1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
# -*- coding: utf-8 -*-
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IMPORTS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
# Standard library imports
from collections import *
import warnings
# Third party imports
import numpy as np
import pandas as pd
import pysam as ps
# Local lib import
from pycoQC.common import *
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~GLOBAL SETTINGS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
# Silence futurewarnings
warnings.filterwarnings("ignore", category=FutureWarning)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~MAIN CLASS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
class pycoQC_parse ():
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~INIT METHOD~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
def __init__ (self,
summary_file:str,
barcode_file:str="",
bam_file:str="",
runid_list:list=[],
filter_calibration:bool=False,
filter_duplicated:bool=False,
min_barcode_percent:float=0.1,
cleanup:bool=True,
verbose:bool=False,
quiet:bool=False):
"""
Parse Albacore sequencing_summary.txt file and clean-up the data
* summary_file
Path to the sequencing_summary generated by Albacore 1.0.0 + (read_fast5_basecaller.py) / Guppy 2.1.3+ (guppy_basecaller).
One can also pass multiple space separated file paths or a UNIX style regex matching multiple files
* barcode_file
Path to the barcode_file generated by Guppy 2.1.3+ (guppy_barcoder) or Deepbinner 0.2.0+. This is not a required file.
One can also pass multiple space separated file paths or a UNIX style regex matching multiple files
* bam_file
Path to a Bam file corresponding to reads in the summary_file. Preferably aligned with Minimap2
One can also pass multiple space separated file paths or a UNIX style regex matching multiple files
* runid_list
Select only specific runids to be analysed. Can also be used to force pycoQC to order the runids for
temporal plots, if the sequencing_summary file contain several sucessive runs. By default pycoQC analyses
all the runids in the file and uses the runid order as defined in the file.
* filter_calibration
If True read flagged as calibration strand by the software are removed
* filter_duplicated
If True duplicated read_ids are removed but the first occurence is kept (Guppy sometimes outputs the same read multiple times)
* min_barcode_percent
Minimal percent of total reads to retain barcode label. If below the barcode value is set as `unclassified`.
"""
# Set logging level
self.logger = get_logger(name=__name__, verbose=verbose, quiet=quiet)
# Save self variables
self.runid_list = runid_list
self.filter_calibration = filter_calibration
self.filter_duplicated = filter_duplicated
self.min_barcode_percent = min_barcode_percent
self.cleanup = cleanup
# Init object counter
self.counter = OrderedDict()
# Check input files
self.logger.warning ("Check input data files")
# Expand file names and test readability
self.summary_files_list = expand_file_names(summary_file)
self.logger.debug ("\t\tSequencing summary files found: {}".format(" ".join(self.summary_files_list)))
self.counter["Summary files found"] = len(self.summary_files_list)
if barcode_file:
self.barcode_files_list = expand_file_names(barcode_file)
self.logger.debug ("\t\tBarcode files found: {}".format(" ".join(self.barcode_files_list)))
self.counter["Barcode files found"] = len(self.barcode_files_list)
else:
self.barcode_files_list =[]
if bam_file:
self.bam_file_list = expand_file_names(bam_file, bam_check=True)
self.logger.debug ("\t\tBam files found: {}".format(" ".join(self.bam_file_list)))
self.counter["Bam files found"] = len(self.bam_file_list)
else:
self.bam_file_list =[]
self.logger.warning ("Parse data files")
summary_reads_df = self._parse_summary()
barcode_reads_df = self._parse_barcode()
bam_reads_df, self.alignments_df, self.ref_len_dict = self._parse_bam()
self.logger.warning ("Merge data")
self.reads_df = self._merge_reads_df(summary_reads_df, barcode_reads_df, bam_reads_df)
# Cleanup data
if self.cleanup:
self.logger.warning("Cleaning data")
self.reads_df = self._clean_reads_df(self.reads_df)
def __str__(self):
return dict_to_str(self.counter)
def __repr__(self):
return "[{}]\n".format(self.__class__.__name__)
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~PRIVATE METHODS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~#
def _parse_summary (self):
""""""
self.logger.debug ("\tParse summary files")
df = merge_files_to_df (self.summary_files_list)
if self.cleanup:
# Standardise col names for all types of files
self.logger.debug ("\tRename summary sequencing columns")
rename_colmanes = {
"sequence_length_template":"read_len",
"sequence_length_2d":"read_len",
"sequence_length":"read_len",
"mean_qscore_template":"mean_qscore",
"mean_qscore_2d":"mean_qscore",
"calibration_strand_genome_template":"calibration",
"barcode_arrangement":"barcode"}
df = df.rename(columns=rename_colmanes)
# Verify the required and optional columns, Drop unused fields
self.logger.debug ("\tVerifying fields and discarding unused columns")
df = self._select_df_columns (
df = df,
required_colnames = ["read_id", "run_id", "channel", "start_time", "read_len", "mean_qscore"],
optional_colnames = ["calibration", "barcode"])
# Collect stats
n = len(df)
self.logger.debug ("\t\t{:,} reads found in initial file".format(n))
self.counter["Initial reads"] = n
return df
def _parse_barcode (self):
""""""
if not self.barcode_files_list:
return pd.DataFrame()
self.logger.debug ("\tParse barcode files")
df = merge_files_to_df (self.barcode_files_list)
# check presence of barcode details
if "read_id" in df and "barcode_arrangement" in df:
self.logger.debug ("\t\tFound valid Guppy barcode file")
df = df [["read_id", "barcode_arrangement"]]
df = df.rename(columns={"barcode_arrangement":"barcode"})
elif "read_ID" in df and "barcode_call" in df:
self.logger.debug ("\t\tFound valid Deepbinner barcode file")
df = df [["read_ID", "barcode_call"]]
df = df.rename(columns={"read_ID":"read_id", "barcode_call":"barcode"})
df['barcode'].replace("none", "unclassified", inplace=True)
else:
raise pycoQCError ("File {} does not contain required barcode information".format(fp))
n = len(df[df['barcode']!="unclassified"])
self.logger.debug ("\t\t{:,} reads with barcodes assigned".format(n))
self.counter["Reads with barcodes"] = n
return df
def _parse_bam (self):
""""""
if not self.bam_file_list:
return (pd.DataFrame(), pd.DataFrame(), OrderedDict())
# Init collections
ref_len_dict = OrderedDict()
alignments_dict = Counter()
read_dict = OrderedDict ()
for bam_fn in self.bam_file_list:
with ps.AlignmentFile(bam_fn, "rb") as bam:
# Save reference lengths information
for ref_id, ref_len in zip(bam.references, bam.lengths):
if not ref_id in ref_len_dict:
ref_len_dict[ref_id] = ref_len
# Parse reads
for read in bam:
if read.is_unmapped:
alignments_dict["Unmapped"]+=1
elif read.is_secondary:
alignments_dict["Secondary"]+=1
elif read.is_supplementary:
alignments_dict["Suplementary"]+=1
elif read.query_name in read_dict:
alignments_dict["Duplicated"]+=1
else:
alignments_dict["Primary"]+=1
read_dict[read.query_name] = self._get_read_stats(read)
# Convert aligments_dict to df
if alignments_dict:
alignments_df = pd.DataFrame.from_dict(alignments_dict, orient="index")
alignments_df.reset_index(inplace=True)
alignments_df.columns=["Alignments", "Counts"]
alignments_df["Percents"] = (alignments_df["Counts"]/alignments_df["Counts"].sum()*100).round(2)
else:
alignments_df = pd.DataFrame()
# Convert read_dict to df
if read_dict:
read_df = pd.DataFrame.from_dict(read_dict, orient="index")
read_df.index.name="read_id"
read_df.reset_index(inplace=True)
else:
read_df = pd.DataFrame()
return (read_df, alignments_df, ref_len_dict)
def _merge_reads_df(self, summary_reads_df, barcode_reads_df, bam_reads_df):
""""""
df = summary_reads_df
# Merge df and fill in missing barcode values
if not barcode_reads_df.empty:
df = pd.merge(df, barcode_reads_df, on="read_id", how="left")
df['barcode'].fillna('unclassified', inplace=True)
# Merge df and fill in missing barcode values
if not bam_reads_df.empty:
df = pd.merge(df, bam_reads_df, on="read_id", how="left")
return df
def _clean_reads_df (self, df):
""""""
# Drop lines containing NA values
self.logger.info ("\tDiscarding lines containing NA values")
l = len(df)
df = df.dropna(subset=["read_id", "run_id", "channel", "start_time", "read_len", "mean_qscore"])
n=l-len(df)
self.logger.info ("\t\t{:,} reads discarded".format(n))
self.counter["Reads with NA values discarded"] = n
if len(df) <= 1:
raise pycoQCError("No valid read left after NA values filtering")
# Filter out zero length reads
self.logger.info ("\tFiltering out zero length reads")
l = len(df)
df = df[(df["read_len"] > 0)]
n=l-len(df)
self.logger.info ("\t\t{:,} reads discarded".format(n))
self.counter["Zero length reads discarded"] = n
if len(df) <= 1:
raise pycoQCError("No valid read left after zero_len filtering")
# Filter out reads with duplicated read_id
if self.filter_duplicated:
self.logger.info ("\tFiltering out duplicated reads")
l = len(df)
df = df[~df.duplicated(subset="read_id", keep='first')]
n=l-len(df)
self.logger.info ("\t\t{:,} reads discarded".format(n))
self.counter["Duplicated reads discarded"] = n
if len(df) <= 1:
raise pycoQCError("No valid read left after calibration strand filtering")
# Filter out calibration strand reads if the "calibration_strand_genome_template" field is available
if self.filter_calibration and "calibration" in df:
self.logger.info ("\tFiltering out calibration strand reads")
l = len(df)
df = df[(df["calibration"].isin(["filtered_out", "no_match", "*"]))]
n=l-len(df)
self.logger.info ("\t\t{:,} reads discarded".format(n))
self.counter["Calibration reads discarded"] = n
if len(df) <= 1:
raise pycoQCError("No valid read left after calibration strand filtering")
# Filter and reorder based on runid_list list if passed by user
if self.runid_list:
self.logger.info ("\tSelecting run_ids passed by user")
l = len(df)
df = df[(df["run_id"].isin(self.runid_list))]
n=l-len(df)
self.logger.debug ("\t\t{:,} reads discarded".format(n))
self.counter["Excluded runid reads discarded"] = n
if len(df) <= 1:
raise pycoQCError("No valid read left after run ID filtering")
runid_list = self.runid_list
# Else sort the runids by output per time assuming that the throughput decreases over time
else:
self.logger.info ("\tSorting run IDs by decreasing throughput")
d = {}
for run_id, sdf in df.groupby("run_id"):
d[run_id] = len(sdf)/np.ptp(sdf["start_time"])
runid_list = [i for i, j in sorted (d.items(), key=lambda t: t[1], reverse=True)]
self.logger.info ("\t\tRun-id order {}".format(runid_list))
# Modify start time per run ids to order them following the runid_list
self.logger.info ("\tReordering runids")
increment_time = 0
runid_start = OrderedDict()
for runid in runid_list:
self.logger.info ("\t\tProcessing reads with Run_ID {} / time offset: {}".format(runid, increment_time))
max_val = df['start_time'][df["run_id"] == runid].max()
df.loc[df["run_id"] == runid, 'start_time'] += increment_time
runid_start[runid] = increment_time
increment_time += max_val+1
df = df.sort_values ("start_time")
# Unset low frequency barcodes
if "barcode" in df and self.min_barcode_percent:
self.logger.info ("\tCleaning up low frequency barcodes")
l = (df["barcode"]=="unclassified").sum()
barcode_counts = df["barcode"][df["barcode"]!="unclassified"].value_counts()
cutoff = int(barcode_counts.sum()*self.min_barcode_percent/100)
low_barcode = barcode_counts[barcode_counts<cutoff].index
df.loc[df["barcode"].isin(low_barcode), "barcode"] = "unclassified"
n= int((df["barcode"]=="unclassified").sum()-l)
self.logger.info ("\t\t{:,} reads with low frequency barcode unset".format(n))
self.counter["Reads with low frequency barcode unset"] = n
# Cast values to required types
self.logger.info ("\tCast value to appropriate type")
df = df.astype({'channel':"uint16","start_time":"float32","read_len":"uint32","mean_qscore":"float32"})
# Reindex final df
self.logger.info ("\tReindexing dataframe by read_ids")
df = df.reset_index (drop=True)
df = df.set_index ("read_id")
self.logger.info ("\t\t{:,} Final valid reads".format(len(df)))
# Save final df
self.counter["Valid reads"] = len(df)
if len(df) < 500:
self.logger.warning ("WARNING: Low number of reads found. This is likely to lead to errors when trying to generate plots")
return df
def _get_read_stats(self, read):
""""""
d = OrderedDict()
# Extract general stats
d["ref_id"] = read.reference_name
d["ref_start"] = read.reference_start
d["ref_end"] = read.reference_end
d["align_len"] = read.query_alignment_length
d["mapq"] = read.mapping_quality
# Extract indel and soft_clip from cigar
c_stat = read.get_cigar_stats()[0]
d["insertion"] = c_stat[1]
d["deletion"] = c_stat[2]
d["soft_clip"] = c_stat[4]
# Compute alignment score from NM field if available
if read.has_tag("NM"):
edit_dist = read.get_tag("NM")
d["mismatch"] = edit_dist-(d["deletion"]+d["insertion"])
try:
d["identity_freq"] = (d["align_len"]-edit_dist)/d["align_len"]
except ZeroDivisionError:
d["identity_freq"] = 0
# If not NM try to compute score from MD field
elif read.has_tag("MD"):
md_err = 0
for i in read.get_tag("MD"):
if i in ["A","T","C","G","a","t","c","g"]:
md_err += 1
d["mismatch"] = md_err-d["deletion"]
edit_dist = d["mismatch"]+d["insertion"]+d["deletion"]
try:
d["identity_freq"] = (d["align_len"]-edit_dist)/d["align_len"]
except ZeroDivisionError:
d["identity_freq"] = 0
return d
def _select_df_columns(self, df, required_colnames, optional_colnames):
""""""
col_found = []
# Verify the presence of the columns required for pycoQC
for col in required_colnames:
if col in df:
col_found.append(col)
else:
raise pycoQCError("Column {} not found in the provided sequence_summary file".format(col))
for col in optional_colnames:
if col in df:
col_found.append(col)
return df[col_found]
|