D
\end_layout
\begin_layout LyX-Code
ax = Axes3D(figure())
\end_layout
\begin_layout LyX-Code
phi = linspace(0, 2 * pi, 100)
\end_layout
\begin_layout LyX-Code
theta = linspace(0, pi, 100)
\end_layout
\begin_layout LyX-Code
x = 10 * outer(cos(phi), sin(theta))
\end_layout
\begin_layout LyX-Code
y = 10 * outer(sin(phi), sin(theta))
\end_layout
\begin_layout LyX-Code
z = 10 * outer(ones(size(phi)), cos(theta))
\end_layout
\begin_layout LyX-Code
ax.plot_wireframe(x,y,z, rstride=2, cstride=2)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Section
Mayavi, 3D visualization
\end_layout
\begin_layout Standard
For more efficient and advanced 3D visualization, use Mayavi that is available
on most of the GNU/Linux platforms.
Program ylm20.py plots the spherical harmonics
\begin_inset Formula $Y_{m}^{l}$
\end_inset
for
\begin_inset Formula $l=2,m=0$
\end_inset
, using mayavi.
The plot of
\begin_inset Formula $Y_{2}^{0}=\frac{1}{4}\sqrt{\frac{5}{\pi}}(3\cos^{2}\phi-1)$
\end_inset
is shown in figure
\begin_inset LatexCommand ref
reference "fig:Output-of-ylm20.py"
\end_inset
.
\end_layout
\begin_layout Standard
\align left
\emph on
Example ylm20.py
\end_layout
\begin_layout LyX-Code
from numpy import *
\end_layout
\begin_layout LyX-Code
from enthought.mayavi import mlab
\end_layout
\begin_layout LyX-Code
polar = linspace(0,pi,100)
\end_layout
\begin_layout LyX-Code
azimuth = linspace(0, 2*pi,100)
\end_layout
\begin_layout LyX-Code
phi,th = meshgrid(polar, azimuth)
\end_layout
\begin_layout LyX-Code
r = 0.25 * sqrt(5.0/pi) * (3*cos(phi)**2 - 1)
\end_layout
\begin_layout LyX-Code
x = r*sin(phi)*cos(th)
\end_layout
\begin_layout LyX-Code
y = r*cos(phi)
\end_layout
\begin_layout LyX-Code
z = r*sin(phi)*sin(th)
\end_layout
\begin_layout LyX-Code
mlab.mesh(x, y, z)
\end_layout
\begin_layout LyX-Code
mlab.show()
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/ylm20.png
width 6cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Output of ylm20.py
\begin_inset LatexCommand label
name "fig:Output-of-ylm20.py"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout Section
Exercises
\end_layout
\begin_layout Enumerate
Plot a sine wave using markers +, o and x using three different colors.
\end_layout
\begin_layout Enumerate
Plot
\begin_inset Formula $\tan\theta$
\end_inset
from
\begin_inset Formula $\theta$
\end_inset
from
\begin_inset Formula $-2\pi$
\end_inset
to
\begin_inset Formula $2\pi$
\end_inset
, watch for singular points.
\end_layout
\begin_layout Enumerate
Plot a circle using the polar() function.
\end_layout
\begin_layout Enumerate
Plot the following from the list of Famous curves at reference
\begin_inset LatexCommand cite
key "gap-system"
\end_inset
\newline
a)
\begin_inset Formula $r^{2}=a^{2}\cos2\theta$
\end_inset
, Lemniscate of Bernoulli
\newline
b)
\begin_inset Formula $y=\sqrt{2\pi}e^{-x^{2}/2}$
\end_inset
Frequency curve
\newline
c)
\begin_inset Formula $a\cosh(x/a)$
\end_inset
catenary
\newline
d)
\begin_inset Formula $\sin(a\theta)$
\end_inset
for a = 2, 3, and 4.
Rhodonea curves
\end_layout
\begin_layout Enumerate
Generate a triangular wave using Fourier series.
\end_layout
\begin_layout Enumerate
Evaluate
\begin_inset Formula $y=\sum_{n=1}^{n=\infty}\frac{(-1)^{n}x^{2n+1}}{(2n+1)!}$
\end_inset
for 10 terms.
\end_layout
\begin_layout Enumerate
Write a Python program to calculate sine function using series expansion
and plot it.
\end_layout
\begin_layout Enumerate
Write a Python program to plot
\begin_inset Formula $y=5x^{2}+3x+2$
\end_inset
(for x from 0 to 5, 20 points),using pylab, with axes and title.
Use red colored circles to mark the points.
\end_layout
\begin_layout Enumerate
Write a Python program to plot a Square wave using Fourier series, number
of terms should be a variable.
\end_layout
\begin_layout Enumerate
Write a Python program to read the x and y coordinates from a file, in a
two column format, and plot them.
\end_layout
\begin_layout Enumerate
Plot
\begin_inset Formula $x^{2}+y^{2}+z^{2}=25$
\end_inset
using mayavi.
\end_layout
\begin_layout Enumerate
Make a plot z = sin(x) + sin(y) using imshow() , from
\begin_inset Formula $-4\pi to4\pi$
\end_inset
for both x and y.
\end_layout
\begin_layout Enumerate
Write Python code to plot
\begin_inset Formula $y=x^{2}$
\end_inset
, with the axes labelled
\end_layout
\begin_layout Chapter
Type setting using LaTeX
\end_layout
\begin_layout Standard
LaTeX is a powerful typesetting system, used for producing scientific and
mathematical documents of high typographic quality.
LaTeX is not a word processor! Instead, LaTeX encourages authors not to
worry too much about the appearance of their documents but to concentrate
on getting the right content.
You prepare your document using a plain text editor, and the formatting
is specified by commands embedded in your document.
The appearance of your document is decided by LaTeX, but you need to specify
it using some commands.
In this chapter, we will discuss some of these commands mainly to typeset
mathematical equations.
\begin_inset Foot
status collapsed
\begin_layout Standard
http://www.latex-project.org/
\end_layout
\begin_layout Standard
http://mirror.ctan.org/info/lshort/english/lshort.pdf
\end_layout
\begin_layout Standard
http://en.wikibooks.org/wiki/LaTeX
\end_layout
\end_inset
\end_layout
\begin_layout Section
Document classes
\end_layout
\begin_layout Standard
LaTeX provides several predefined document classes (book, article, letter,
report, etc.) with extensive sectioning and cross-referencing capabilities.
Title, chapter, section, subsection, paragraph, subparagraph etc.
are specified by commands and it is the job of LaTeX to format them properly.
It does the numbering of sections automatically and can generate a table
of contents if requested.
Figures and tables are also numbered and placed without the user worrying
about it.
\end_layout
\begin_layout Standard
The latex source document (the .tex file) is compiled by the latex program
to generate a device independent (the .dvi file) output.
From that you can generate postscript or PDF versions of the document.
We will start with a simple example
\shape italic
hello.tex
\shape default
to demonstrate this process.
In a line, anything after a % sign is taken as a comment.
\end_layout
\begin_layout Standard
\align left
\emph on
Example hello.tex
\end_layout
\begin_layout LyX-Code
\backslash
documentclass{article}
\end_layout
\begin_layout LyX-Code
\backslash
begin{document}
\end_layout
\begin_layout LyX-Code
Small is beautiful.
% I am just a comment
\end_layout
\begin_layout LyX-Code
\backslash
end{document}
\end_layout
\begin_layout Standard
Compile, view and make a PDF file using the following commands:
\end_layout
\begin_layout Standard
$ latex hello.tex
\end_layout
\begin_layout Standard
$ xdvi hello.dvi
\end_layout
\begin_layout Standard
$ dvipdf hello.dvi
\end_layout
\begin_layout Standard
\align left
The output will look like : Small is beautiful.
\end_layout
\begin_layout Section
Modifying Text
\end_layout
\begin_layout Standard
In the next example
\shape italic
texts.tex
\shape default
we will demonstrate different types of text.
We will
\backslash
newline or
\backslash
\backslash
to generate a line break.
A blank line will start a new paragraph.
\end_layout
\begin_layout Standard
\align left
\emph on
Example texts.tex
\end_layout
\begin_layout Quotation
\backslash
documentclass{article}
\end_layout
\begin_layout Quotation
\backslash
begin{document}
\end_layout
\begin_layout Quotation
This is normal text.
\end_layout
\begin_layout Quotation
\backslash
newline
\end_layout
\begin_layout Quotation
\backslash
textbf{This is bold face text.}
\end_layout
\begin_layout Quotation
\backslash
textit{This is italic text.}
\backslash
\backslash
\end_layout
\begin_layout Quotation
\backslash
tiny{This is tiny text.}
\end_layout
\begin_layout Quotation
\backslash
large{This is large text.}
\end_layout
\begin_layout Quotation
\backslash
underline{This is underlined text.}
\end_layout
\begin_layout Quotation
\backslash
end{document}
\end_layout
\begin_layout Standard
\align left
Compiling
\shape italic
texts.tex,
\shape default
as explained in the previous example, will genearte the following output.
\end_layout
\begin_layout Standard
\lyxline
\end_layout
\begin_layout Standard
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
textnormal{This is normal text.}
\end_layout
\begin_layout Standard
\backslash
newline
\end_layout
\begin_layout Standard
\backslash
textbf{This is bold face text.}
\end_layout
\begin_layout Standard
\backslash
textit{This is italic text.}
\backslash
\backslash
\end_layout
\begin_layout Standard
\backslash
tiny{This is tiny text.}
\end_layout
\begin_layout Standard
\backslash
large{This is large text.}
\end_layout
\begin_layout Standard
\backslash
underline{This is underlined text.}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\lyxline
\end_layout
\begin_layout Section
Dividing the document
\end_layout
\begin_layout Standard
A document is generally organized in to sections, subsections, paragraphs
etc.
and Latex allows us to do this by inserting commands like section subsection
etc.
If the document class is book, you can have chapters also.
There is a command to generate the table of contents from the sectioning
information.
\begin_inset Foot
status collapsed
\begin_layout Standard
To generate the table of contents, you may have to compile the document
two times.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/sections.png
width 12cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Output of sections.tex
\begin_inset LatexCommand label
name "fig:Output-of-sections.tex"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align left
\emph on
Example sections.tex
\end_layout
\begin_layout Quotation
\backslash
documentclass{article}
\end_layout
\begin_layout Quotation
\backslash
begin{document}
\end_layout
\begin_layout Quotation
\backslash
tableofcontents
\end_layout
\begin_layout Quotation
\backslash
section{Animals}
\end_layout
\begin_layout Quotation
This document defines sections.
\end_layout
\begin_layout Quotation
\backslash
subsection{Domestic}
\end_layout
\begin_layout Quotation
This document also defines subsections.
\end_layout
\begin_layout Quotation
\backslash
subsubsection{cats and dogs}
\end_layout
\begin_layout Quotation
Cats and dogs are Domestic animals.
\end_layout
\begin_layout Quotation
\backslash
end{document}
\end_layout
\begin_layout Standard
The output of sections.tex is shown in figure
\begin_inset LatexCommand ref
reference "fig:Output-of-sections.tex"
\end_inset
.
\end_layout
\begin_layout Section
Environments
\end_layout
\begin_layout Standard
Environments decide the way in which your text is formatted : numbered lists,
tables, equations, quotations, justifications, figure, etc.
are some of the environments.
Environments are defined like :
\end_layout
\begin_layout Standard
\backslash
begin{environment_name} your text
\backslash
end{environment_name}
\end_layout
\begin_layout Standard
\align block
The example program
\shape italic
environ.tex
\shape default
demonstrates some of the environments.
\end_layout
\begin_layout Standard
\align left
\emph on
Example environs.tex
\end_layout
\begin_layout Standard
\backslash
documentclass{article}
\end_layout
\begin_layout Standard
\backslash
begin{document}
\end_layout
\begin_layout Standard
\backslash
begin{flushleft} A bulleted list.
\backslash
end{flushleft}
\end_layout
\begin_layout Standard
\backslash
begin{itemize}
\backslash
item dog
\backslash
item cat
\backslash
end{itemize}
\end_layout
\begin_layout Standard
\backslash
begin{center} A numbered List.
\backslash
end{center}
\end_layout
\begin_layout Standard
\backslash
begin{enumerate}
\backslash
item dog
\backslash
item cat
\backslash
end{enumerate}
\end_layout
\begin_layout Standard
\backslash
begin{flushright} This text is right justified.
\backslash
end{flushright}
\end_layout
\begin_layout Standard
\backslash
begin{quote}
\end_layout
\begin_layout Standard
Any text inside quote
\backslash
\backslash
environment will appe-
\backslash
\backslash
ar as typed.
\backslash
\backslash
\end_layout
\begin_layout Standard
\backslash
end{quote}
\end_layout
\begin_layout Standard
\backslash
begin{verbatim}
\end_layout
\begin_layout Standard
x = 1
\end_layout
\begin_layout Standard
while x <= 10:
\end_layout
\begin_layout Standard
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
print x * 5
\end_layout
\begin_layout Standard
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
x = x + 1
\end_layout
\begin_layout Standard
\backslash
end{verbatim}
\end_layout
\begin_layout Standard
\backslash
end{document}
\end_layout
\begin_layout Standard
\align block
The enumerate and itemize are used for making numbered and non-numbered
lists.
Flushleft, flushright and center are used for specifying text justification.
Quote and verbatim are used for portions where we do not want LaTeX to
do the formatting.
The output of environs.tex is shown below.
\end_layout
\begin_layout Standard
\lyxline
\end_layout
\begin_layout Standard
\align block
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
begin{flushleft} A bulleted list.
\backslash
end{flushleft}
\end_layout
\begin_layout Standard
\backslash
begin{itemize}
\backslash
item dog
\backslash
item cat
\backslash
end{itemize}
\end_layout
\begin_layout Standard
\backslash
begin{center} A numbered List.
\backslash
end{center}
\end_layout
\begin_layout Standard
\backslash
begin{enumerate}
\backslash
item dog
\backslash
item cat
\backslash
end{enumerate}
\end_layout
\begin_layout Standard
\backslash
begin{flushright} This text is right justified.
\backslash
end{flushright}
\end_layout
\begin_layout Standard
\backslash
begin{quote}
\end_layout
\begin_layout Standard
Any text inside quote
\backslash
\backslash
environment will appe-
\backslash
\backslash
ar as typed.
\backslash
\backslash
\end_layout
\begin_layout Standard
\backslash
end{quote}
\end_layout
\begin_layout Standard
\backslash
begin{verbatim}
\end_layout
\begin_layout Standard
x = 1 # a Python program
\end_layout
\begin_layout Standard
while x <= 10:
\end_layout
\begin_layout Standard
print x * 5
\end_layout
\begin_layout Standard
x = x + 1
\end_layout
\begin_layout Standard
\backslash
end{verbatim}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\lyxline
\end_layout
\begin_layout Section
Typesetting Equations
\end_layout
\begin_layout Standard
There two ways to typeset mathematical formulae: in-line within a paragraph,
or in a separate line.
In-line equations are entered between
\shape italic
two $ symbols
\shape default
.
The equations in a separate line can be done within the
\shape italic
equation
\shape default
environment.
Both are demonstrated in math1.tex.
\shape italic
We use the amsmath package in this example.
\end_layout
\begin_layout Standard
\align left
\emph on
Example math1.tex
\end_layout
\begin_layout Quotation
\backslash
documentclass{article}
\end_layout
\begin_layout Quotation
\backslash
usepackage{amsmath}
\end_layout
\begin_layout Quotation
\backslash
begin{document}
\end_layout
\begin_layout Quotation
The equation $a^2 + b^2 = c^2$ is typeset as inline.
\end_layout
\begin_layout Quotation
The same can be done in a separate line using
\end_layout
\begin_layout Quotation
\backslash
begin{equation}
\end_layout
\begin_layout Quotation
a^2 + b^2 = c^2
\end_layout
\begin_layout Quotation
\backslash
end{equation}
\end_layout
\begin_layout Quotation
\backslash
end{document}
\end_layout
\begin_layout Standard
The output of this file is shown below.
\end_layout
\begin_layout Standard
\lyxline
\begin_inset ERT
status collapsed
\begin_layout Standard
The equation $a^2 + b^2 = c^2$ is typeset as inline.
\end_layout
\begin_layout Standard
The same can be done in a separate line using
\end_layout
\begin_layout Standard
\backslash
begin{equation}
\end_layout
\begin_layout Standard
a^2 + b^2 = c^2
\end_layout
\begin_layout Standard
\backslash
end{equation}
\end_layout
\end_inset
\lyxline
\end_layout
\begin_layout Standard
The equation number becomes 5.1 because this happens to be the first equation
in chapter 5.
\end_layout
\begin_layout Subsection
Building blocks for typesetting equations
\end_layout
\begin_layout Standard
To typeset equations, we need to know the commands to make constructs like
fraction, sqareroot, integral etc.
The following list shows several commands and corresponding outputs.
For each item, the output of the command, between the two $ signs, is shown
on the right side.
The reader is expected to insert then inside the body of a document, compile
the file and view the output for practicing.
\end_layout
\begin_layout Enumerate
Extra space
\begin_inset Foot
status collapsed
\begin_layout Standard
\backslash
quad is for inserting space, the size of a
\backslash
quad corresponds to the width of the character ‘M’ of the current font.
Use
\backslash
qquad for larger space.
\end_layout
\end_inset
: $A
\backslash
quad B
\backslash
qquad C$\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$A
\backslash
quad B
\backslash
qquad C$
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Greek letters : $
\backslash
alpha
\backslash
beta
\backslash
gamma
\backslash
pi$\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$
\backslash
alpha
\backslash
beta
\backslash
gamma
\backslash
pi$
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Subscript and Exponents : $A_n
\backslash
quad A^m $\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$A_n
\backslash
quad A^m$
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Multiple Exponents : $a^b
\backslash
quad a^{b^c}$\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$a^b
\backslash
quad a^{b^c}$
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Fractions : $
\backslash
frac{3}{5}$ \InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$
\backslash
frac{3}{5}$
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Dots : $n! = 1
\backslash
cdot 2
\backslash
cdots (n-1)
\backslash
cdot n$ \InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$n! = 1
\backslash
cdot 2
\backslash
cdots (n-1)
\backslash
cdot n$
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Under/over lines : $0.
\backslash
overline{3} =
\backslash
underline{1/3}}$ \InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$0.
\backslash
overline{3} =
\backslash
underline{1/3}$
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Vectors : $
\backslash
vec{a}$\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$
\backslash
vec{a}$
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Functions : $
\backslash
sin x +
\backslash
arctan y$\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$
\backslash
sin x +
\backslash
arctan y$
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Square root : $
\backslash
sqrt{x^2+y^2}$\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$
\backslash
sqrt{x^2+y^2}$
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Higher roots : $z=
\backslash
sqrt[3]{x^{2} +
\backslash
sqrt{y}}$\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$z=
\backslash
sqrt[3]{x^{2} +
\backslash
sqrt{y}}$
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Equalities : $A
\backslash
neq B
\backslash
quad A
\backslash
approx C$\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$A
\backslash
neq B
\backslash
quad A
\backslash
approx C
\backslash
quad $
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Arrows : $
\backslash
Leftrightarrow
\backslash
quad
\backslash
Downarrow$\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$
\backslash
Leftrightarrow
\backslash
quad
\backslash
Downarrow$
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Partial derivative : $
\backslash
frac{
\backslash
partial ^2A}{
\backslash
partial x^2}$\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$
\backslash
frac{
\backslash
partial ^2A}{
\backslash
partial x^2}$
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Summation : $
\backslash
sum_{i=1}^n$\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$
\backslash
sum_{i=1}^n$
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Integration : $
\backslash
int_0^{
\backslash
frac{
\backslash
pi}{2}
\backslash
sin x}$\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$
\backslash
int_0^{
\backslash
frac{
\backslash
pi}{2}} sin x$
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Product : $
\backslash
prod_
\backslash
epsilon$\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$
\backslash
prod_
\backslash
epsilon$
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Big brackets : $
\backslash
Big((x+1)(x-1)
\backslash
Big)^{2}$\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$
\backslash
Big((x+1)(x-1)
\backslash
Big)^{2}$
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Integral : $
\backslash
int_a^b f(x) dx$\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$
\backslash
int _a^b f(x)dx$
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Operators : $
\backslash
pm
\backslash
div
\backslash
times
\backslash
cup
\backslash
ast
\backslash
$\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\InsetSpace ~
\begin_inset ERT
status collapsed
\begin_layout Standard
$
\backslash
pm
\backslash
div
\backslash
times
\backslash
cup
\backslash
ast $
\end_layout
\end_inset
\end_layout
\begin_layout Section
Arrays and matrices
\end_layout
\begin_layout Standard
To typeset arrays, use the array environment, that is similar to the tabular
environment.
Within an array environment, & character separates columns,
\backslash
\backslash
starts a new line.
The command
\backslash
hline inserts a horizontal line.
Alignment of the columns is shown inside braces using characters (lcr)
and the | symbol is used for adding vertical lines.
An example of making a table is shown below.
\end_layout
\begin_layout Quotation
$
\backslash
begin{array}{|l|cr|}
\backslash
hline
\end_layout
\begin_layout Quotation
person & sex & age
\backslash
\backslash
\end_layout
\begin_layout Quotation
John & male & 20
\backslash
\backslash
\end_layout
\begin_layout Quotation
Mary & female & 10
\backslash
\backslash
\end_layout
\begin_layout Quotation
Gopal & male & 30
\backslash
\backslash
\end_layout
\begin_layout Quotation
\backslash
hline
\end_layout
\begin_layout Quotation
\backslash
end{array} $
\end_layout
\begin_layout Standard
\begin_inset ERT
status collapsed
\begin_layout Standard
$
\end_layout
\begin_layout Standard
\backslash
begin{array}{|l|cr|}
\backslash
hline
\end_layout
\begin_layout Standard
person & sex & age
\backslash
\backslash
\end_layout
\begin_layout Standard
John & male & 7
\backslash
\backslash
\end_layout
\begin_layout Standard
Mary & female & 20
\backslash
\backslash
\end_layout
\begin_layout Standard
Gopal & male & 30
\backslash
\backslash
\end_layout
\begin_layout Standard
\backslash
hline
\end_layout
\begin_layout Standard
\backslash
end{array}
\end_layout
\begin_layout Standard
$
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The first column is left justified, second is centered and the third is
right justified (decided by the {|l|cr|}).
If you insert a | character between c and r, it will add a vertical line
between second and third columns.
\end_layout
\begin_layout Standard
Let us make a matrix using the same command.
\end_layout
\begin_layout Quotation
$ A =
\backslash
left(
\end_layout
\begin_layout Quotation
\backslash
begin{array}{ccc}
\end_layout
\begin_layout Quotation
x_1 & x_2 &
\backslash
ldots
\backslash
\backslash
\end_layout
\begin_layout Quotation
y_1 & y_2 &
\backslash
ldots
\backslash
\backslash
\end_layout
\begin_layout Quotation
\backslash
vdots &
\backslash
vdots &
\backslash
ddots
\backslash
\backslash
\end_layout
\begin_layout Quotation
\backslash
end{array}
\end_layout
\begin_layout Quotation
\backslash
right) $
\end_layout
\begin_layout Standard
The output is shown below.
The
\backslash
left( and
\backslash
right) provides the enclosure.
All the columns are centered.
We have also used horizontal, vertical and diagonal dots in this example.
\end_layout
\begin_layout Standard
\begin_inset ERT
status collapsed
\begin_layout Standard
$
\end_layout
\begin_layout Standard
A =
\backslash
left(
\end_layout
\begin_layout Standard
\backslash
begin{array}{ccc}
\end_layout
\begin_layout Standard
x_1 & x_2 &
\backslash
ldots
\backslash
\backslash
\end_layout
\begin_layout Standard
y_1 & y_2 &
\backslash
ldots
\backslash
\backslash
\end_layout
\begin_layout Standard
\backslash
vdots &
\backslash
vdots &
\backslash
ddots
\backslash
\backslash
\end_layout
\begin_layout Standard
\backslash
end{array}
\end_layout
\begin_layout Standard
\backslash
right) $
\end_layout
\end_inset
\end_layout
\begin_layout Section
Floating bodies, Inserting Images
\end_layout
\begin_layout Standard
Figures and tables need special treatment, because they cannot be broken
across pages.
One method would be to start a new page every time a figure or a table
is too large to fit on the present page.
This approach would leave pages partially empty, which looks very bad.
The easiest solution is to
\shape italic
float
\shape default
them and let LaTeX decide the position.
( You can influence the placement of the floats using the arguments [htbp],
here, top, bottom or special page).
Any material enclosed in a figure or table environment will be treated
as floating matter.
The
\shape italic
graphicsx
\shape default
packages is required in this case.
\end_layout
\begin_layout Standard
\backslash
usepackage{graphicx}
\end_layout
\begin_layout Standard
\backslash
text{Learn how to insert pictures with caption inside the figure environment.}
\end_layout
\begin_layout Standard
\backslash
begin{figure}[h]
\end_layout
\begin_layout Standard
\backslash
centering
\end_layout
\begin_layout Standard
\backslash
includegraphics[width=0.2
\backslash
textwidth]{pics/arcs.png}
\end_layout
\begin_layout Standard
\backslash
includegraphics[width=0.2
\backslash
textwidth]{pics/sawtooth.png}
\end_layout
\begin_layout Standard
\backslash
caption{Picture of Arc and Sawtooth, inserted with [h] option.}
\end_layout
\begin_layout Standard
\backslash
end{figure}
\end_layout
\begin_layout Standard
\align left
The result is shown below.
\lyxline
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Standard
\backslash
textit{Learn how to insert pictures with caption inside the figure environment.}
\end_layout
\begin_layout Standard
\backslash
begin{figure}[h]
\end_layout
\begin_layout Standard
\backslash
centering
\end_layout
\begin_layout Standard
\backslash
includegraphics[width=0.2
\backslash
textwidth]{pics/arcs.png}
\end_layout
\begin_layout Standard
\backslash
includegraphics[width=0.2
\backslash
textwidth]{pics/sawtooth.png}
\end_layout
\begin_layout Standard
\backslash
caption{Picture of Arc and Sawtooth, inserted with [h] option.}
\end_layout
\begin_layout Standard
\backslash
end{figure}
\end_layout
\end_inset
\lyxline
\end_layout
\begin_layout Section
Example Application
\end_layout
\begin_layout Standard
Latex source code for a simple question paper listed below.
\end_layout
\begin_layout Standard
\align left
\emph on
Example qpaper.tex
\end_layout
\begin_layout Quotation
\backslash
documentclass{article}
\end_layout
\begin_layout Quotation
\backslash
usepackage{amsmath}
\end_layout
\begin_layout Quotation
begin{document}
\end_layout
\begin_layout Quotation
\backslash
begin{center}
\end_layout
\begin_layout Quotation
\backslash
large{
\backslash
textbf{Sample Question Paper
\backslash
\backslash
for
\backslash
\backslash
\end_layout
\begin_layout Quotation
Mathematics using Python}}
\end_layout
\begin_layout Quotation
\backslash
end{center}
\end_layout
\begin_layout Quotation
\backslash
begin{tabular}{p{8cm}r}
\end_layout
\begin_layout Quotation
\backslash
textbf{Duration:3 Hrs} &
\backslash
textbf{30 weightage}
\end_layout
\begin_layout Quotation
\backslash
end{tabular}
\backslash
\backslash
\end_layout
\begin_layout Quotation
\backslash
section{Answer all Questions.
$4
\backslash
times 1
\backslash
frac{1}{2}$}
\end_layout
\begin_layout Quotation
\backslash
begin{enumerate}
\end_layout
\begin_layout Quotation
\backslash
item What are the main document classes in LaTeX.
\end_layout
\begin_layout Quotation
\backslash
item Typeset $
\backslash
sin^{2}x+
\backslash
cos^{2}x=1$ using LaTeX.
\end_layout
\begin_layout Quotation
\backslash
item Plot a circle using the polar() function.
\end_layout
\begin_layout Quotation
\backslash
item Write code to print all perfect cubes upto 2000.
\end_layout
\begin_layout Quotation
\backslash
end{enumerate}
\end_layout
\begin_layout Quotation
\backslash
section{Answer any two Questions.
$3
\backslash
times 5$}
\end_layout
\begin_layout Quotation
\backslash
begin{enumerate}
\end_layout
\begin_layout Quotation
\backslash
item Set a sample question paper using LaTeX.
\end_layout
\begin_layout Quotation
\backslash
item Using Python calculate the GCD of two numbers
\end_layout
\begin_layout Quotation
\backslash
item Write a program with a Canvas and a circle.
\end_layout
\begin_layout Quotation
\backslash
end{enumerate}
\end_layout
\begin_layout Quotation
\backslash
begin{center}
\backslash
text{End}
\backslash
end{center}
\end_layout
\begin_layout Quotation
\backslash
end{document}
\end_layout
\begin_layout Standard
The formatted output is shown below.
\end_layout
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/qpaper.png
width 12cm
\end_inset
\end_layout
\begin_layout Section
Exercises
\end_layout
\begin_layout Enumerate
What are the main document classes supported by LaTeX.
\end_layout
\begin_layout Enumerate
How does Latex differ from other word processor programs.
\end_layout
\begin_layout Enumerate
Write a .tex file to typeset 'All types of Text Available' in tiny, large,
underline and italic.
\end_layout
\begin_layout Enumerate
Rewrite the previous example to make the output a list of numbered lines.
\end_layout
\begin_layout Enumerate
Generate an article with section and subsections with table of contents.
\end_layout
\begin_layout Enumerate
Typeset 'All types of justifications' to print it three times; left, right
and centered.
\end_layout
\begin_layout Enumerate
Write a .tex file that prints 12345 in five lines (one character per line).
\end_layout
\begin_layout Enumerate
Typeset a Python program to generate the multiplication table of 5, using
verbatim.
\end_layout
\begin_layout Enumerate
Typeset
\begin_inset Formula $\sin^{2}x+\cos^{2}x=1$
\end_inset
\end_layout
\begin_layout Enumerate
Typeset
\begin_inset Formula $\left(\sqrt{x^{2}+y^{2}}\right)^{2}=x^{2}+y^{2}$
\end_inset
\end_layout
\begin_layout Enumerate
Typeset
\begin_inset Formula $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}$
\end_inset
\end_layout
\begin_layout Enumerate
Typeset
\begin_inset Formula $\frac{\partial A}{\partial x}=A$
\end_inset
\end_layout
\begin_layout Enumerate
Typeset
\begin_inset Formula $\int_{0}^{\pi}\cos x.dx$
\end_inset
\end_layout
\begin_layout Enumerate
Typeset
\begin_inset Formula $x=\frac{-b\pm\sqrt{b^{2}-4ac}}{2a}$
\end_inset
\end_layout
\begin_layout Enumerate
Typeset
\begin_inset Formula $A=\left(\begin{array}{cc}
1 & 2\\
3 & 4\end{array}\right)$
\end_inset
\end_layout
\begin_layout Enumerate
Typeset
\begin_inset Formula $R=\left(\begin{array}{cc}
\sin\theta & \cos\theta\\
\cos\theta & \sin\theta\end{array}\right)$
\end_inset
\end_layout
\begin_layout Chapter
Numerical methods
\end_layout
\begin_layout Standard
Solving mathematical equations is an important requirement for various branches
of science but many of them evade an analytic solution.
The field of numerical analysis explores the techniques that give approximate
but accurate solutions to such problems.
\begin_inset Foot
status collapsed
\begin_layout Standard
Introductory methods of numerical analysis by S.S.Sastry
\end_layout
\begin_layout Standard
http://ads.harvard.edu/books/1990fnmd.book/
\end_layout
\end_inset
Even when they have a solution, for all practical purposes we need to evaluate
the numeric value of the result, with the desired accuracy.
We will focus on developing simple working programs rather than going into
the theoretical details.
The mathematical equations giving numerical solutions will be explored
by changing various parameters and nature of input data.
\end_layout
\begin_layout Section
Derivative of a function
\end_layout
\begin_layout Standard
The mathematical definition of the derivative of a function
\begin_inset Formula $f(x)$
\end_inset
at point
\begin_inset Formula $x$
\end_inset
can be approximated by equation
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
{lim\atop \Delta x\rightarrow0}\frac{f(x+\frac{\triangle x}{2})-f(x-\frac{\triangle x}{2})}{\triangle x}\label{eq:derivative}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
neglecting the higher order terms.
The accuracy of the derivative calculated using discrete values
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
depends on the stepsize
\begin_inset Formula $\triangle x$
\end_inset
.
It will also depends on the number of higher order derivatives the function
has.
We will try to explore these aspects using the program
\family default
\series default
\shape default
\size default
\emph on
\bar default
\noun default
\color black
diff.py
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
, which evaluates the derivatives of few functions using two different
stepsizes (0.1 ans 0.01).
The input values to function deriv() are the function to be differentiated,
the point at which the derivative is to be found and the stepsize
\begin_inset Formula $\triangle x$
\end_inset
.
\end_layout
\begin_layout Standard
\align left
\emph on
Example diff.py
\end_layout
\begin_layout LyX-Code
def f1(x):
\end_layout
\begin_layout LyX-Code
return x**2
\end_layout
\begin_layout LyX-Code
def f2(x):
\end_layout
\begin_layout LyX-Code
return x**4
\end_layout
\begin_layout LyX-Code
def f3(x):
\end_layout
\begin_layout LyX-Code
return x**10
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def deriv(func, x, dx=0.1):
\end_layout
\begin_layout LyX-Code
df = func(x+dx/2)-func(x-dx/2)
\end_layout
\begin_layout LyX-Code
return df/dx
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
print deriv(f1, 1.0), deriv(f1, 1.0, 0.01)
\end_layout
\begin_layout LyX-Code
print deriv(f2, 1.0), deriv(f2, 1.0, 0.01)
\end_layout
\begin_layout LyX-Code
print deriv(f3, 1.0), deriv(f3, 1.0, 0.01)
\end_layout
\begin_layout Standard
The output of the program is shown below.
Comparing the two numbers on the same line shows the effect of stepsize.
Comparing the first number on each row shows the effect of the number of
higher order derivatives the function has.
For the same stepsize
\begin_inset Formula $x^{4}$
\end_inset
gives much less error than
\begin_inset Formula $x^{10}$
\end_inset
.
Second derivative of
\begin_inset Formula $x^{2}$
\end_inset
is constant and the result becomes exact, result on the first line.
\end_layout
\begin_layout Quotation
2.0 2.0
\end_layout
\begin_layout Quotation
4.01 4.0001
\end_layout
\begin_layout Quotation
10.3015768754 10.0030001575
\end_layout
\begin_layout Standard
You may explore other functions by modifying the program.
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
It can be seen that the function deriv(), evaluates the function at two
points to calculate the derivative.
The higher order terms can be calculated by evaluating the function at
more points.
Techniques used for this will be discussed in section
\begin_inset LatexCommand ref
reference "sec:Interpolation"
\end_inset
, on interpolation.
\end_layout
\begin_layout Subsection
Differentiate Sine to get Cosine
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/vdiff.png
lyxscale 50
width 6cm
\end_inset
\begin_inset Graphics
filename pics/vdiff_bigerror.png
lyxscale 50
width 6cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Outputs of vdiff.py (a)for
\begin_inset Formula $\triangle x=0.005$
\end_inset
(b) for
\begin_inset Formula $\triangle x=1.0$
\end_inset
\begin_inset LatexCommand label
name "fig:Outputs-of-vdiff.py"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
The program
\emph on
\color black
diff.py
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
in the previous example can only calculate the value of the derivative
at a given point.
In the program
\family default
\series default
\shape default
\size default
\emph on
\bar default
\noun default
\color black
vdiff.py
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
, we use a vectorized version of our deriv() function.
The defined function is sine and the derivative is calculated using the
vectorized version of deriv().
The actual cosine function also is plotted for comparison.
The output of vdiff.py is shown in
\begin_inset LatexCommand ref
reference "fig:Outputs-of-vdiff.py"
\end_inset
(a).
\end_layout
\begin_layout Standard
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
The value of
\begin_inset Formula $\triangle x$
\end_inset
is increased to 1.0
\family default
\series default
\shape default
\size default
\emph default
\bar default
\noun default
\color inherit
by changing one line of code as
\begin_inset Formula $y=vecderiv(x,1.0)$
\end_inset
and the result is shown in
\begin_inset LatexCommand ref
reference "fig:Outputs-of-vdiff.py"
\end_inset
(b).
The values calculated using our function is shown using
\begin_inset Formula $+$
\end_inset
marker, while the continuous curve is the expected result , ie.
the cosine curve.
\end_layout
\begin_layout Standard
\align left
\emph on
Example vdiff.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
def f(x):
\end_layout
\begin_layout LyX-Code
return sin(x)
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def deriv(x,dx=0.005):
\end_layout
\begin_layout LyX-Code
df = f(x+dx/2)-f(x-dx/2)
\end_layout
\begin_layout LyX-Code
return df/dx
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
vecderiv = vectorize(deriv)
\end_layout
\begin_layout LyX-Code
x = linspace(-2*pi, 2*pi, 200)
\end_layout
\begin_layout LyX-Code
y = vecderiv(x)
\end_layout
\begin_layout LyX-Code
plot(x,y,'+')
\end_layout
\begin_layout LyX-Code
plot(x,cos(x))
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Section
Numerical Integration
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/integ1.png
lyxscale 50
width 5cm
\end_inset
\begin_inset Graphics
filename pics/integ2.png
lyxscale 50
width 5cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Area under the curve is divided it in to a large number of intervals.
Area of each of them is calculated by assuming them to be trapezoids.
\begin_inset LatexCommand label
name "fig:Integration"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Numerical integration constitutes a broad family of algorithms for calculating
the numerical value of a definite integral.
The objective is to find the area under the curve as shown in figure
\begin_inset LatexCommand ref
reference "fig:Integration"
\end_inset
.
One method is to divide this area in to large number of sub-intervals and
find the sum of their areas.
The interval
\begin_inset Formula $a\leq x\leq b$
\end_inset
is divided in to
\begin_inset Formula $n$
\end_inset
sub-intervals, each of length
\begin_inset Formula $h=(b-a)/n$
\end_inset
, and area of a sub-interval is approximated by
\begin_inset Formula \[
\int_{x_{n-1}}^{x_{n}}ydx=\frac{h}{2}(y_{n-1}+y_{n})\]
\end_inset
the integral is given by
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
\int_{a}^{b}ydx=\frac{h}{2}\left[y_{0}+2(y_{1}+y_{2}+\ldots+y_{n-1})+y_{n}\right]\label{eq:Trapez}\end{equation}
\end_inset
This is the sum of the areas of the individual trapezoids.
The error in using the trapezoid rule is approximately proportional to
\begin_inset Formula $1/n^{2}$
\end_inset
.
If the number of sub-intervals is doubled, the error is reduced by a factor
of 4.
The program
\emph on
trapez.py
\emph default
does integration of a given function using equation
\begin_inset LatexCommand ref
reference "eq:Trapez"
\end_inset
.
We will choose an example where the results can be cross checked easily,
the value of
\begin_inset Formula $\pi$
\end_inset
is calculated by evaluating the area of a unit circle by integrating the
equation of a circle.
\end_layout
\begin_layout Standard
\align left
\emph on
Example trapez.py
\end_layout
\begin_layout LyX-Code
from math import *
\end_layout
\begin_layout LyX-Code
def y(x): # equation of a circle
\end_layout
\begin_layout LyX-Code
return sqrt(1.0 - x**2)
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def trapez(f, a, b, n):
\end_layout
\begin_layout LyX-Code
h = (b-a) / n
\end_layout
\begin_layout LyX-Code
sum = 0
\end_layout
\begin_layout LyX-Code
x = 0.5 * h # f(x) at middle of the slice
\end_layout
\begin_layout LyX-Code
for i in range (1,n):
\end_layout
\begin_layout LyX-Code
sum = sum + h * f(x)
\end_layout
\begin_layout LyX-Code
x = x + h
\end_layout
\begin_layout LyX-Code
return sum
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
print 4 * trapez(y, 0.0, 1.0,1000)
\end_layout
\begin_layout LyX-Code
print 4 * trapez(y, 0.0, 1.0,10000)
\end_layout
\begin_layout LyX-Code
print trapez(sin,0,2,1000) # Why the error ?
\end_layout
\begin_layout Standard
The output is shown below.
The result gets better by increasing
\begin_inset Formula $n$
\end_inset
thus resulting in smaller
\begin_inset Formula $h$
\end_inset
.
The last line shows, how things can go wrong if the arguments are given
in the integer format.
Learn how to avoid such pitfalls while writing programs.
It is left as an exercise to the reader to modify the function trapez()
to accept integer arguments also.
\end_layout
\begin_layout Standard
3.14041703178
\end_layout
\begin_layout Standard
3.14155546691
\end_layout
\begin_layout Standard
0.0
\end_layout
\begin_layout Section
Ordinary Differential Equations
\end_layout
\begin_layout Standard
Differential equations are one of the most important mathematical tools
used in producing models for physical and biological processes.
In this section, we will discuss the numerical methods for solving the
initial value problem for first-order ordinary differential equations.
Consider the equation,
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
\frac{dy}{dx}=f(x,y);\,\,\,\, y(x_{0})=y_{0}\label{eq:ODE}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
where the derivative of the function
\begin_inset Formula $f(x,y)$
\end_inset
is known and the value of the function at some value of
\begin_inset Formula $x=x_{0}$
\end_inset
also is known.
The objective is to find out the value of the function for other values
of
\begin_inset Formula $x$
\end_inset
.
The underlying idea of any routine for solving the initial value problem
is to rewrite the
\begin_inset Formula $dy$
\end_inset
and
\begin_inset Formula $dx$
\end_inset
as finite steps
\begin_inset Formula $\triangle y$
\end_inset
and
\begin_inset Formula $\triangle x$
\end_inset
, and multiply the equations by
\begin_inset Formula $\triangle x$
\end_inset
.
This gives algebraic formulas for the change in the value of
\begin_inset Formula $y(x)$
\end_inset
when
\begin_inset Formula $x$
\end_inset
is changed by one stepsize
\begin_inset Formula $\triangle x$
\end_inset
.
In the limit of making the stepsize very small, a good approximation to
the underlying differential equation is achieved.
\end_layout
\begin_layout Standard
Implementation of this procedure results in the Euler’s method, which is
conceptually very important, but not recommended for any practical use.
In this section we will discuss Euler's method and the Runge-Kutta method
with the help of example programs.
For detailed information refer to
\begin_inset LatexCommand cite
key "numerical recepies,mathcs.emory"
\end_inset
.
\end_layout
\begin_layout Subsection
Euler method
\end_layout
\begin_layout Standard
The equations of Euler's method can be obtained as follows.
By the definition of derivative,
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
y^{'}(x_{n},y_{n})={lim\atop h\rightarrow0}\frac{y(x_{n}+h)-y(x_{n})}{h}\label{eq:Euler}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
For sufficiently small values of
\begin_inset Formula $h$
\end_inset
, we can write,
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
y(x_{n}+h)=y(x_{n},y_{n})+hy^{'}(x_{n})\label{eq:Euler2}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
The above equations implies that, if the value of the function
\begin_inset Formula $y(x)$
\end_inset
is known to be
\begin_inset Formula $y_{n}$
\end_inset
at the point
\begin_inset Formula $x_{n}$
\end_inset
, its value at a nearby point
\begin_inset Formula $x_{n+1}$
\end_inset
is given by
\begin_inset Formula $y_{n}+h\times y^{'}.$
\end_inset
The program
\emph on
euler.py
\emph default
calculates the value of sine function using its derivative, ie.
the cosine function.
We start from
\begin_inset Formula $x=0$
\end_inset
, where
\begin_inset Formula $\sin(x)=0$
\end_inset
and compute the subsequent values using the derivative,
\begin_inset Formula $cos(x)$
\end_inset
, and compare the result with the actual sine function.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/euler.png
lyxscale 50
width 6cm
\end_inset
\begin_inset Graphics
filename pics/rkmethod.png
width 6cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
(a)Output of euler.py (b)Four intermediate steps of RK4 method
\begin_inset LatexCommand label
name "fig:Output-of-euler.py"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align left
\emph on
Example euler.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
h = 0.01 # stepsize
\end_layout
\begin_layout LyX-Code
x = 0.0 # initial values
\end_layout
\begin_layout LyX-Code
y = 0.0
\end_layout
\begin_layout LyX-Code
ax = [] # Lists to store x and y
\end_layout
\begin_layout LyX-Code
ay = []
\end_layout
\begin_layout LyX-Code
while x < 2*pi:
\end_layout
\begin_layout LyX-Code
y = y + h * math.cos(x) # Euler equation
\end_layout
\begin_layout LyX-Code
x = x + h
\end_layout
\begin_layout LyX-Code
ax.append(x)
\end_layout
\begin_layout LyX-Code
ay.append(y)
\end_layout
\begin_layout LyX-Code
plot(ax,ay)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
The output of
\emph on
euler.py
\emph default
is shown in figure
\begin_inset LatexCommand ref
reference "fig:Output-of-euler.py"
\end_inset
.
\end_layout
\begin_layout Subsection
Runge-Kutta method
\end_layout
\begin_layout Standard
The formula
\begin_inset LatexCommand ref
reference "eq:Euler"
\end_inset
used by Euler method which advances a solution from
\begin_inset Formula $x_{n}tox_{n+1}$
\end_inset
is not symmetric, it advances the solution through an interval
\begin_inset Formula $h$
\end_inset
, but uses derivative information only at the beginning of that interval.
Better results are obtained if we take
\shape italic
trial
\shape default
step to the midpoint of the interval and use the value of both
\begin_inset Formula $x$
\end_inset
and
\begin_inset Formula $y$
\end_inset
at that midpoint to compute the
\shape italic
real
\shape default
step across the whole interval.
This is called the second-order Runge-Kutta or the midpoint method.
This procedure can be further extended to higher orders.
\end_layout
\begin_layout Standard
The fourth order Runge-Kutta method is the most popular one and is commonly
referred as the Runge-Kutta method.
In each step the derivative is evaluated four times as shown in figure
\begin_inset LatexCommand ref
reference "fig:Outputs-of-(a)rk4.py"
\end_inset
(a).
Once at the initial point, twice at trial midpoints, and once at a trial
endpoint.
Every trial evaluation uses the value of the function from the previous
trial point, ie.
\begin_inset Formula $k_{2}$
\end_inset
is evaluated using
\begin_inset Formula $k_{1}$
\end_inset
and not using
\begin_inset Formula $y_{n}$
\end_inset
.
From these derivatives the final function value is calculated, The calculation
is done using the equations,
\end_layout
\begin_layout Standard
\align center
\begin_inset Formula $\begin{array}{c}
k_{1}=hf(x_{n},y_{n})\\
k_{2}=hf(x_{n}+\frac{h}{2},y_{n}+\frac{k_{1}}{2})\\
k_{3}=hf(x_{n}+\frac{h}{2},y_{n}+\frac{k_{2}}{2})\\
k_{4}=hf(x_{n}+h,y_{n}+k_{3})\end{array}$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
y_{n+1}=y_{n}+\frac{1}{6}\left(k_{1}+2k_{2}+2k_{3}+k_{4}\right)\label{eq:Runge-Kutta4}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
The program rk4.py listed below uses the equations shown above to calculate
the sine function, by integrating the cosine.
The output is shown in figure
\begin_inset LatexCommand ref
reference "fig:Outputs-of-(a)rk4.py"
\end_inset
(a).
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/rk4.png
lyxscale 50
width 6cm
\end_inset
\begin_inset Graphics
filename pics/eurk4.png
lyxscale 50
width 6cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Outputs of (a)rk4.py (b) compareEuRK4.py
\begin_inset LatexCommand label
name "fig:Outputs-of-(a)rk4.py"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align left
\emph on
Example rk4.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def rk4(x, y, fx, h = 0.1): # x, y , f(x), stepsize
\end_layout
\begin_layout LyX-Code
k1 = h * fx(x)
\end_layout
\begin_layout LyX-Code
k2 = h * fx(x + h/2.0)
\end_layout
\begin_layout LyX-Code
k3 = h * fx(x + h/2.0)
\end_layout
\begin_layout LyX-Code
k4 = h * fx(x + h)
\end_layout
\begin_layout LyX-Code
return y + ( k1/6 + k2/3 + k3/3 + k4/6 )
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
h = 0.01 # stepsize
\end_layout
\begin_layout LyX-Code
x = 0.0 # initial values
\end_layout
\begin_layout LyX-Code
y = 0.0
\end_layout
\begin_layout LyX-Code
ax = [x]
\end_layout
\begin_layout LyX-Code
ay = [y]
\end_layout
\begin_layout LyX-Code
while x < math.pi:
\end_layout
\begin_layout LyX-Code
y = rk4(x,y,math.cos)
\end_layout
\begin_layout LyX-Code
x = x + h
\end_layout
\begin_layout LyX-Code
ax.append(x)
\end_layout
\begin_layout LyX-Code
ay.append(y)
\end_layout
\begin_layout LyX-Code
plot(ax,ay)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
The program compareEuRK4.py calculates the values of Sine by integrating
Cosine.
The errors in both cases are evaluated at every step, by comparing it with
the sine function, and plotted as shown in figure
\begin_inset LatexCommand ref
reference "fig:Outputs-of-(a)rk4.py"
\end_inset
(b).
The accuracy of Runge-Kutta method is far superior to that of Euler's method,
for the same step size.
\end_layout
\begin_layout Standard
\align left
\emph on
Example compareEuRK4.py
\end_layout
\begin_layout LyX-Code
from scipy import *
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def rk4(x, y, fx, h = 0.1): # x, y , f(x), stepsize
\end_layout
\begin_layout LyX-Code
k1 = h * fx(x)
\end_layout
\begin_layout LyX-Code
k2 = h * fx(x + h/2.0)
\end_layout
\begin_layout LyX-Code
k3 = h * fx(x + h/2.0)
\end_layout
\begin_layout LyX-Code
k4 = h * fx(x + h)
\end_layout
\begin_layout LyX-Code
return y + ( k1/6 + k2/3 + k3/3 + k4/6 )
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
h = 0.1 # stepsize
\end_layout
\begin_layout LyX-Code
x = 0.0 # initial values
\end_layout
\begin_layout LyX-Code
ye = 0.0 # for Euler
\end_layout
\begin_layout LyX-Code
yr = 0.0 # for RK4
\end_layout
\begin_layout LyX-Code
ax = [] # Lists to store results
\end_layout
\begin_layout LyX-Code
euerr = []
\end_layout
\begin_layout LyX-Code
rkerr = []
\end_layout
\begin_layout LyX-Code
while x < 2*pi:
\end_layout
\begin_layout LyX-Code
ye = ye + h * math.cos(x) # Euler method
\end_layout
\begin_layout LyX-Code
yr = rk4(x, yr, cos, h) # RK4 method
\end_layout
\begin_layout LyX-Code
x = x + h
\end_layout
\begin_layout LyX-Code
ax.append(x)
\end_layout
\begin_layout LyX-Code
euerr.append(ye - sin(x))
\end_layout
\begin_layout LyX-Code
rkerr.append(yr - sin(x))
\end_layout
\begin_layout LyX-Code
plot(ax,euerr,'o')
\end_layout
\begin_layout LyX-Code
plot(ax, rkerr,'+')
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Subsection
Function depending on the integral
\end_layout
\begin_layout Standard
In the previous section, the program
\shape italic
rk4.py
\shape default
implemented a simplified version of the Runge-Kutta method, the function
was assumed to depend on the independent variable only.
The program
\shape italic
rk4_proper.py
\shape default
listed below implements it properly.
The functions
\begin_inset Formula $f(x,y)=1+y^{2}$
\end_inset
and
\begin_inset Formula $f(x,y)=(y-x)/y+x)$
\end_inset
are used for testing.
Readers may verify the results by manual computing.
\end_layout
\begin_layout Standard
\align left
\emph on
Example rk4_proper.py
\end_layout
\begin_layout LyX-Code
def f1(x,y):
\end_layout
\begin_layout LyX-Code
return 1 + y**2
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def f2(x,y):
\end_layout
\begin_layout LyX-Code
return (y-x)/(y+x)
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def rk4(x, y, fxy, h): # x, y , f(x,y), step
\end_layout
\begin_layout LyX-Code
k1 = h * fxy(x, y)
\end_layout
\begin_layout LyX-Code
k2 = h * fxy(x + h/2.0, y+k1/2)
\end_layout
\begin_layout LyX-Code
k3 = h * fxy(x + h/2.0, y+k2/2)
\end_layout
\begin_layout LyX-Code
k4 = h * fxy(x + h, y+k3)
\end_layout
\begin_layout LyX-Code
ny = y + ( k1/6 + k2/3 + k3/3 + k4/6 )
\end_layout
\begin_layout LyX-Code
#print x,y,k1,k2,k3,k4, ny
\end_layout
\begin_layout LyX-Code
return ny
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
h = 0.2 # stepsize
\end_layout
\begin_layout LyX-Code
x = 0.0 # initial values
\end_layout
\begin_layout LyX-Code
y = 0.0
\end_layout
\begin_layout LyX-Code
print rk4(x,y, f1, h)
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
h = 1
\end_layout
\begin_layout LyX-Code
x = 0.0 # initial values
\end_layout
\begin_layout LyX-Code
y = 1.0
\end_layout
\begin_layout LyX-Code
print rk4(x,y,f2,h)
\end_layout
\begin_layout Standard
The results are shown below.
\end_layout
\begin_layout Standard
0.202707408081
\end_layout
\begin_layout Standard
1.5056022409
\end_layout
\begin_layout Section
Polynomials
\begin_inset LatexCommand label
name "sec:Polynomials"
\end_inset
\end_layout
\begin_layout Standard
A polynomial is a mathematical expression involving a sum of powers in one
or more variables multiplied by coefficients.
A polynomial in one variable with constant coefficients is given by
\begin_inset Formula \begin{equation}
a_{n}x^{n}+...+a_{2}x^{2}+a_{1}x+a_{0}\label{eq:Polinomial}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
The derivative of
\begin_inset LatexCommand ref
reference "eq:Polinomial"
\end_inset
is,
\end_layout
\begin_layout Standard
\begin_inset Formula \[
na_{n}x^{n-1}+...+2a_{2}x+a_{1}\]
\end_inset
\end_layout
\begin_layout Standard
It is easy to find the derivative of a polynomial.
Complicated functions can be analyzed by approximating them with polynomials.
Taylor's theorem states that any sufficiently smooth function can locally
be approximated by a polynomial.
Computers use this property to evaluate trigonometric, logarithmic and
exponential functions.
\end_layout
\begin_layout Standard
One dimensional polynomials can be explored using the
\begin_inset Formula $poly1d$
\end_inset
function from Numpy.
You can define a polynomial by supplying the coefficient as a list.
For example , the statement p = poly1d([3,4,7]) constructs the polynomial
\begin_inset Formula $3x^{2}+4x+7$
\end_inset
.
Numpy supports several polynomial operations.
The following example demonstrates evaluation at a particular value, multiplica
tion, differentiation, integration and division of polynomials using
\shape italic
poly1d
\shape default
.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/polyplot.png
lyxscale 50
width 6cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Output of polyplot.py
\begin_inset LatexCommand label
name "fig:Output-of-polyplot.py"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align left
\emph on
Example poly.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
a = poly1d([3,4,5])
\end_layout
\begin_layout LyX-Code
b = poly1d([6,7])
\end_layout
\begin_layout LyX-Code
c = a * b + 5
\end_layout
\begin_layout LyX-Code
d = c/a
\end_layout
\begin_layout LyX-Code
print a
\end_layout
\begin_layout LyX-Code
print a(0.5)
\end_layout
\begin_layout LyX-Code
print b
\end_layout
\begin_layout LyX-Code
print a * b
\end_layout
\begin_layout LyX-Code
print a.deriv()
\end_layout
\begin_layout LyX-Code
print a.integ()
\end_layout
\begin_layout LyX-Code
print d[0], d[1]
\end_layout
\begin_layout Standard
The output of
\emph on
\color black
poly.py
\emph default
\color inherit
is shown below.
\end_layout
\begin_layout Standard
\begin_inset Formula $\begin{array}[b]{l}
3x^{2}+4x+5\\
7.75\\
6x+7\\
18x^{3}+45x^{2}+58x+35\\
6x+4\\
1x^{3}+2x^{2}+5x\\
6x+7\\
5\end{array}$
\end_inset
\end_layout
\begin_layout Standard
The last two lines show the result of the polynomial division, quotient
and reminder.
Note that a polynomial can take an array argument for evaluation to return
the results in an array.
The program
\emph on
\color black
polyplot.py
\emph default
\color inherit
evaluates polynomial
\begin_inset LatexCommand ref
reference "eq:polynomial of Sine"
\end_inset
and its first derivative.
\begin_inset Formula \begin{equation}
x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\frac{x^{7}}{5040}\label{eq:polynomial of Sine}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
The results are shown in figure
\begin_inset LatexCommand ref
reference "fig:Output-of-polyplot.py"
\end_inset
.
The equation
\begin_inset LatexCommand ref
reference "eq:polynomial of Sine"
\end_inset
is the first four terms of series representing sine wave (7! = 5040).
The derivative looks like cosine as expected.
Try adding more terms and change the limits to see the effects.
\end_layout
\begin_layout Standard
\align left
\emph on
Example polyplot.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
x = linspace(-pi, pi, 100)
\end_layout
\begin_layout LyX-Code
a = poly1d([-1.0/5040,0,1.0/120,0,-1.0/6,0,1,0])
\end_layout
\begin_layout LyX-Code
da = a.deriv()
\end_layout
\begin_layout LyX-Code
y = a(x)
\end_layout
\begin_layout LyX-Code
y1 = da(x)
\end_layout
\begin_layout LyX-Code
plot(x,y)
\end_layout
\begin_layout LyX-Code
plot(x,y1)
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Subsection
Taylor's Series
\begin_inset LatexCommand label
name "sub:Taylor's-Series"
\end_inset
\end_layout
\begin_layout Standard
If a function and its derivatives are known at some point
\begin_inset Formula $x=a$
\end_inset
, we can express
\begin_inset Formula $f(x)$
\end_inset
in the vicinity of that point using a polynomial.
The Taylor series expansion is given by,
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
f(x)=f(a)+(x-a)f^{'}(a)+\frac{(x-a)^{2}}{2!}f^{''}(a)+\cdots+\frac{(x-a)^{n}}{n!}f^{n}(a)\label{eq:Taylor's Series}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
For example let us consider the equation
\begin_inset Formula \begin{equation}
f(x)=x^{3}+x^{2}+x\label{eq:xcube}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
We can see that
\begin_inset Formula $f(0)=0$
\end_inset
and the derivatives are
\begin_inset Formula \[
f'(x)=3x^{2}+2x+1;\,\,\,\,\,\,\,\,\,\,\, f''(x)=6x+2;\,\,\,\,\,\, f'''(x)=6\]
\end_inset
\end_layout
\begin_layout Standard
Using the values of the derivatives at
\begin_inset Formula $x=0$
\end_inset
and equation
\begin_inset LatexCommand ref
reference "eq:Taylor's Series"
\end_inset
, we evaluate the function at
\begin_inset Formula $x=.5$
\end_inset
, using the polynomial expression,
\end_layout
\begin_layout Standard
\begin_inset Formula \[
f(0.5)=0+0.5\times1+\frac{0.5^{2}\times2}{2!}+\frac{0.5^{3}\times6}{3!}=.875\]
\end_inset
\end_layout
\begin_layout Standard
The result is same as
\begin_inset Formula $0.5^{3}+0.5^{2}+0.5=.875$
\end_inset
.
We have calculated it manually for
\begin_inset Formula $x=.5$
\end_inset
.
We can also do this using Numpy as shown in the program taylor.py.
\end_layout
\begin_layout Standard
\align left
\emph on
Example taylor.py
\end_layout
\begin_layout LyX-Code
from numpy import *
\end_layout
\begin_layout LyX-Code
p = poly1d([1,1,1,0])
\end_layout
\begin_layout LyX-Code
dp = p.deriv()
\end_layout
\begin_layout LyX-Code
dp2 = dp.deriv()
\end_layout
\begin_layout LyX-Code
dp3 = dp2.deriv()
\end_layout
\begin_layout LyX-Code
a = 0 # The known point
\end_layout
\begin_layout LyX-Code
x = 0 # Evaluate at x
\end_layout
\begin_layout LyX-Code
while x < .5:
\end_layout
\begin_layout LyX-Code
tay = p(a) + (x-a)* dp(a) +
\backslash
\end_layout
\begin_layout LyX-Code
(x-a)**2 * dp2(a) / 2 + (x-a)**3 * dp3(a)/6
\end_layout
\begin_layout LyX-Code
print '%5.1f %8.5f
\backslash
t%8.5f'%(x, p(x), tay)
\end_layout
\begin_layout LyX-Code
x = x + .1
\end_layout
\begin_layout Standard
The result is shown below.
\end_layout
\begin_layout Quotation
0.0 0.00000 0.00000
\end_layout
\begin_layout Quotation
0.1 0.11100 0.11100
\end_layout
\begin_layout Quotation
0.2 0.24800 0.24800
\end_layout
\begin_layout Quotation
0.3 0.41700 0.41700
\end_layout
\begin_layout Quotation
0.4 0.62400 0.62400
\end_layout
\begin_layout Subsection
Sine and Cosine Series
\end_layout
\begin_layout Standard
In the equation
\begin_inset LatexCommand ref
reference "eq:Taylor's Series"
\end_inset
, let us choose
\begin_inset Formula $f(x)=sin(x)$
\end_inset
and
\begin_inset Formula $a=0$
\end_inset
.
If
\begin_inset Formula $a=0$
\end_inset
, then the series is known as the Maclaurin Series.
The first term will become
\begin_inset Formula $sin(0)$
\end_inset
, which is just zero.
The other terms involve the derivatives of
\begin_inset Formula $sin(x)$
\end_inset
.
The first, second and third derivatives of
\begin_inset Formula $sin(x)$
\end_inset
are
\begin_inset Formula $cos(x)$
\end_inset
,
\begin_inset Formula $-sin(x)$
\end_inset
and
\begin_inset Formula $-cos(x)$
\end_inset
, respectively.
Evaluating each of these at zero, we get 1, 0 and -1 respectively.
The terms with even powers vanish, resulting in,
\begin_inset Formula \begin{equation}
\sin(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots\,\,\,\,\,=\sum_{n=0}^{\infty}\left(-1\right)^{n}\frac{x^{2n+1}}{(2n+1)!}\label{eq:Taylor Sine}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
We can find the cosine series in a similar manner, to get
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
\cos(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots\,\,\,\,\,=\sum_{n=0}^{\infty}\left(-1\right)^{n}\frac{x^{2n}}{(2n)!}\label{eq:Taylor cosine}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
The program series_sc.py evaluates the sine and cosine series.
The output is shown in figure
\begin_inset LatexCommand ref
reference "fig:Output-of-series_sc.py"
\end_inset
.
Compare the output of polyplot.py from section
\begin_inset LatexCommand ref
reference "sec:Polynomials"
\end_inset
with this.
In both cases, we have evaluated the polynomial of sine function.
In the present case, we can easily modify the number of terms and the logic
is simpler.
\end_layout
\begin_layout Standard
\align left
\emph on
Example series_sc.py
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/series_sc.png
lyxscale 50
width 6cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Output of series_sc.py
\begin_inset LatexCommand label
name "fig:Output-of-series_sc.py"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def f(n): # Factorial function
\end_layout
\begin_layout LyX-Code
if n == 0:
\end_layout
\begin_layout LyX-Code
return 1
\end_layout
\begin_layout LyX-Code
else:
\end_layout
\begin_layout LyX-Code
return n * f(n-1)
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
NP = 100
\end_layout
\begin_layout LyX-Code
x = linspace(-pi, pi, NP)
\end_layout
\begin_layout LyX-Code
sinx = zeros(NP)
\end_layout
\begin_layout LyX-Code
cosx = zeros(NP)
\end_layout
\begin_layout LyX-Code
for n in range(10):
\end_layout
\begin_layout LyX-Code
sinx += (-1)**(n) * (x**(2*n+1)) / f(2*n+1)
\end_layout
\begin_layout LyX-Code
cosx += (-1)**(n) * (x**(2*n)) / f(2*n)
\end_layout
\begin_layout LyX-Code
plot(x, sinx)
\end_layout
\begin_layout LyX-Code
plot(x, cosx,'r')
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Section
Finding roots of an equation
\end_layout
\begin_layout Standard
In general, an equation may have any number of roots, or no roots at all.
For example
\begin_inset Formula $f(x)=x^{2}$
\end_inset
has a single root whereas
\begin_inset Formula $f(x)=sin(x)$
\end_inset
has an infinite number of roots.
The roots can be located visually, by looking at the intersections with
the x-axis.
Another useful tool for detecting and bracketing roots is the incremental
search method.
The basic idea behind the incremental search method is simple: if
\begin_inset Formula $f(x1)$
\end_inset
and
\begin_inset Formula $f(x2)$
\end_inset
have opposite signs, then there is at least one root in the interval
\begin_inset Formula $(x1,x2)$
\end_inset
.
If the interval is small enough, it is likely to contain a single root.
Thus the zeroes of
\begin_inset Formula $f(x)$
\end_inset
can be detected by evaluating the function at intervals of
\begin_inset Formula $\Delta x$
\end_inset
and looking for change in sign.
\end_layout
\begin_layout Standard
There are several potential problems with the incremental search method:
It is possible to miss two closely spaced roots if the search increment
\begin_inset Formula $\Delta x$
\end_inset
is larger than the spacing of the roots.
Certain singularities of
\begin_inset Formula $f(x)$
\end_inset
can be mistaken for roots.
For example,
\begin_inset Formula $f(x)=tan(x)$
\end_inset
changes sign at odd multiples of
\begin_inset Formula $\pi/2$
\end_inset
, but these locations are not true zeroes as shown in figure
\begin_inset LatexCommand ref
reference "fig:NRplot"
\end_inset
(b).
\end_layout
\begin_layout Standard
Example
\shape italic
rootsearch.py
\shape default
implements the function
\begin_inset Formula $root()$
\end_inset
that searches the roots of a function
\begin_inset Formula $f(x)$
\end_inset
from
\begin_inset Formula $x=a$
\end_inset
to
\begin_inset Formula $x=b$
\end_inset
, incrementing it by
\begin_inset Formula $dx$
\end_inset
.
\end_layout
\begin_layout Standard
\align left
\emph on
Example rootsearch.py
\end_layout
\begin_layout LyX-Code
def func(x):
\end_layout
\begin_layout LyX-Code
return x**3-10.0*x*x + 5
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def root(f,a,b,dx):
\end_layout
\begin_layout LyX-Code
x = a
\end_layout
\begin_layout LyX-Code
while True:
\end_layout
\begin_layout LyX-Code
f1 = f(x)
\end_layout
\begin_layout LyX-Code
f2 = f(x+dx)
\end_layout
\begin_layout LyX-Code
if f1*f2 < 0:
\end_layout
\begin_layout LyX-Code
return x, x + dx
\end_layout
\begin_layout LyX-Code
x = x + dx
\end_layout
\begin_layout LyX-Code
if x >= b:
\end_layout
\begin_layout LyX-Code
return (None,None)
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
x,y = root(func, 0.0, 1.0,.1)
\end_layout
\begin_layout LyX-Code
print x,y
\end_layout
\begin_layout LyX-Code
x,y = root(math.cos, 0.0, 4,.1)
\end_layout
\begin_layout LyX-Code
print x,y
\end_layout
\begin_layout Standard
The outputs are (0.7 , 0.8) and (1.5 , 1.6).
The root of cosine,
\begin_inset Formula $\pi/2$
\end_inset
, is between 1.5 and 1.6.
After the root has been located roughly, we can find the root with any
specified accuracy, using bisection method, Newton-Raphson method etc.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/nrplot.png
lyxscale 50
width 6cm
\end_inset
\begin_inset Graphics
filename pics/tanx.png
lyxscale 50
width 6cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
(a)Function
\begin_inset Formula $2x^{2}-3x-5$
\end_inset
and its tangents at
\begin_inset Formula $x=4$
\end_inset
and
\begin_inset Formula $x=4$
\end_inset
(b) tan(x)
\begin_inset LatexCommand label
name "fig:NRplot"
\end_inset
.
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Subsection
Method of Bisection
\end_layout
\begin_layout Standard
The method of bisection finds the root by successively halving the interval
until it becomes sufficiently small.
Bisection is not the fastest method available for computing roots, but
it is the most reliable.
Once a root has been bracketed, bisection will always find it.
The method of bisection works in the following manner.
If there is a root between
\begin_inset Formula $x1$
\end_inset
and
\begin_inset Formula $x2$
\end_inset
, then
\begin_inset Formula $f(x1)\times f(x2)<0$
\end_inset
.
Next, we compute
\begin_inset Formula $f(x3)$
\end_inset
, where
\begin_inset Formula $x3=(x1+x2)/2$
\end_inset
.
If
\begin_inset Formula $f(x2)\times f(x3)<0$
\end_inset
, then the root must be in
\begin_inset Formula $(x2,x3)$
\end_inset
and we replace the original bound
\begin_inset Formula $x1$
\end_inset
by
\begin_inset Formula $x3$
\end_inset
.
Otherwise, the root lies between
\begin_inset Formula $x1$
\end_inset
and
\begin_inset Formula $x3$
\end_inset
, in that case
\begin_inset Formula $x2$
\end_inset
is replaced by
\begin_inset Formula $x3$
\end_inset
.
This process is repeated until the interval has been reduced to the specified
value, say
\begin_inset Formula $\varepsilon$
\end_inset
.
\end_layout
\begin_layout Standard
The number of bisections required to reach a prescribed limit,
\begin_inset Formula $\varepsilon,$
\end_inset
is given by equation
\begin_inset LatexCommand ref
reference "eq:bisection"
\end_inset
.
\begin_inset Formula \begin{equation}
n=\frac{\ln(|\triangle x|)/\varepsilon}{\ln2}\label{eq:bisection}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
The program
\shape italic
bisection.py
\shape default
finds the root of the equation
\begin_inset Formula $x^{3}-10x^{2}+5$
\end_inset
.
The starting values are found using the program
\shape italic
rootsearch.py
\shape default
.
The results are printed for two different accuracies.
\end_layout
\begin_layout Standard
\align left
\emph on
Example bisection.py
\end_layout
\begin_layout LyX-Code
import math def func(x):
\end_layout
\begin_layout LyX-Code
return x**3 - 10.0* x*x + 5
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def bisect(f, x1, x2, epsilon=1.0e-9):
\end_layout
\begin_layout LyX-Code
f1 = f(x1)
\end_layout
\begin_layout LyX-Code
f2 = f(x2)
\end_layout
\begin_layout LyX-Code
if f1*f2 > 0.0:
\end_layout
\begin_layout LyX-Code
print 'x1 and x2 are on the same side of x-axis'
\end_layout
\begin_layout LyX-Code
return
\end_layout
\begin_layout LyX-Code
n = math.ceil(math.log(abs(x2 - x1)/epsilon)/math.log(2.0))
\end_layout
\begin_layout LyX-Code
n = int(n)
\end_layout
\begin_layout LyX-Code
for i in range(n):
\end_layout
\begin_layout LyX-Code
x3 = 0.5 * (x1 + x2)
\end_layout
\begin_layout LyX-Code
f3 = f(x3)
\end_layout
\begin_layout LyX-Code
if f3 == 0.0: return x3
\end_layout
\begin_layout LyX-Code
if f2*f3 < 0.0:
\end_layout
\begin_layout LyX-Code
x1 = x3
\end_layout
\begin_layout LyX-Code
f1 = f3
\end_layout
\begin_layout LyX-Code
else:
\end_layout
\begin_layout LyX-Code
x2 = x3
\end_layout
\begin_layout LyX-Code
f2 = f3
\end_layout
\begin_layout LyX-Code
return (x1 + x2)/2.0
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
print bisect(func, 0.70, 0.8, 1.0e-4)
\end_layout
\begin_layout LyX-Code
print bisect(func, 0.70, 0.8, 1.0e-9)
\end_layout
\begin_layout Subsection
Newton-Raphson Method
\end_layout
\begin_layout Standard
The Newton–Raphson algorithm requires the derivative of the function also
to evaluate the roots.
Therefore, it is usable only in problems where
\begin_inset Formula $f'(x)$
\end_inset
can be readily computed.
It does not require the value at two points to start with.
We start with an initial guess which is reasonably close to the true root.
Then the function is approximated by its tangent line and the x-intercept
of the tangent line is calculated.
This value is taken as the next guess and the process is repeated.
The Newton-Raphson formula is shown below.
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
x_{i+1}=x_{i}-\frac{f(x_{i})}{f'(x_{i})}\label{eq:Newton-Raphson}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
Figure
\begin_inset LatexCommand ref
reference "fig:NRplot"
\end_inset
(a) shows the graph of the quadratic equation
\begin_inset Formula $2x^{2}-3x-5=0$
\end_inset
and its two tangents.
It can be seen that the zeros are at x = -1 and x = 2.5, and we use the
program newraph.py shown below to find the roots.
The function nr() is called twice, and we get the roots nearer to the correspon
ding starting values.
\end_layout
\begin_layout Standard
\align left
\emph on
Example newraph.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
def f(x):
\end_layout
\begin_layout LyX-Code
return 2.0 * x**2 - 3*x - 5
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def df(x):
\end_layout
\begin_layout LyX-Code
return 4.0 * x - 3
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def nr(x, tol = 1.0e-9):
\end_layout
\begin_layout LyX-Code
for i in range(30):
\end_layout
\begin_layout LyX-Code
dx = -f(x)/df(x)
\end_layout
\begin_layout LyX-Code
#print x
\end_layout
\begin_layout LyX-Code
x = x + dx
\end_layout
\begin_layout LyX-Code
if abs(dx) < tol:
\end_layout
\begin_layout LyX-Code
return x
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
print nr(4)
\end_layout
\begin_layout LyX-Code
print nr(0)
\end_layout
\begin_layout Standard
The output is shown below.
\end_layout
\begin_layout Standard
2.5
\end_layout
\begin_layout Standard
-1.0
\end_layout
\begin_layout Standard
\align block
Uncomment the print statement inside nr() to view how fast this method converges
, compared to the bisection method.
The program newraph_plot.py, listed below is used for generating the figure
\begin_inset LatexCommand ref
reference "fig:NRplot"
\end_inset
.
\end_layout
\begin_layout Standard
\align left
\emph on
Example newraph_plot.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
def f(x):
\end_layout
\begin_layout LyX-Code
return 2.0 * x**2 - 3*x - 5
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def df(x):
\end_layout
\begin_layout LyX-Code
return 4.0 * x - 3
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
vf = vectorize(f)
\end_layout
\begin_layout LyX-Code
x = linspace(-2, 5, 100)
\end_layout
\begin_layout LyX-Code
y = vf(x)
\end_layout
\begin_layout LyX-Code
# Tangents at x=3 and 4, using one point slope formula
\end_layout
\begin_layout LyX-Code
x1 = 4
\end_layout
\begin_layout LyX-Code
tg1 = df(x1)*(x-x1) + f(x1)
\end_layout
\begin_layout LyX-Code
x1 = 3
\end_layout
\begin_layout LyX-Code
tg2 = df(x1)*(x-x1) + f(x1)
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
grid(True)
\end_layout
\begin_layout LyX-Code
plot(x,y)
\end_layout
\begin_layout LyX-Code
plot(x,tg1)
\end_layout
\begin_layout LyX-Code
plot(x,tg2)
\end_layout
\begin_layout LyX-Code
ylim([-20,40])
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
\align left
We have defined the function
\begin_inset Formula $f(x)=2x^{2}-3x-5$
\end_inset
and vectorized it.
The derivative
\begin_inset Formula $4x^{2}-3$
\end_inset
also is defined by
\begin_inset Formula $df(x)$
\end_inset
, which is the slope of
\begin_inset Formula $f(x)$
\end_inset
.
The tangents are drawn at
\begin_inset Formula $x=4$
\end_inset
and
\begin_inset Formula $x=3$
\end_inset
, using the point slope formula for a line
\begin_inset Formula $y=m(x-x1)+y1$
\end_inset
.
\end_layout
\begin_layout Section
System of Linear Equations
\end_layout
\begin_layout Standard
A system of
\begin_inset Formula $m$
\end_inset
linear equations with
\begin_inset Formula $n$
\end_inset
unknowns can be written in a matrix form and can be solved by using several
standard techniques like Gaussian elimination.
In this section, the matrix inversion method, using Numpy, is demonstrated.
For more information see reference
\begin_inset LatexCommand cite
key "Kiusalas"
\end_inset
.
\end_layout
\begin_layout Subsection
Equation solving using matrix inversion
\end_layout
\begin_layout Standard
Non-homogeneous matrix equations of the form
\begin_inset Formula $Ax=b$
\end_inset
can be solved by matrix inversion to obtain
\begin_inset Formula $x=A^{-1}b$
\end_inset
.
The system of equations
\end_layout
\begin_layout Standard
\align center
\begin_inset Formula $\begin{array}[b]{r}
4x+y\,-2z=0\\
2x-3y+3z=9\\
-6x-2y\,+z=0\end{array}$
\end_inset
\end_layout
\begin_layout Standard
can be represented in the matrix form as
\end_layout
\begin_layout Standard
\align center
\begin_inset Formula \begin{eqnarray*}
\left(\begin{array}{rrr}
4 & 1 & -2\\
2 & -3 & 3\\
-6 & -2 & 1\end{array}\right)\left(\begin{array}{c}
x\\
y\\
z\end{array}\right) & = & \left(\begin{array}{c}
0\\
9\\
0\end{array}\right)\end{eqnarray*}
\end_inset
\end_layout
\begin_layout Standard
and can be solved by finding the inverse of the coefficient matrix.
\end_layout
\begin_layout Standard
\begin_inset Formula \[
\left(\begin{array}{c}
x\\
y\\
z\end{array}\right)=\left(\begin{array}{rrr}
4 & 1 & -2\\
2 & -3 & 3\\
-6 & -2 & 1\end{array}\right)^{-1}\left(\begin{array}{c}
0\\
9\\
0\end{array}\right)\]
\end_inset
\end_layout
\begin_layout Standard
Using numpy we can solve this as shown in solve_eqn.py
\end_layout
\begin_layout Standard
\align left
Example solve_eqn.py
\end_layout
\begin_layout LyX-Code
from numpy import *
\end_layout
\begin_layout LyX-Code
b = array([0,9,0])
\end_layout
\begin_layout LyX-Code
A = array([ [4,1,-2], [2,-3,3],[-6,-2,1]])
\end_layout
\begin_layout LyX-Code
print dot(linalg.inv(A),b)
\end_layout
\begin_layout Standard
The result will be [ 0.75 -2.
0.5 ], that means
\begin_inset Formula $x=0.75,y=-2,z=0.5$
\end_inset
.
This can be verified by substituting them back in to the equations.
\end_layout
\begin_layout Standard
Exercise: solve x+y+3z = 6; 2x+3y-4z=6;3x+2y+7z=0
\end_layout
\begin_layout Section
Least Squares Fitting
\end_layout
\begin_layout Standard
A mathematical procedure for finding the best-fitting curve
\begin_inset Formula $f(x)$
\end_inset
for a given set of points
\begin_inset Formula $(x_{n},y_{n})$
\end_inset
by minimizing the sum of the squares of the vertical offsets of the points
from the curve is called least squares fitting.
The least square fit is obtained by minimizing the function,
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
S(a_{0},a_{1},\ldots,a_{m})=\sum_{i=0}^{n}\left[y_{i}-f(x_{i})\right]^{2}\label{eq:Least square}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
with respect to each
\begin_inset Formula $a_{i}$
\end_inset
and the condition for that is
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
\frac{\partial S}{\partial a_{i}}=0,\,\,\,\,\, i=0,1,\ldots m\label{eq:LS2}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
For a linear fit, the equation is
\begin_inset Formula \[
f(a,b)=a+bx\]
\end_inset
\end_layout
\begin_layout Standard
Solving the equations
\begin_inset Formula $\frac{\partial S}{\partial a}=0$
\end_inset
and
\begin_inset Formula $\frac{\partial S}{\partial b}=0$
\end_inset
will give the result,
\begin_inset Formula \begin{equation}
b=\frac{\sum y_{i}(x-\overline{x})}{\sum x_{i}(x-\overline{x})},\,\,\,\, and\,\,\,\, a=\overline{y}-\overline{x}b\label{eq:LS3}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
where
\begin_inset Formula $\overline{x}$
\end_inset
and
\begin_inset Formula $\overline{y}$
\end_inset
are the mean values defined by the equations,
\begin_inset Formula \begin{equation}
\overline{x}=\frac{1}{n+1}\sum_{i=0}^{n}x_{i},\,\,\,\,\,\,\overline{y}=\frac{1}{n+1}\sum_{i=0}^{n}y{}_{i}\label{eq:LS4}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
The program lsfit.py demonstrates the usage of equations
\begin_inset LatexCommand ref
reference "eq:LS3"
\end_inset
and
\begin_inset LatexCommand ref
reference "eq:LS4"
\end_inset
.
\end_layout
\begin_layout Standard
\align left
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/lsfit.png
lyxscale 50
width 7cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Output of lsfit.py
\begin_inset LatexCommand label
name "fig:Output-of-lsfit.py"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align left
\emph on
Example lsfit.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
NP = 50
\end_layout
\begin_layout LyX-Code
r = 2*ranf([NP]) - 0.5
\end_layout
\begin_layout LyX-Code
x = linspace(0,10,NP)
\end_layout
\begin_layout LyX-Code
data = 3 * x + 2 + r
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
xbar = mean(x)
\end_layout
\begin_layout LyX-Code
ybar = mean(data)
\end_layout
\begin_layout LyX-Code
b = sum(data*(x-xbar)) / sum(x*(x-xbar))
\end_layout
\begin_layout LyX-Code
a = ybar - xbar * b
\end_layout
\begin_layout LyX-Code
print a,b
\end_layout
\begin_layout LyX-Code
y = a + b * x
\end_layout
\begin_layout LyX-Code
plot(x,y)
\end_layout
\begin_layout LyX-Code
plot(x,data,'ob')
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
The raw data is made by adding random numbers (between -1 and 1) to the
\begin_inset Formula $y$
\end_inset
coordinates generated by
\begin_inset Formula $y=3*x+2$
\end_inset
.
The Numpy functions mean() and sum() are used.
The output is shown in figure
\begin_inset LatexCommand ref
reference "fig:Output-of-lsfit.py"
\end_inset
.
\end_layout
\begin_layout Section
Interpolation
\begin_inset LatexCommand label
name "sec:Interpolation"
\end_inset
\end_layout
\begin_layout Standard
Interpolation is the process of constructing a function
\begin_inset Formula $f(x)$
\end_inset
from a set of data points
\begin_inset Formula $(x_{i},y_{i})$
\end_inset
, in the interval
\begin_inset Formula $a<x<b$
\end_inset
that will satisfy
\begin_inset Formula $y_{i}=f(x_{i})$
\end_inset
for any point in the same interval.
The easiest way is to construct a polynomial of degree
\begin_inset Formula $n$
\end_inset
that passes through the
\begin_inset Formula $n+1$
\end_inset
distinct data points.
\end_layout
\begin_layout Subsection
Newton's polynomial
\end_layout
\begin_layout Standard
Suppose the the given set is
\begin_inset Formula $(x_{i},y_{i}),i=0,1\ldots n-1$
\end_inset
and the polynomial is
\begin_inset Formula $P_{n}(x)$
\end_inset
.
Since the polynomial passes through all the data points, the following
condition will be satisfied.
\begin_inset Formula \begin{equation}
P_{n}(x_{i})=y_{i},\,\,\,\,\,\, i=0,1\ldots n-1\label{eq:NP one}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
The Newton's interpolating polynomial is given by the equation,
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
P_{n}(x)=a_{0}+(x-x_{0})a_{1}+\cdots+(x-x_{0})\cdots(x-x_{n-1})a_{n}\label{eq:NP 2}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
The coefficients
\begin_inset Formula $a_{i}$
\end_inset
can be evaluated in the following manner.
When
\begin_inset Formula $x=x_{0}$
\end_inset
, all the terms in
\begin_inset LatexCommand ref
reference "eq:NP 2"
\end_inset
except
\begin_inset Formula $a_{0}$
\end_inset
will vanish due to the presence of
\begin_inset Formula $(x-x_{0}$
\end_inset
) and we get
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
y_{o}=a_{0}\label{eq:NP3}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
For
\begin_inset Formula $x=x_{1}$
\end_inset
, only the first two terms will be non-zero.
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
y_{1}=a_{0}+a_{1}(x_{1}-x_{0})\label{eq:NP4}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
a_{1}=\frac{(y_{1}-y_{0})}{(x_{1}-x_{0})}\label{eq:NP5}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
Applying
\begin_inset Formula $x=x_{2}$
\end_inset
, we get
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
y_{2}=a_{0}+a_{1}(x_{2}-x_{0})+a_{2}(x_{2}-x_{0})a_{1}(x_{2}-x_{1})\label{eq:NP6}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
a_{2}=\frac{\frac{y_{2}-y_{1}}{x_{2}-x_{1}}-\frac{y_{1}-y_{0}}{x_{1}-x_{0}}}{x_{2}-x_{0}}\label{eq:NP7}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
The other coefficients can be found in a similar manner.
They can be expressed better using the divided difference notation as shown
below.
\end_layout
\begin_layout Standard
\begin_inset Formula \[
\left[y_{0}\right]=y_{0}\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula \[
\left[y_{0},y_{1}\right]=\frac{(y_{1}-y_{0})}{(x_{1}-x_{0})}\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula \[
\left[y_{0},y_{1},y_{3}\right]=\frac{\frac{y_{2}-y_{1}}{x_{2}-x_{1}}-\frac{y_{1}-y_{0}}{x_{1}-x_{0}}}{x_{2}-x_{0}}=\frac{\left[y_{1},y_{2}\right]-\left[y_{0},y_{1}\right]}{(x_{2}-x_{0})}\]
\end_inset
\end_layout
\begin_layout Standard
Using these notation, the Newton's polynomial can be re-written as;
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{eqnarray}
P(x) & = & \left[y_{0}\right]+\left[y_{0},y_{1}\right](x-x_{0})+\left[y_{0},y_{1},y_{2}\right](x-x_{0})(x-x_{1})+\nonumber \\
& & \cdots+\left[y_{0},\ldots,y_{n}\right](x-x_{0})\ldots(x-x_{n-1})\end{eqnarray}
\end_inset
\end_layout
\begin_layout Standard
The divided difference can be put in the tabular form as shown below.
This will be useful while calculating the coefficients manually.
\end_layout
\begin_layout Standard
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="4" columns="6">
<features>
<column alignment="center" valignment="top" width="0">
<column alignment="center" valignment="top" width="0">
<column alignment="center" valignment="top" width="0">
<column alignment="center" valignment="top" width="0">
<column alignment="center" valignment="top" width="0">
<column alignment="center" valignment="top" width="0">
<row>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $x_{0}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $x_{0}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $\left[y_{0}\right]$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $x_{1}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $y{}_{1}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\family roman
\series medium
\shape up
\size normal
\emph off
\bar no
\noun off
\color none
\begin_inset Formula $\left[y_{1}\right]$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $\left[y_{0},y_{1}\right]$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $x_{2}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $y_{2}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $\left[y_{2}\right]$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $\left[y_{1},y_{2}\right]$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $\left[y_{0},y_{1},y_{2}\right]$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $x_{3}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $y_{3}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $\left[y_{3}\right]$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $\left[y_{2},y_{3}\right]$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $\left[y_{1},y_{2},y_{3}\right]$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $\left[y_{0},y_{1},y_{2},y_{3}\right]$
\end_inset
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\begin_layout Standard
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="4" columns="5">
<features>
<column alignment="center" valignment="top" width="0">
<column alignment="center" valignment="top" width="0">
<column alignment="center" valignment="top" width="0">
<column alignment="center" valignment="top" width="0">
<column alignment="center" valignment="top" width="0">
<row>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
0
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
0
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
1
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
3
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $\frac{3-0}{1-0}=3$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
2
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
14
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $\frac{14-3}{2-1}=11$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $\frac{11-3}{2-0}=4$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
3
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
39
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $\frac{39-14}{3-2}=25$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $\frac{25-11}{3-1}=7$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Standard
\begin_inset Formula $\frac{7-4}{3-0}=1$
\end_inset
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\begin_layout Standard
The table given above shows the divided difference table for the data set
x = [0,1,2,3] and y = [0,3,14,39], calculated manually.
The program newpoly.py can be used for calculating the coefficients, which
prints the output [0, 3, 4, 1].
\end_layout
\begin_layout Standard
\align left
\emph on
Example newpoly.py
\end_layout
\begin_layout LyX-Code
from copy import copy
\end_layout
\begin_layout LyX-Code
def coef(x,y):
\end_layout
\begin_layout LyX-Code
a = copy(y)
\end_layout
\begin_layout LyX-Code
m = len(x)
\end_layout
\begin_layout LyX-Code
for k in range(1,m):
\end_layout
\begin_layout LyX-Code
tmp = copy(a)
\end_layout
\begin_layout LyX-Code
for i in range(k,m):
\end_layout
\begin_layout LyX-Code
tmp[i] = (a[i] - a[i-1])/(x[i]-x[i-k])
\end_layout
\begin_layout LyX-Code
a = copy(tmp)
\end_layout
\begin_layout LyX-Code
return a
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
x = [0,1,2,3]
\end_layout
\begin_layout LyX-Code
y = [0,3,14,39]
\end_layout
\begin_layout LyX-Code
print coef(x,y)
\end_layout
\begin_layout Standard
We start by copying the list
\begin_inset Formula $y$
\end_inset
to coefficient
\begin_inset Formula $a$
\end_inset
, the first element
\begin_inset Formula $a_{0}=y_{0}$
\end_inset
.
While calculating the differences, we have used two loops and a temporary
list.
The same can be done in a better way using arrays of Numpy
\begin_inset Foot
status collapsed
\begin_layout Standard
This function is from reference
\begin_inset LatexCommand cite
key "Kiusalas"
\end_inset
, some PDF versions of this book are available on the web.
\end_layout
\end_inset
, as shown in newpoly2.py.
\end_layout
\begin_layout Standard
\align left
\emph on
Example newpoly2.py
\end_layout
\begin_layout LyX-Code
from numpy import *
\end_layout
\begin_layout LyX-Code
def coef(x,y):
\end_layout
\begin_layout LyX-Code
a = copy(y)
\end_layout
\begin_layout LyX-Code
m = len(x)
\end_layout
\begin_layout LyX-Code
for k in range(1,m):
\end_layout
\begin_layout LyX-Code
a[k:m] = (a[k:m] - a[k-1])/(x[k:m]-x[k-1])
\end_layout
\begin_layout LyX-Code
return a
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
x = array([0,1,2,3])
\end_layout
\begin_layout LyX-Code
y = array([0,3,14,39])
\end_layout
\begin_layout LyX-Code
print coef(x,y)
\end_layout
\begin_layout Standard
The next step is to calculate the value of
\begin_inset Formula $y$
\end_inset
for any given value of
\begin_inset Formula $x$
\end_inset
, using the coefficients already calculated.
The program
\shape italic
newinterpol.py
\shape default
calculates the coefficients using the four data points.
The function eval() uses the recurrence relation
\end_layout
\begin_layout Standard
\begin_inset Formula \begin{equation}
P_{k}(x)=a_{n-k}+(x-x_{n-k})P_{k-1}(x),\,\,\,\, k=1,2,\ldots n\label{eq:NPrecur}\end{equation}
\end_inset
\end_layout
\begin_layout Standard
The program generates 20 new values of
\begin_inset Formula $x$
\end_inset
, and calculate corresponding values of
\begin_inset Formula $y$
\end_inset
and plots them along with the original data points, as shown in figure
\begin_inset LatexCommand ref
reference "fig:Output-of-newton_in3.py"
\end_inset
.
\end_layout
\begin_layout Standard
\align left
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/newton_in3.png
lyxscale 50
width 8cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Output of newton_in3.py
\begin_inset LatexCommand label
name "fig:Output-of-newton_in3.py"
\end_inset
\end_layout
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align left
\emph on
Example newinterpol.py
\end_layout
\begin_layout LyX-Code
from pylab import *
\end_layout
\begin_layout LyX-Code
def eval(a,xpoints,x):
\end_layout
\begin_layout LyX-Code
n = len(xpoints) - 1
\end_layout
\begin_layout LyX-Code
p = a[n]
\end_layout
\begin_layout LyX-Code
for k in range(1,n+1):
\end_layout
\begin_layout LyX-Code
p = a[n-k] + (x -xpoints[n-k]) * p
\end_layout
\begin_layout LyX-Code
return p
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
def coef(x,y):
\end_layout
\begin_layout LyX-Code
a = copy(y)
\end_layout
\begin_layout LyX-Code
m = len(x)
\end_layout
\begin_layout LyX-Code
for k in range(1,m):
\end_layout
\begin_layout LyX-Code
a[k:m] = (a[k:m] - a[k-1])/(x[k:m]-x[k-1])
\end_layout
\begin_layout LyX-Code
return a
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
x = array([0,1,2,3])
\end_layout
\begin_layout LyX-Code
y = array([0,3,14,39])
\end_layout
\begin_layout LyX-Code
coef = coef(x,y)
\end_layout
\begin_layout LyX-Code
\end_layout
\begin_layout LyX-Code
NP = 20
\end_layout
\begin_layout LyX-Code
newx = linspace(0,3, NP) # New x-values
\end_layout
\begin_layout LyX-Code
newy = zeros(NP)
\end_layout
\begin_layout LyX-Code
for i in range(NP): # evaluate y-values
\end_layout
\begin_layout LyX-Code
newy[i] = eval(coef, x, newx[i])
\end_layout
\begin_layout LyX-Code
plot(newx, newy,'-x')
\end_layout
\begin_layout LyX-Code
plot(x, y,'ro')
\end_layout
\begin_layout LyX-Code
show()
\end_layout
\begin_layout Standard
You may explore the results for new points outside the range by changing
the second argument of line
\shape italic
newx = linspace(0,3,NP)
\shape default
to a higher value.
\end_layout
\begin_layout Standard
Look for similarities between Taylor's series discussed in section
\begin_inset LatexCommand ref
reference "sub:Taylor's-Series"
\end_inset
that and polynomial interpolation process.
The derivative of a function represents an infinitesimal change in the
function with respect to one of its variables.
The finite difference is the discrete analog of the derivative.
Using the divided difference method, we are in fact calculating the derivatives
in the discrete form.
\end_layout
\begin_layout Section
Exercises
\end_layout
\begin_layout Enumerate
Differentiate
\begin_inset Formula $5x^{2}+3x+5$
\end_inset
numerically and evaluate at
\begin_inset Formula $x=2$
\end_inset
and
\begin_inset Formula $x=-2$
\end_inset
.
\end_layout
\begin_layout Enumerate
Write code to numerically differentiate
\begin_inset Formula $\sin(x^{2})$
\end_inset
and plot it by vectorizing the function.
Compare with the analytical result.
\end_layout
\begin_layout Enumerate
Integrate
\begin_inset Formula $\ln x$
\end_inset
,
\begin_inset Formula $e^{x}$
\end_inset
from
\begin_inset Formula $x=1$
\end_inset
to
\begin_inset Formula $2$
\end_inset
.
\end_layout
\begin_layout Enumerate
Solve
\begin_inset Formula $2x+y=3;-x+4y=0;3+3y=-1$
\end_inset
using matrices.
\end_layout
\begin_layout Enumerate
Modify the program julia.py,
\begin_inset Formula $c=0.2-0.8j$
\end_inset
and
\begin_inset Formula $z=z^{6}+c$
\end_inset
\end_layout
\begin_layout Enumerate
Write Python code, using pylab, to solve the following equations using matrices
\newline
\begin_inset Formula $\begin{array}[b]{r}
4x+y\,-2z=0\\
2x-3y+3z=9\\
-6x-2y\,+z=0\end{array}$
\end_inset
\end_layout
\begin_layout Enumerate
Find the roots of
\begin_inset Formula $5x^{2}+3x-6$
\end_inset
using bisection method.
\end_layout
\begin_layout Enumerate
Find the all the roots of
\begin_inset Formula $sin(x)$
\end_inset
between 0 and 10, using Newton-Raphson method.
\end_layout
\begin_layout Chapter*
Appendix A : Installing GNU/Linux
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
addcontentsline{toc}{chapter}{Appendix A}
\end_layout
\end_inset
\begin_inset ERT
status collapsed
\begin_layout Standard
\backslash
markboth{Appendix A}{Installing Ubuntu}
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Programming can be learned better by practicing and it requires an operating
system, and Python interpreter along with some library modules.
All these requirements are packaged on the Live CD comes along with this
book.
You can boot any PC from this CD and start working.
However, it is better to install the whole thing to a harddisk.
The following section explains howto install GNU/Linux.
We have selected the Ubuntu distribution due to its relatively simple installat
ion procedure, ease of maintenanace and support for most of the hardware
available in the market.
\end_layout
\begin_layout Section
Installing Ubuntu
\end_layout
\begin_layout Standard
Most of the users prefer a dual boot system, to keep their MSWindows working.
We will explain the installation process keeping that handicap in mind.
All we need is an empty partition of minimum 5 GB size to install Ubuntu.
Free space inside a Windows partition will not do, we need to format the
partition to install Ubuntu.
The Ubuntu installer will make the system multi-boot by searching through
all the partitions for installed operating systems.
\end_layout
\begin_layout Standard
\align left
\shape italic
\bar under
The System
\end_layout
\begin_layout Standard
This section will describe how Ubuntu was installed on a system, with MSWindows,
having the following partitions:
\end_layout
\begin_layout Standard
C: (GNU/Linux calls it /dev/sda1) 20 GB
\end_layout
\begin_layout Standard
D: ( /dev/sda5) 20 GB
\end_layout
\begin_layout Standard
E: (/dev/sda6) 30 GB
\end_layout
\begin_layout Standard
We will use the partition E: to install Ubuntu, it will be formatted.
\end_layout
\begin_layout Standard
\align left
\shape italic
\bar under
The Procedure
\end_layout
\begin_layout Standard
Set the first boot device CD ROM from the BIOS.
Boot the PC from the Ubuntu installation CD, we have used Phoenix Live
CD (a modified version on Ubuntu 9.1).
After 2 to 3 minutes a desktop as shown below will appear.
Click on the Installer icon, the window shown next will pop up.
Screens will appear to select the language, time zone and keyboard layout
as shown in the figures below.
\end_layout
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/desktop.png
lyxscale 30
width 6cm
\end_inset
\begin_inset Graphics
filename pics/inst1.png
lyxscale 50
width 6cm
\end_inset
\end_layout
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/inst2.png
lyxscale 50
width 6cm
\end_inset
\begin_inset Graphics
filename pics/inst3.png
lyxscale 50
width 6cm
\end_inset
\end_layout
\begin_layout Standard
Now we proceed to the important part, choosing a partition to install Ubuntu.
\end_layout
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/inst_disk1.png
lyxscale 50
width 12cm
\end_inset
\end_layout
\begin_layout Standard
The bar on the top graphically displays the existing partitions.
Below that there are three options provided :
\end_layout
\begin_layout Enumerate
Install them side by side.
\end_layout
\begin_layout Enumerate
Erase and use the entire disk.
\end_layout
\begin_layout Enumerate
Specify partitions manually.
\end_layout
\begin_layout Standard
If you choose the first option, the Installer will resize and repartition
the disk to make some space for the new system.
By default this option is marked as selected.
The bar at the bottom shows the proposed partition scheme.
In the present example, the installer plans to divide the C: drive in to
two partitions to put ubuntu on the second.
\end_layout
\begin_layout Standard
We are going to choose the third option, choose the partition manually.
We will use the last partition (drive E: ) for installing Ubuntu.
Once you choose that and click forward, a screen will appear where we can
add, delete and change partitions.
We have selected the third partition and clicked on Change.
A pop-up window appeared.
Using that we selected the file-system type to ext3, marked the format
option, and selected the mount point as / .
The screen with the pop-up window is shown below.
\end_layout
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/inst_disk2.png
lyxscale 50
width 12cm
\end_inset
\end_layout
\begin_layout Standard
\align left
If we proceed with this, a warning will appear complaining about the absence
of swap partitions.
The swap partition is used for supplementing the RAM with some virtual
memory.
When RAM is full, processes started but not running will be swapped out.
One can install a system without swap partition but it is a good idea to
have one.
\end_layout
\begin_layout Standard
We decide to go back on the warning, to delete the E: drive, create two
new partitions in that space and make one of them as swap.
This also demonstrates how to make new partitions.
The screen after deleting E: , with the pop-up window to make the swap
partition is shown below.
\end_layout
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/inst_makeswap.png
lyxscale 50
width 12cm
\end_inset
\end_layout
\begin_layout Standard
We made a 2 GB swap.
The remaining space is used for making one more partition, as shown in
the figure
\begin_inset LatexCommand ref
reference "fig:Making-the-partition"
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/inst_disk3.png
lyxscale 50
width 12cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Making the partition to install Ubuntu
\begin_inset LatexCommand label
name "fig:Making-the-partition"
\end_inset
.
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Once disk partitioning is over, you will be presented with a screen to enter
a user name and password.
\begin_inset Foot
status collapsed
\begin_layout Standard
All GNU/Linux installations ask for a root password during installation.
For simplicity, Ubuntu has decided to hide this information.
The first user created during installation has special privileges and that
password is asked, instead of the root password, for all system administration
jobs, like installing new software.
\end_layout
\end_inset
A warning will be issued if the password is less than 8 characters in length.
You will be given an option to import desktop settings from other installations
already on the disk, choose this if you like.
The next screen will confirm the installation.
After the installation is over, mat take 10 to 15 minutes, you will be
prompted to reboot the system.
On rebooting you will be presented with a menu, to choose the operating
system to boot.
First item in the menu will be the newly installed Ubuntu.
\end_layout
\begin_layout Section
Package Management
\end_layout
\begin_layout Standard
The Ubuntu install CD contains some common application programs like web
browser, office package, document viewer, image manipulation program etc.
After installing Ubuntu, you may want to add more applications.
The Ubuntu repository has an enormous number of packages, that can be installed
very easily.
You need to have a reasonably fast Internet connection for this purpose.
\end_layout
\begin_layout Standard
From the main menu, open System->Administration->Synaptic package manager.
After providing the pass word (of the first user, created during installation),
the synaptic window will popup as shown in figure
\begin_inset LatexCommand ref
reference "fig:Synaptic-package-manager"
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status collapsed
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/synaptic1.png
lyxscale 50
width 12cm
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Caption
\begin_layout Standard
Synaptic package manager window
\begin_inset LatexCommand label
name "fig:Synaptic-package-manager"
\end_inset
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\end_layout
\end_inset
\end_layout
\begin_layout Standard
Select Settings->Repositories to get a pop-up window as shown below.
Tick the four repositories, close the pop-up window and Click on Reload.
Synaptic will now try to download the index files from all these repositories.
It may take several minute.
\end_layout
\begin_layout Standard
\align center
\begin_inset Graphics
filename pics/synaptic2.png
lyxscale 50
width 12cm
\end_inset
\end_layout
\begin_layout Standard
Now, you are ready to install any package from the Ubuntu repository.
Search for any package by name, from these repositories, and install it.
If you have done the installation from original Ubuntu CD, you may require
the following packges:
\end_layout
\begin_layout Itemize
lyx : A latex front-end.
Latex will be installed since lyx dpends on latex.
\end_layout
\begin_layout Itemize
python-matplotlib : The graphics library
\end_layout
\begin_layout Itemize
python-visual : 3D graphics
\end_layout
\begin_layout Itemize
python-imaging-tk : Tkinter, Python Imaging Library etc.
will be installed
\end_layout
\begin_layout Itemize
build-essential : C compiler and related tools.
\end_layout
\begin_layout Subsection
Install from repository CD
\end_layout
\begin_layout Standard
We can also install packages from repository CDs.
Insert the CD in the drive and Select Add CDROM from the Edit menu of Synaptic.
Now all the packages on the CD will be available for search and install.
\end_layout
\begin_layout Subsubsection
Installing from the Terminal
\end_layout
\begin_layout Standard
You can install packages from the terminal also.
You have to become the root user by giving the sudo command;
\end_layout
\begin_layout Standard
$ sudo -s
\end_layout
\begin_layout Standard
enter password :
\end_layout
\begin_layout Standard
#
\end_layout
\begin_layout Standard
Note that the prompt changes from $ to #, when you become root.
\end_layout
\begin_layout Standard
Install packages using the command :
\end_layout
\begin_layout Standard
#apt-cdrom add
\end_layout
\begin_layout Standard
#apt-get install mayavi2
\end_layout
\begin_layout Subsection
Behind the scene
\end_layout
\begin_layout Standard
Even though there are installation programs that performs all these steps
automatically,it is better to know what is really happening.
Installing an operating system involves;
\end_layout
\begin_layout Itemize
Partitioning of the hard disk
\end_layout
\begin_layout Itemize
Formatting the partitions
\end_layout
\begin_layout Itemize
Copying the operating system files
\end_layout
\begin_layout Itemize
Installing a boot loader program
\end_layout
\begin_layout Standard
The storage space of a hard disk drive can be divided into separate data
areas, known as partitions.
You can create primary partitions and extended partitions.
Logical drives (secondary partitions can be created inside the extended
partitions).
On a disk, you can have up to 4 partitions, where one of them could be
an extended partition.
You can have many logical drives inside the extended partition.
\end_layout
\begin_layout Standard
On a MSWindows system, the primary partition is called the C: drive.
The logical drives inside the extended partition are named from D: onwards.
GNU/Linux uses a different naming convention.
The individual disks are named as /dev/sda , /dev/sdb etc.
and the partitions inside them are named as /dev/sda1, /dev/sda2 etc.
The numbering of secondary partitions inside the logical drive starts at
/dev/sda5.
(1 to 4 are reserved for primary and extended).
Hard disk partitioning can be done using the fdisk program.
The installation program also does this for you.
\end_layout
\begin_layout Standard
The process of making a file system on a partition is called formatting.
There are many different types of file systems.
MSWindows use file systems like FAT32, NTFS etc.
and GNU/Linux mostly uses file systems like ext3, ext4 etc.
\end_layout
\begin_layout Standard
The operating system files are kept in directories named boot, sbin, bin,
etc etc.
The kernel that loads while booting the system is kept in /boot.
The configuration files are kept in /etc.
/sbin and /bin holds programs that implements many of the shell commands.
Most of the application programs are kept in /usr/bin area.
\end_layout
\begin_layout Standard
The boot loader program is the one provides the selection of OS to boot,
when you power on the system.
GRUB is the boot loader used by most of the GNU/Linux systems.
\end_layout
\begin_layout Bibliography
\begin_inset LatexCommand bibitem
label "2"
key "wikipedia"
\end_inset
http://en.wikipedia.org/wiki/List_of_curves
\end_layout
\begin_layout Bibliography
\begin_inset LatexCommand bibitem
label "3"
key "gap-system"
\end_inset
http://www.gap-system.org/~history/Curves/Curves.html
\end_layout
\begin_layout Bibliography
\begin_inset LatexCommand bibitem
label "4"
key "ellipse"
\end_inset
http://www.gap-system.org/~history/Curves/Ellipse.html
\end_layout
\begin_layout Bibliography
\begin_inset LatexCommand bibitem
label "5"
key "wolfram"
\end_inset
http://mathworld.wolfram.com/
\end_layout
\begin_layout Bibliography
\begin_inset LatexCommand bibitem
label "6"
key "numpy examples"
\end_inset
http://www.scipy.org/Numpy_Example_List
\end_layout
\begin_layout Bibliography
\begin_inset LatexCommand bibitem
label "7"
key "scipy/doc"
\end_inset
http://docs.scipy.org/doc/
\end_layout
\begin_layout Bibliography
\begin_inset LatexCommand bibitem
label "8"
key "Numerical Integration"
\end_inset
http://numericalmethods.eng.usf.edu/mws/gen/07int/index.html
\end_layout
\begin_layout Bibliography
\begin_inset LatexCommand bibitem
label "9"
key "fractals"
\end_inset
http://www.angelfire.com/art2/fractals/lesson2.htm
\end_layout
\begin_layout Bibliography
\begin_inset LatexCommand bibitem
label "10"
key "numerical recepies"
\end_inset
http://www.fizyka.umk.pl/nrbook/bookcpdf.html
\end_layout
\begin_layout Bibliography
\begin_inset LatexCommand bibitem
label "11"
key "mathcs.emory"
\end_inset
http://www.mathcs.emory.edu/ccs/ccs315/ccs315/ccs315.html
\end_layout
\begin_layout Bibliography
\begin_inset LatexCommand bibitem
label "12"
key "Kiusalas"
\end_inset
Numerical Methods in Engineering with Python by Jaan Kiusalaas
\end_layout
\end_body
\end_document
|