1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
// pssr.cpp - written and placed in the public domain by Wei Dai
#include "pch.h"
#include "pssr.h"
#include <functional>
NAMESPACE_BEGIN(CryptoPP)
// more in dll.cpp
template<> const byte EMSA2HashId<RIPEMD160>::id = 0x31;
template<> const byte EMSA2HashId<RIPEMD128>::id = 0x32;
template<> const byte EMSA2HashId<Whirlpool>::id = 0x37;
#ifndef CRYPTOPP_IMPORTS
size_t PSSR_MEM_Base::MinRepresentativeBitLength(size_t hashIdentifierLength, size_t digestLength) const
{
size_t saltLen = SaltLen(digestLength);
size_t minPadLen = MinPadLen(digestLength);
return 9 + 8*(minPadLen + saltLen + digestLength + hashIdentifierLength);
}
size_t PSSR_MEM_Base::MaxRecoverableLength(size_t representativeBitLength, size_t hashIdentifierLength, size_t digestLength) const
{
if (AllowRecovery())
return SaturatingSubtract(representativeBitLength, MinRepresentativeBitLength(hashIdentifierLength, digestLength)) / 8;
return 0;
}
bool PSSR_MEM_Base::IsProbabilistic() const
{
return SaltLen(1) > 0;
}
bool PSSR_MEM_Base::AllowNonrecoverablePart() const
{
return true;
}
bool PSSR_MEM_Base::RecoverablePartFirst() const
{
return false;
}
void PSSR_MEM_Base::ComputeMessageRepresentative(RandomNumberGenerator &rng,
const byte *recoverableMessage, size_t recoverableMessageLength,
HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
byte *representative, size_t representativeBitLength) const
{
assert(representativeBitLength >= MinRepresentativeBitLength(hashIdentifier.second, hash.DigestSize()));
const size_t u = hashIdentifier.second + 1;
const size_t representativeByteLength = BitsToBytes(representativeBitLength);
const size_t digestSize = hash.DigestSize();
const size_t saltSize = SaltLen(digestSize);
byte *const h = representative + representativeByteLength - u - digestSize;
SecByteBlock digest(digestSize), salt(saltSize);
hash.Final(digest);
rng.GenerateBlock(salt, saltSize);
// compute H = hash of M'
byte c[8];
PutWord(false, BIG_ENDIAN_ORDER, c, (word32)SafeRightShift<29>(recoverableMessageLength));
PutWord(false, BIG_ENDIAN_ORDER, c+4, word32(recoverableMessageLength << 3));
hash.Update(c, 8);
hash.Update(recoverableMessage, recoverableMessageLength);
hash.Update(digest, digestSize);
hash.Update(salt, saltSize);
hash.Final(h);
// compute representative
GetMGF().GenerateAndMask(hash, representative, representativeByteLength - u - digestSize, h, digestSize, false);
byte *xorStart = representative + representativeByteLength - u - digestSize - salt.size() - recoverableMessageLength - 1;
xorStart[0] ^= 1;
xorbuf(xorStart + 1, recoverableMessage, recoverableMessageLength);
xorbuf(xorStart + 1 + recoverableMessageLength, salt, salt.size());
memcpy(representative + representativeByteLength - u, hashIdentifier.first, hashIdentifier.second);
representative[representativeByteLength - 1] = hashIdentifier.second ? 0xcc : 0xbc;
if (representativeBitLength % 8 != 0)
representative[0] = (byte)Crop(representative[0], representativeBitLength % 8);
}
DecodingResult PSSR_MEM_Base::RecoverMessageFromRepresentative(
HashTransformation &hash, HashIdentifier hashIdentifier, bool messageEmpty,
byte *representative, size_t representativeBitLength,
byte *recoverableMessage) const
{
assert(representativeBitLength >= MinRepresentativeBitLength(hashIdentifier.second, hash.DigestSize()));
const size_t u = hashIdentifier.second + 1;
const size_t representativeByteLength = BitsToBytes(representativeBitLength);
const size_t digestSize = hash.DigestSize();
const size_t saltSize = SaltLen(digestSize);
const byte *const h = representative + representativeByteLength - u - digestSize;
SecByteBlock digest(digestSize);
hash.Final(digest);
DecodingResult result(0);
bool &valid = result.isValidCoding;
size_t &recoverableMessageLength = result.messageLength;
valid = (representative[representativeByteLength - 1] == (hashIdentifier.second ? 0xcc : 0xbc)) && valid;
valid = VerifyBufsEqual(representative + representativeByteLength - u, hashIdentifier.first, hashIdentifier.second) && valid;
GetMGF().GenerateAndMask(hash, representative, representativeByteLength - u - digestSize, h, digestSize);
if (representativeBitLength % 8 != 0)
representative[0] = (byte)Crop(representative[0], representativeBitLength % 8);
// extract salt and recoverableMessage from DB = 00 ... || 01 || M || salt
byte *salt = representative + representativeByteLength - u - digestSize - saltSize;
byte *M = std::find_if(representative, salt-1, std::bind2nd(std::not_equal_to<byte>(), 0));
recoverableMessageLength = salt-M-1;
if (*M == 0x01
&& (size_t)(M - representative - (representativeBitLength % 8 != 0)) >= MinPadLen(digestSize)
&& recoverableMessageLength <= MaxRecoverableLength(representativeBitLength, hashIdentifier.second, digestSize))
{
memcpy(recoverableMessage, M+1, recoverableMessageLength);
}
else
{
recoverableMessageLength = 0;
valid = false;
}
// verify H = hash of M'
byte c[8];
PutWord(false, BIG_ENDIAN_ORDER, c, (word32)SafeRightShift<29>(recoverableMessageLength));
PutWord(false, BIG_ENDIAN_ORDER, c+4, word32(recoverableMessageLength << 3));
hash.Update(c, 8);
hash.Update(recoverableMessage, recoverableMessageLength);
hash.Update(digest, digestSize);
hash.Update(salt, saltSize);
valid = hash.Verify(h) && valid;
if (!AllowRecovery() && valid && recoverableMessageLength != 0)
{throw NotImplemented("PSSR_MEM: message recovery disabled");}
return result;
}
#endif
NAMESPACE_END
|