1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
\section{Implemented model functions}
\label{sec:imple}
This is an overview of all the model functions that are implemented in \textit{PyCorrFit}. To each model a unique model ID is assigned. Most of the following information is also accessible from within \textit{PyCorrFit} using the \textit{Page info} tool.
\subsection{Confocal FCS}
\label{sec:imple.confo}
% 2D diffusion
%\noindent \begin{tabular}{lp{.7\textwidth}}
%Name & \textbf{2D (Gauß)} \\
%ID & \textbf{6001} \\
%Descr. & Two-dimensional diffusion with a Gaussian laser profile\cite{Aragon1976, Qian1991, Rigler1993}. \\
%\end{tabular}
%\begin{align}
%G(\tau) = A_0 + \frac{1}{N} \frac{1}{(1+\tau/\tau_\mathrm{diff})}
%\end{align}
%\begin{center}
%\begin{tabular}{ll}
%$A_0$ & Offset \\
%$N$ & Effective number of particles in confocal area \\
%$\tau_\mathrm{diff}$ & Characteristic residence time in confocal area \\
%\end{tabular} \\
%\end{center}
%\vspace{2em}
% 3D diffusion
%\noindent \begin{tabular}{lp{.7\textwidth}}
%Name & \textbf{3D (Gauß)} \\
%ID & \textbf{6012} \\
%Descr. & Three-dimensional free diffusion with a Gaussian laser profile (eliptical)\cite{Aragon1976, Qian1991, Rigler1993}. \\
%\end{tabular}
%\begin{align}
%G(\tau) = A_0 + \frac{1}{N} \frac{1}{(1+\tau/\tau_\mathrm{diff})} \frac{1}{\sqrt{1+\tau/(\mathit{SP}^2 \tau_\mathrm{diff})}}
%\end{align}
%\begin{center}
%\begin{tabular}{ll}
%$A_0$ & Offset \\
%$N$ & Effective number of particles in confocal volume \\
%$\tau_\mathrm{diff}$ & Characteristic residence time in confocal volume \\
%$\mathit{SP}$ & Structural parameter, describes elongation of the confocal volume \\
%\end{tabular}
%\end{center}
%\vspace{2em}
% 3D diffusion + triplet
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{Confocal (Gaussian) T+3D} \\
ID & \textbf{6011} \\
Descr. & Three-dimensional free diffusion with a Gaussian laser profile (eliptical), including a triplet component\cite{Widengren1994, Widengren1995, Haupts1998}. \\
\end{tabular}
\begin{align}
G(\tau) = A_0 + \frac{1}{n} \frac{1}{(1+\tau/\tau_\mathrm{diff})} \frac{1}{\sqrt{1+\tau/(\mathit{SP}^2 \tau_\mathrm{ diff})}} \left(1 + \frac{T e^{-\tau/\tau_\mathrm{trip}}}{1-T} \right)
\end{align}
\begin{center}
\begin{tabular}{ll}
$A_0$ & Offset \\
$n$ & Effective number of particles in confocal volume \\
$\tau_\mathrm{diff}$ & Characteristic residence time in confocal volume \\
$\mathit{SP}$ & Structural parameter, describes elongation of the confocal volume \\
$T$ & Fraction of particles in triplet (non-fluorescent) state\\
$\tau_\mathrm{trip}$ & Characteristic residence time in triplet \\
\end{tabular}
\end{center}
\vspace{2em}
% 3D+3D diffusion + triplett
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{Confocal (Gaussian) T+3D+3D} \\
ID & \textbf{6030} \\
Descr. & Two-component three-dimensional free diffusion with a Gaussian laser profile, including a triplet component\cite{Elson1974, Aragon1976, Palmer1987}. \\
\end{tabular}
\begin{align}
G(\tau) &= A_0 + \frac{1}{n (F + \alpha (1-F))²} \left(1 + \frac{T e^{-\tau/\tau_\mathrm{trip}}}{1-T} \right) \times \\
\notag &\times \left[ \frac{F}{(1+\tau/\tau_1)} \frac{1}{\sqrt{1+\tau/(\mathit{SP}^2 \tau_1)}} + \alpha^2 \frac{1-F}{ (1+\tau/\tau_2) } \frac{1}{\sqrt{1+\tau/(\mathit{SP}^2 \tau_2)}} \right]
\end{align}
\begin{center}
\begin{tabular}{ll}
$A_0$ & Offset \\
$n$ & Effective number of particles in confocal volume ($n = n_1+n_2$) \\
$\tau_1$ & Diffusion time of particle species 1 \\
$\tau_2$ & Diffusion time of particle species 2 \\
$F$ & Fraction of molecules of species 1 ($n_1 = F n$) \\
$\alpha$ & Relative molecular brightness of particles 1 and 2 ($ \alpha = q_2/q_1$) \\
$\mathit{SP}$ & Structural parameter, describes elongation of the confocal volume \\
$T$ & Fraction of particles in triplet (non-fluorescent) state\\
$\tau_\mathrm{trip}$ & Characteristic residence time in triplet state \\
\end{tabular}
\end{center}
\vspace{2em}
% 2D diffusion + triplett
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{Confocal (Gaussian) T+2D} \\
ID & \textbf{6002} \\
Descr. & Two-dimensional diffusion with a Gaussian laser profile, including a triplet component\cite{Aragon1976, Qian1991, Rigler1993,Widengren1994, Widengren1995, Haupts1998}. \\
\end{tabular}
\begin{align}
G(\tau) = A_0 + \frac{1}{n} \frac{1}{(1+\tau/\tau_\mathrm{diff})} \left(1 + \frac{T e^{-\tau/\tau_\mathrm{trip}}}{1-T} \right)
\end{align}
\begin{center}
\begin{tabular}{ll}
$A_0$ & Offset \\
$n$ & Effective number of particles in confocal area \\
$\tau_\mathrm{diff}$ & Characteristic residence time in confocal area \\
$T$ & Fraction of particles in triplet (non-fluorescent) state\\
$\tau_\mathrm{trip}$ & Characteristic residence time in triplet state \\
\end{tabular}
\end{center}
\vspace{2em}
% 2D+2D diffusion + triplett
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{Confocal (Gaussian) T+2D+2D} \\
ID & \textbf{6031} \\
Descr. & Two-component, two-dimensional diffusion with a Gaussian laser profile, including a triplet component\cite{Elson1974, Aragon1976, Palmer1987}. \\
\end{tabular}
\begin{align}
G(\tau) = A_0 + \frac{1}{n (F + \alpha (1-F))²} \left[ \frac{F}{1+\tau/\tau_1} + \alpha^2 \frac{1-F}{ 1+\tau/\tau_2 } \right] \left(1 + \frac{T e^{-\tau/\tau_\mathrm{trip}}}{1-T} \right)
\end{align}
\begin{center}
\begin{tabular}{ll}
$A_0$ & Offset \\
$n$ & Effective number of particles in confocal area ($n = n_1+n_2$) \\
$\tau_1$ & Diffusion time of particle species 1 \\
$\tau_2$ & Diffusion time of particle species 2 \\
$F$ & Fraction of molecules of species 1 ($n_1 = F n$) \\
$\alpha$ & Relative molecular brightness of particles 1 and 2 ($ \alpha = q_2/q_1$) \\
$T$ & Fraction of particles in triplet (non-fluorescent) state\\
$\tau_\mathrm{trip}$ & Characteristic residence time in triplet state \\
\end{tabular}
\end{center}
\vspace{2em}
% 3D+2D diffusion + triplett
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{Confocal (Gaussian) T+3D+2D} \\
ID & \textbf{6032} \\
Descr. & Two-component, two- and three-dimensional diffusion with a Gaussian laser profile, including a triplet component\cite{Elson1974, Aragon1976, Palmer1987}. \\
\end{tabular}
\begin{align}
G(\tau) = A_0 + \frac{1}{n (1 - F + \alpha F)²} \left[ \frac{1-F}{1+\tau/\tau_\mathrm{2D}} + \frac{ \alpha^2 F}{ (1+\tau/\tau_\mathrm{3D}) } \frac{1}{\sqrt{1+\tau/(\mathit{SP}^2 \tau_\mathrm{3D})}} \right] \left(1 + \frac{T e^{-\tau/\tau_\mathrm{trip}}}{1-T} \right)
\end{align}
\begin{center}
\begin{tabular}{ll}
$A_0$ & Offset \\
$n$ & Effective number of particles in confocal volume ($n = n_\mathrm{2D}+n_\mathrm{3D}$) \\
$\tau_\mathrm{2D}$ & Diffusion time of surface bound particles \\
$\tau_\mathrm{3D}$ & Diffusion time of freely diffusing particles \\
$F$ & Fraction of molecules of the freely diffusing species ($n_\mathrm{3D} = F n$) \\
$\alpha$ & Relative molecular brightness of particle species ($ \alpha = q_\mathrm{3D}/q_\mathrm{2D}$) \\
$\mathit{SP}$ & Structural parameter, describes elongation of the confocal volume \\
$T$ & Fraction of particles in triplet (non-fluorescent) state\\
$\tau_\mathrm{trip}$ & Characteristic residence time in triplet state \\
\end{tabular}
\end{center}
\vspace{2em}
% 3D+3D diffusion + T+T
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{Confocal (Gaussian) T+T+3D+3D} \\
ID & \textbf{6043} \\
Descr. & Two-component three-dimensional free diffusion with a Gaussian laser profile, including two triplet components.
The correlation function is a superposition of three-dimensional model functions of the type \textbf{T+3D} (6011).
\end{tabular}
\vspace{2em}
\subsection{TIR-FCS}
\label{sec:imple.tirfc}
The model functions make use of the Faddeeva function (complex error function)\footnote{In user-defined model functions (\hyref{Section}{sec:hacke.extmod}), the Faddeeva function is accessible through \texttt{wofz()}. For convenience, the function \texttt{wixi()} can be used which only takes $\xi$ as an argument and the imaginary $i$ can be omitted.}:
\begin{align}
w\!(i\xi) &= e^{\xi^2} \mathrm{erfc}(\xi) \\
\notag &= e^{\xi^2} \cdot \frac{2}{\sqrt{\pi}} \int_\xi^\infty \mathrm{e}^{-\alpha^2} \mathrm{d\alpha} \label{eq:faddeeva}
\end{align}
The lateral detection area has the same shape as in confocal FCS. Thus, correlation functions for two-dimensional diffusion of the confocal case apply and are not mentioned here.
\subsubsection{TIR-FCS with Gaussian-shaped lateral detection volume}
% 3D diffusion (Gauß/exp)
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{TIR (Gaussian/Exp.) T+3D} \\
ID & \textbf{6014} \\
Descr. & Three-dimensional free diffusion with a Gaussian lateral detection profile and an exponentially decaying profile in axial direction, including a triplet component\cite{Starr2001, Hassler2005, Ohsugi2006}. \\
\end{tabular}
\begin{align}
G(\tau) = \frac{1}{C} \frac{ \kappa^2}{ \pi (R_0^2 +4D\tau)} \left(1 + \frac{T e^{-\tau/\tau_\mathrm{trip}}}{1-T} \right)
\left( \sqrt{\frac{D \tau}{\pi}} + \frac{1 - 2 D \tau \kappa^2}{2 \kappa} w\!\left(i \sqrt{D \tau} \kappa\right) \right)
\end{align}
\begin{center}
\begin{tabular}{ll}
$C$ & Particle concentration in confocal volume \\
$\kappa$ & Evanescent decay constant ($\kappa = 1/d_\mathrm{eva}$)\\
$R_0$ & Lateral extent of the detection volume \\
$D$ & Diffusion coefficient \\
$T$ & Fraction of particles in triplet (non-fluorescent) state\\
$\tau_\mathrm{trip}$ & Characteristic residence time in triplet state \\
\end{tabular}
\end{center}
\vspace{2em}
% 3D+3D+T diffusion (Gauß/exp)
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{TIR (Gaussian/Exp.) T+3D+3D} \\
ID & \textbf{6034} \\
Descr. & Two-component three-dimensional diffusion with a Gaussian lateral detection profile and an exponentially decaying profile in axial direction, including a triplet component\cite{Starr2001, Hassler2005, Ohsugi2006}. \\
\end{tabular}
\begin{align}
G(\tau) = &A_0 + \frac{1}{n (1-F + \alpha F)^2} \left(1 + \frac{T e^{-\tau/\tau_\mathrm{trip}}}{1-T} \right) \times \\
\notag \times \Bigg[ \,\, &
\frac{F \kappa}{1+ 4 D_1 \tau/R_0^2}
\left( \sqrt{\frac{D_1 \tau}{\pi}} + \frac{1 - 2 D_1 \tau \kappa^2}{2 \kappa} w\!\left(i \sqrt{D_1 \tau} \kappa\right) \right) + \\
\notag + &
\frac{(1-F) \alpha^2 \kappa}{1+ 4 D_2 \tau/R_0^2}
\left( \sqrt{\frac{D_2 \tau}{\pi}} + \frac{1 - 2 D_2 \tau \kappa^2}{2 \kappa} w\!\left(i \sqrt{D_2 \tau} \kappa\right) \right) \,\, \Bigg]
\end{align}
\begin{center}
\begin{tabular}{ll}
$A_0$ & Offset \\
$n$ & Effective number of particles in confocal volume ($n = n_1+n_2$) \\
$D_1$ & Diffusion coefficient of species 1 \\
$D_2$ & Diffusion coefficient of species 2 \\
$F$ & Fraction of molecules of species 1 ($n_1 = F n$) \\
$\alpha$ & Relative molecular brightness of particle species ($ \alpha = q_2/q_1$) \\
$R_0$ & Lateral extent of the detection volume \\
$\kappa$ & Evanescent decay constant ($\kappa = 1/d_\mathrm{eva}$)\\
$T$ & Fraction of particles in triplet (non-fluorescent) state\\
$\tau_\mathrm{trip}$ & Characteristic residence time in triplet state \\
\end{tabular}
\end{center}
\vspace{2em}
% 2D+3D+T diffusion (Gauß/exp)
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{TIR (Gaussian/Exp.) T+3D+2D} \\
ID & \textbf{6033} \\
Descr. & Two-component, two- and three-dimensional diffusion with a Gaussian lateral detection profile and an exponentially decaying profile in axial direction, including a triplet component\cite{Starr2001, Hassler2005, Ohsugi2006}. \\
\end{tabular}
\begin{align}
G(\tau) &= A_0 + \frac{1}{n (1-F + \alpha F)^2} \left(1 + \frac{T e^{-\tau/\tau_\mathrm{trip}}}{1-T} \right) \times \\
& \notag \times \left[
\frac{1-F}{1+ 4 D_\mathrm{2D} \tau/R_0^2} +
\frac{\alpha^2 F \kappa}{1+ 4 D_\mathrm{3D} \tau/R_0^2}
\left( \sqrt{\frac{D_\mathrm{3D} \tau}{\pi}} + \frac{1 - 2 D_\mathrm{3D} \tau \kappa^2}{2 \kappa} w\!\left(i \sqrt{D_\mathrm{3D} \tau} \kappa\right) \right) \right]
\end{align}
\begin{center}
\begin{tabular}{ll}
$A_0$ & Offset \\
$n$ & Effective number of particles in confocal volume ($n = n_\mathrm{2D}+n_\mathrm{3D}$) \\
$D_\mathrm{2D}$ & Diffusion coefficient of surface bound particles \\
$D_\mathrm{3D}$ & Diffusion coefficient of freely diffusing particles \\
$F$ & Fraction of molecules of the freely diffusing species ($n_\mathrm{3D} = F n$) \\
$\alpha$ & Relative molecular brightness of particle species ($ \alpha = q_\mathrm{3D}/q_\mathrm{2D}$) \\
$R_0$ & Lateral extent of the detection volume \\
$\kappa$ & Evanescent decay constant ($\kappa = 1/d_\mathrm{eva}$)\\
$T$ & Fraction of particles in triplet (non-fluorescent) state\\
$\tau_\mathrm{trip}$ & Characteristic residence time in triplet state \\
\end{tabular}
\end{center}
\vspace{2em}
\subsubsection{TIR-FCS with a square-shaped lateral detection volume}
% 3D TIRF diffusion (□xσ)
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{TIR ($\Box{}x\sigma$/Exp.) 3D} \\
ID & \textbf{6010} \\
Descr. & Three-dimensional diffusion with a square-shaped lateral detection area taking into account the size of the point spread function; and an exponential decaying profile in axial direction\cite{Ries2008, Yordanov2011}. \\
\end{tabular}
\begin{align}
G(\tau) = \frac{\kappa^2}{C} &
\left( \sqrt{\frac{D \tau}{\pi}} + \frac{1 - 2 D \tau \kappa^2)}{2 \kappa} w\!\left(i \sqrt{D \tau} \kappa\right) \right) \times \\
\notag \times \Bigg[ & \frac{2 \sqrt{\sigma^2+D \tau}}{\sqrt{\pi} a^2}
\left( \exp\left(-\frac{a^2}{4(\sigma^2+D \tau)}\right) - 1 \right) +
\frac{1}{a} \, \mathrm{erf}\left(\frac{a}{2 \sqrt{\sigma^2+D \tau}}\right) \Bigg]^2
\end{align}
\begin{center}
\begin{tabular}{ll}
$C$ & Particle concentration in detection volume \\
$\sigma$ & Lateral size of the point spread function \\
$a$ & Side size of the square-shaped detection area \\
$\kappa$ & Evanescent decay constant ($\kappa = 1/d_\mathrm{eva}$)\\
$D$ & Diffusion coefficient \\
\end{tabular} \\
\end{center}
\vspace{2em}
% 3D+3D TIRF diffusion (□xσ)
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{TIR ($\Box{}x\sigma$/Exp.) 3D+3D} \\
ID & \textbf{6023} \\
Descr. & Two-component three-dimensional free diffusion with a square-shaped lateral detection area taking into account the size of the point spread function; and an exponential decaying profile in axial direction. \newline
The correlation function is a superposition of three-dimensional model functions of the type \textbf{3D ($\Box{}x\sigma$)} (6010)\cite{Ries2008, Yordanov2011}. \\
\end{tabular}
\vspace{2em}
% 2D TIRF diffusion (□xσ)
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{TIR ($\Box{}x\sigma$) 2D} \\
ID & \textbf{6000} \\
Descr. & Two-dimensional diffusion with a square-shaped lateral detection area taking into account the size of the point spread function\cite{Ries2008, Yordanov2011}\footnote{The reader is made aware, that reference \cite{Ries2008} contains several unfortunate misprints.}. \\
\end{tabular}
\begin{align}
G(\tau) = \frac{1}{C} \left[
\frac{2 \sqrt{\sigma^2+D \tau}}{\sqrt{\pi} a^2}
\left( \exp\left(-\frac{a^2}{4(\sigma^2+D \tau)}\right) - 1 \right) +
\frac{1}{a} \, \mathrm{erf}\left(\frac{a}{2 \sqrt{\sigma^2+D \tau}}\right)
\right]^2
\end{align}
\begin{center}
\begin{tabular}{ll}
$C$ & Particle concentration in detection area \\
$\sigma$ & Lateral size of the point spread function \\
$a$ & Side size of the square-shaped detection area \\
$D$ & Diffusion coefficient \\
\end{tabular} \\
\end{center}
\vspace{2em}
% 2D+2D TIRF diffusion (□xσ)
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{TIR ($\Box{}x\sigma$) 2D+2D} \\
ID & \textbf{6022} \\
Descr. & Two-component two-dimensional diffusion with a square-shaped lateral detection area taking into account the size of the point spread function. \newline
The correlation function is a superposition of two-dimensional model functions of the type \textbf{2D ($\Box{}x\sigma$)} (6000)\cite{Ries2008, Yordanov2011}. \\
\end{tabular}
\vspace{2em}
% 3D+2D TIRF diffusion (□xσ)
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{TIR ($\Box{}x\sigma$/Exp.) 3D+2D} \\
ID & \textbf{6020} \\
Descr. & Two-component two- and three-dimensional diffusion with a square-shaped lateral detection area taking into account the size of the point spread function; and an exponential decaying profile in axial direction. \newline
The correlation function is a superposition of the two-dimensional model function \textbf{2D ($\Box{}x\sigma$)} (6000) and the three-dimensional model function \textbf{3D ($\Box{}x\sigma$)} (6010)\cite{Ries2008, Yordanov2011}.
\end{tabular}
\vspace{2em}
% 3D+2D+kin TIRF diffusion (□xσ)
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{TIR ($\Box{}x\sigma$/Exp.) 3D+2D+kin} \\
ID & \textbf{6021} \\
Descr. & Two-component two- and three-dimensional diffusion with a square-shaped lateral detection area taking into account the size of the point spread function; and an exponential decaying profile in axial direction. This model covers binding and unbinding kintetics. \newline
The correlation function for this model was introduced in \cite{Ries2008}. Because approximations are made in the derivation, please verify if this model is applicable to your problem before using it.
\end{tabular}
|