File: PyCorrFit_doc_models.tex

package info (click to toggle)
pycorrfit 1.1.7%2Bnopack-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,652 kB
  • sloc: python: 15,100; makefile: 58; sh: 13
file content (373 lines) | stat: -rw-r--r-- 17,452 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
\section{Implemented model functions}
\label{sec:imple}
This is an overview of all the model functions that are  implemented in \textit{PyCorrFit}. To each model a unique model ID is assigned. Most of the following information is also accessible from within \textit{PyCorrFit} using the \textit{Page info} tool.

\subsection{Confocal FCS}
\label{sec:imple.confo}

% 2D diffusion
%\noindent \begin{tabular}{lp{.7\textwidth}}
%Name & \textbf{2D (Gauß)} \\ 
%ID & \textbf{6001} \\ 
%Descr. &  Two-dimensional diffusion with a Gaussian laser profile\cite{Aragon1976, Qian1991, Rigler1993}. \\ 
%\end{tabular}
%\begin{align}
%G(\tau) = A_0 + \frac{1}{N} \frac{1}{(1+\tau/\tau_\mathrm{diff})}
%\end{align} 
%\begin{center}
%\begin{tabular}{ll}
%$A_0$ & Offset \\ 
%$N$ & Effective number of particles in confocal area \\ 
%$\tau_\mathrm{diff}$ &   Characteristic residence time in confocal area \\
%\end{tabular} \\
%\end{center}
%\vspace{2em}




% 3D diffusion
%\noindent \begin{tabular}{lp{.7\textwidth}}
%Name & \textbf{3D (Gauß)} \\ 
%ID & \textbf{6012} \\ 
%Descr. &  Three-dimensional free diffusion with a Gaussian laser profile (eliptical)\cite{Aragon1976, Qian1991, Rigler1993}. \\ 
%\end{tabular}
%\begin{align}
%G(\tau) = A_0 + \frac{1}{N} \frac{1}{(1+\tau/\tau_\mathrm{diff})} \frac{1}{\sqrt{1+\tau/(\mathit{SP}^2 \tau_\mathrm{diff})}}
%\end{align} 
%\begin{center}
%\begin{tabular}{ll}
%$A_0$ & Offset \\ 
%$N$ & Effective number of particles in confocal volume \\ 
%$\tau_\mathrm{diff}$ &  Characteristic residence time in confocal volume \\ 
%$\mathit{SP}$ & Structural parameter, describes elongation of the confocal volume \\
%\end{tabular}
%\end{center}
%\vspace{2em}


% 3D diffusion + triplet
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{Confocal (Gaussian) T+3D} \\ 
ID & \textbf{6011} \\ 
Descr. &  Three-dimensional free diffusion with a Gaussian laser profile (eliptical), including a triplet component\cite{Widengren1994, Widengren1995, Haupts1998}. \\ 
\end{tabular}
\begin{align}
G(\tau) = A_0 + \frac{1}{n} \frac{1}{(1+\tau/\tau_\mathrm{diff})} \frac{1}{\sqrt{1+\tau/(\mathit{SP}^2 \tau_\mathrm{ diff})}} \left(1 + \frac{T e^{-\tau/\tau_\mathrm{trip}}}{1-T}  \right)
\end{align} 
\begin{center}
\begin{tabular}{ll}
$A_0$ & Offset \\ 
$n$ & Effective number of particles in confocal volume \\ 
$\tau_\mathrm{diff}$ &  Characteristic residence time in confocal volume \\ 
$\mathit{SP}$ & Structural parameter, describes elongation of the confocal volume \\
$T$ &  Fraction of particles in triplet (non-fluorescent) state\\ 
$\tau_\mathrm{trip}$ &  Characteristic residence time in triplet \\
\end{tabular}
\end{center}
\vspace{2em}



% 3D+3D diffusion + triplett
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{Confocal (Gaussian) T+3D+3D} \\ 
ID & \textbf{6030} \\ 
Descr. &  Two-component three-dimensional free diffusion with a Gaussian laser profile, including a triplet component\cite{Elson1974, Aragon1976, Palmer1987}. \\ 
\end{tabular}
\begin{align}
G(\tau) &= A_0 + \frac{1}{n (F + \alpha (1-F))²}  \left(1 + \frac{T e^{-\tau/\tau_\mathrm{trip}}}{1-T}  \right)  \times \\
\notag &\times  \left[ \frac{F}{(1+\tau/\tau_1)}  \frac{1}{\sqrt{1+\tau/(\mathit{SP}^2 \tau_1)}} + \alpha^2 \frac{1-F}{ (1+\tau/\tau_2) }  \frac{1}{\sqrt{1+\tau/(\mathit{SP}^2 \tau_2)}} \right]
\end{align} 
\begin{center}
\begin{tabular}{ll}
$A_0$ & Offset \\ 
$n$ & Effective number of particles in confocal volume ($n = n_1+n_2$) \\ 
$\tau_1$ &  Diffusion time of particle species 1 \\ 
$\tau_2$ &  Diffusion time of particle species 2 \\ 
$F$ & Fraction of molecules of species 1 ($n_1 = F n$) \\
$\alpha$ & Relative molecular brightness of particles 1 and 2 ($ \alpha = q_2/q_1$) \\
$\mathit{SP}$ & Structural parameter, describes elongation of the confocal volume \\
$T$ &  Fraction of particles in triplet (non-fluorescent) state\\ 
$\tau_\mathrm{trip}$ &  Characteristic residence time in triplet state \\ 
\end{tabular}
\end{center}
\vspace{2em}



% 2D diffusion + triplett
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{Confocal (Gaussian) T+2D} \\ 
ID & \textbf{6002} \\ 
Descr. &  Two-dimensional diffusion with a Gaussian laser profile, including a triplet component\cite{Aragon1976, Qian1991, Rigler1993,Widengren1994, Widengren1995, Haupts1998}. \\ 
\end{tabular}
\begin{align}
G(\tau) = A_0 + \frac{1}{n} \frac{1}{(1+\tau/\tau_\mathrm{diff})}  \left(1 + \frac{T e^{-\tau/\tau_\mathrm{trip}}}{1-T}  \right)
\end{align} 
\begin{center}
\begin{tabular}{ll}
$A_0$ & Offset \\ 
$n$ & Effective number of particles in confocal area \\ 
$\tau_\mathrm{diff}$ &  Characteristic residence time in confocal area \\ 
$T$ &  Fraction of particles in triplet (non-fluorescent) state\\ 
$\tau_\mathrm{trip}$ &  Characteristic residence time in triplet state \\ 
\end{tabular}
\end{center}
\vspace{2em}



% 2D+2D diffusion + triplett
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{Confocal (Gaussian) T+2D+2D} \\ 
ID & \textbf{6031} \\ 
Descr. &  Two-component, two-dimensional diffusion with a Gaussian laser profile, including a triplet component\cite{Elson1974, Aragon1976, Palmer1987}. \\ 
\end{tabular}
\begin{align}
G(\tau) = A_0 + \frac{1}{n (F + \alpha (1-F))²} \left[ \frac{F}{1+\tau/\tau_1} + \alpha^2 \frac{1-F}{ 1+\tau/\tau_2 } \right] \left(1 + \frac{T e^{-\tau/\tau_\mathrm{trip}}}{1-T}  \right) 
\end{align} 
\begin{center}
\begin{tabular}{ll}
$A_0$ & Offset \\ 
$n$ & Effective number of particles in confocal area ($n = n_1+n_2$) \\ 
$\tau_1$ &  Diffusion time of particle species 1 \\ 
$\tau_2$ &  Diffusion time of particle species 2 \\ 
$F$ & Fraction of molecules of species 1 ($n_1 = F n$) \\
$\alpha$ & Relative molecular brightness of particles 1 and 2 ($ \alpha = q_2/q_1$) \\
$T$ &  Fraction of particles in triplet (non-fluorescent) state\\ 
$\tau_\mathrm{trip}$ &  Characteristic residence time in triplet state \\ 
\end{tabular}
\end{center}
\vspace{2em}



% 3D+2D diffusion + triplett
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{Confocal (Gaussian) T+3D+2D} \\ 
ID & \textbf{6032} \\ 
Descr. &  Two-component, two- and three-dimensional diffusion with a Gaussian laser profile, including a triplet component\cite{Elson1974, Aragon1976, Palmer1987}. \\ 
\end{tabular}
\begin{align}
G(\tau) = A_0 + \frac{1}{n (1 - F + \alpha F)²} \left[ \frac{1-F}{1+\tau/\tau_\mathrm{2D}} + \frac{ \alpha^2 F}{ (1+\tau/\tau_\mathrm{3D}) } \frac{1}{\sqrt{1+\tau/(\mathit{SP}^2 \tau_\mathrm{3D})}} \right] \left(1 + \frac{T e^{-\tau/\tau_\mathrm{trip}}}{1-T}  \right) 
\end{align} 
\begin{center}
\begin{tabular}{ll}
$A_0$ & Offset \\ 
$n$ & Effective number of particles in confocal volume ($n = n_\mathrm{2D}+n_\mathrm{3D}$) \\ 
$\tau_\mathrm{2D}$ &  Diffusion time of surface bound particles \\ 
$\tau_\mathrm{3D}$ &  Diffusion time of freely diffusing particles \\ 
$F$ & Fraction of molecules of the freely diffusing species ($n_\mathrm{3D} = F n$) \\
$\alpha$ & Relative molecular brightness of particle species ($ \alpha = q_\mathrm{3D}/q_\mathrm{2D}$) \\
$\mathit{SP}$ & Structural parameter, describes elongation of the confocal volume \\
$T$ &  Fraction of particles in triplet (non-fluorescent) state\\ 
$\tau_\mathrm{trip}$ &  Characteristic residence time in triplet state \\ 
\end{tabular}
\end{center}
\vspace{2em}


% 3D+3D diffusion + T+T
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{Confocal (Gaussian) T+T+3D+3D} \\ 
ID & \textbf{6043} \\ 
Descr. &  Two-component three-dimensional free diffusion with a Gaussian laser profile, including two triplet components. 
The correlation function is a superposition of three-dimensional model functions of the type \textbf{T+3D} (6011).
\end{tabular}
\vspace{2em}



\subsection{TIR-FCS}
\label{sec:imple.tirfc}
The model functions make use of the Faddeeva function (complex error function)\footnote{In user-defined model functions (\hyref{Section}{sec:hacke.extmod}), the Faddeeva function is accessible through \texttt{wofz()}. For convenience, the function \texttt{wixi()} can be used which only takes $\xi$ as an argument and the imaginary $i$ can be omitted.}:
\begin{align}
w\!(i\xi) &= e^{\xi^2} \mathrm{erfc}(\xi) \\
\notag &= e^{\xi^2} \cdot  \frac{2}{\sqrt{\pi}} \int_\xi^\infty \mathrm{e}^{-\alpha^2} \mathrm{d\alpha} \label{eq:faddeeva}
\end{align} 
The lateral detection area has the same shape as in confocal FCS. Thus, correlation functions for two-dimensional diffusion of the confocal case apply and are not mentioned here.

\subsubsection{TIR-FCS with Gaussian-shaped lateral detection volume}


% 3D diffusion (Gauß/exp)
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{TIR (Gaussian/Exp.) T+3D} \\ 
ID & \textbf{6014} \\ 
Descr. &  Three-dimensional free diffusion with a Gaussian lateral detection profile and an exponentially decaying profile in axial direction, including a triplet component\cite{Starr2001, Hassler2005, Ohsugi2006}. \\ 
\end{tabular}
\begin{align}
G(\tau) = \frac{1}{C}  \frac{ \kappa^2}{ \pi (R_0^2 +4D\tau)} \left(1 + \frac{T e^{-\tau/\tau_\mathrm{trip}}}{1-T}  \right)
 \left( \sqrt{\frac{D \tau}{\pi}} + \frac{1 - 2 D \tau \kappa^2}{2 \kappa}  w\!\left(i \sqrt{D \tau} \kappa\right) \right)
\end{align} 
\begin{center}
\begin{tabular}{ll}
$C$ & Particle concentration in confocal volume \\ 
$\kappa$ &  Evanescent decay constant ($\kappa = 1/d_\mathrm{eva}$)\\ 
$R_0$ & Lateral extent of the detection volume \\
$D$ & Diffusion coefficient  \\
$T$ &  Fraction of particles in triplet (non-fluorescent) state\\ 
$\tau_\mathrm{trip}$ &  Characteristic residence time in triplet state \\ 
\end{tabular}
\end{center}
\vspace{2em}


% 3D+3D+T diffusion (Gauß/exp)
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{TIR (Gaussian/Exp.) T+3D+3D} \\ 
ID & \textbf{6034} \\ 
Descr. &  Two-component three-dimensional diffusion with a Gaussian lateral detection profile and an exponentially decaying profile in axial direction, including a triplet component\cite{Starr2001, Hassler2005, Ohsugi2006}. \\
\end{tabular}
\begin{align}
G(\tau) = &A_0 + \frac{1}{n (1-F + \alpha F)^2} \left(1 + \frac{T e^{-\tau/\tau_\mathrm{trip}}}{1-T}  \right)  \times \\
\notag \times  \Bigg[ \,\, & 
\frac{F \kappa}{1+ 4 D_1 \tau/R_0^2} 
\left( \sqrt{\frac{D_1 \tau}{\pi}} + \frac{1 - 2 D_1 \tau \kappa^2}{2 \kappa}  w\!\left(i \sqrt{D_1 \tau} \kappa\right) \right) + \\
 \notag + &
\frac{(1-F) \alpha^2 \kappa}{1+ 4 D_2 \tau/R_0^2} 
\left( \sqrt{\frac{D_2 \tau}{\pi}} + \frac{1 - 2 D_2 \tau \kappa^2}{2 \kappa}  w\!\left(i \sqrt{D_2 \tau} \kappa\right) \right) \,\, \Bigg]
\end{align} 
\begin{center}
\begin{tabular}{ll}
$A_0$ & Offset \\ 
$n$ & Effective number of particles in confocal volume ($n = n_1+n_2$) \\ 
$D_1$ &  Diffusion coefficient of species 1 \\ 
$D_2$ &  Diffusion coefficient of species 2 \\ 
$F$ & Fraction of molecules of species 1 ($n_1 = F n$) \\
$\alpha$ & Relative molecular brightness of particle species ($ \alpha = q_2/q_1$) \\
$R_0$ & Lateral extent of the detection volume \\
$\kappa$ &  Evanescent decay constant ($\kappa = 1/d_\mathrm{eva}$)\\ 
$T$ &  Fraction of particles in triplet (non-fluorescent) state\\ 
$\tau_\mathrm{trip}$ &  Characteristic residence time in triplet state \\ 
\end{tabular}
\end{center}
\vspace{2em}




% 2D+3D+T diffusion (Gauß/exp)
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{TIR (Gaussian/Exp.) T+3D+2D} \\ 
ID & \textbf{6033} \\ 
Descr. &  Two-component, two- and three-dimensional diffusion with a Gaussian lateral detection profile and an exponentially decaying profile in axial direction, including a triplet component\cite{Starr2001, Hassler2005, Ohsugi2006}. \\ 
\end{tabular}
\begin{align}
G(\tau) &= A_0 + \frac{1}{n (1-F + \alpha F)^2} \left(1 + \frac{T e^{-\tau/\tau_\mathrm{trip}}}{1-T}  \right)  \times \\
& \notag \times  \left[
\frac{1-F}{1+ 4 D_\mathrm{2D} \tau/R_0^2} + 
\frac{\alpha^2 F \kappa}{1+ 4 D_\mathrm{3D} \tau/R_0^2} 
\left( \sqrt{\frac{D_\mathrm{3D} \tau}{\pi}} + \frac{1 - 2 D_\mathrm{3D} \tau \kappa^2}{2 \kappa}  w\!\left(i \sqrt{D_\mathrm{3D} \tau} \kappa\right) \right) \right]
\end{align} 
\begin{center}
\begin{tabular}{ll}
$A_0$ & Offset \\ 
$n$ & Effective number of particles in confocal volume ($n = n_\mathrm{2D}+n_\mathrm{3D}$) \\ 
$D_\mathrm{2D}$ &  Diffusion coefficient of surface bound particles \\ 
$D_\mathrm{3D}$ &  Diffusion coefficient of freely diffusing particles \\ 
$F$ & Fraction of molecules of the freely diffusing species ($n_\mathrm{3D} = F n$) \\
$\alpha$ & Relative molecular brightness of particle species ($ \alpha = q_\mathrm{3D}/q_\mathrm{2D}$) \\
$R_0$ & Lateral extent of the detection volume \\
$\kappa$ &  Evanescent decay constant ($\kappa = 1/d_\mathrm{eva}$)\\ 
$T$ &  Fraction of particles in triplet (non-fluorescent) state\\ 
$\tau_\mathrm{trip}$ &  Characteristic residence time in triplet state \\ 
\end{tabular}
\end{center}
\vspace{2em}




\subsubsection{TIR-FCS with a square-shaped lateral detection volume}


% 3D TIRF diffusion (□xσ)
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{TIR ($\Box{}x\sigma$/Exp.) 3D} \\ 
ID & \textbf{6010} \\ 
Descr. &  Three-dimensional diffusion with a square-shaped lateral detection area taking into account the size of the point spread function; and an exponential decaying profile in axial direction\cite{Ries2008, Yordanov2011}. \\ 
\end{tabular}
\begin{align}
G(\tau) =  \frac{\kappa^2}{C} &
\left( \sqrt{\frac{D \tau}{\pi}} + \frac{1 - 2 D \tau \kappa^2)}{2 \kappa} w\!\left(i \sqrt{D \tau} \kappa\right) \right) \times \\
\notag  \times \Bigg[ & \frac{2 \sqrt{\sigma^2+D \tau}}{\sqrt{\pi} a^2}
\left( \exp\left(-\frac{a^2}{4(\sigma^2+D \tau)}\right) - 1 \right) +
\frac{1}{a} \, \mathrm{erf}\left(\frac{a}{2 \sqrt{\sigma^2+D \tau}}\right) \Bigg]^2
\end{align} 
\begin{center}
\begin{tabular}{ll}
$C$ & Particle concentration in detection volume \\ 
$\sigma$ & Lateral size of the point spread function \\ 
$a$ & Side size of the square-shaped detection area \\
$\kappa$ &  Evanescent decay constant ($\kappa = 1/d_\mathrm{eva}$)\\ 
$D$ & Diffusion coefficient \\
\end{tabular} \\
\end{center}
\vspace{2em}


% 3D+3D TIRF diffusion (□xσ)
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{TIR ($\Box{}x\sigma$/Exp.) 3D+3D} \\ 
ID & \textbf{6023} \\ 
Descr. &  Two-component three-dimensional free diffusion with a square-shaped lateral detection area taking into account the size of the point spread function; and an exponential decaying profile in axial direction. \newline
The correlation function is a superposition of three-dimensional model functions of the type \textbf{3D ($\Box{}x\sigma$)} (6010)\cite{Ries2008, Yordanov2011}. \\
\end{tabular}
\vspace{2em}


% 2D TIRF diffusion (□xσ)
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{TIR ($\Box{}x\sigma$) 2D} \\ 
ID & \textbf{6000} \\ 
Descr. &  Two-dimensional diffusion with a square-shaped lateral detection area taking into account the size of the point spread function\cite{Ries2008, Yordanov2011}\footnote{The reader is made aware, that reference \cite{Ries2008} contains several unfortunate misprints.}. \\ 
\end{tabular}
\begin{align}
G(\tau) = \frac{1}{C} \left[
\frac{2 \sqrt{\sigma^2+D \tau}}{\sqrt{\pi} a^2}
\left( \exp\left(-\frac{a^2}{4(\sigma^2+D \tau)}\right) - 1 \right) +
\frac{1}{a} \, \mathrm{erf}\left(\frac{a}{2 \sqrt{\sigma^2+D \tau}}\right)
\right]^2
\end{align} 
\begin{center}
\begin{tabular}{ll}
$C$ & Particle concentration in detection area \\ 
$\sigma$ & Lateral size of the point spread function \\ 
$a$ & Side size of the square-shaped detection area \\
$D$ & Diffusion coefficient \\
\end{tabular} \\
\end{center}
\vspace{2em}


% 2D+2D TIRF diffusion (□xσ)
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{TIR ($\Box{}x\sigma$) 2D+2D} \\ 
ID & \textbf{6022} \\ 
Descr. &  Two-component two-dimensional diffusion with a square-shaped lateral detection area taking into account the size of the point spread function. \newline
The correlation function is a superposition of two-dimensional model functions of the type \textbf{2D ($\Box{}x\sigma$)} (6000)\cite{Ries2008, Yordanov2011}. \\
\end{tabular}
\vspace{2em}


% 3D+2D TIRF diffusion (□xσ)
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{TIR ($\Box{}x\sigma$/Exp.) 3D+2D} \\ 
ID & \textbf{6020} \\ 
Descr. &  Two-component two- and three-dimensional diffusion with a square-shaped lateral detection area taking into account the size of the point spread function; and an exponential decaying profile in axial direction.  \newline
The correlation function is a superposition of the two-dimensional model function \textbf{2D ($\Box{}x\sigma$)} (6000) and the three-dimensional model function \textbf{3D ($\Box{}x\sigma$)} (6010)\cite{Ries2008, Yordanov2011}.
\end{tabular}
\vspace{2em}


% 3D+2D+kin TIRF diffusion (□xσ)
\noindent \begin{tabular}{lp{.7\textwidth}}
Name & \textbf{TIR ($\Box{}x\sigma$/Exp.) 3D+2D+kin} \\ 
ID & \textbf{6021} \\ 
Descr. &  Two-component two- and three-dimensional diffusion with a square-shaped lateral detection area taking into account the size of the point spread function; and an exponential decaying profile in axial direction. This model covers binding and unbinding kintetics.  \newline 
The correlation function for this model was introduced in \cite{Ries2008}. Because approximations are made in the derivation, please verify if this model is applicable to your problem before using it.
\end{tabular}