1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
|
Multi-dimensional arrays on the GPU
===================================
.. module:: pycuda.gpuarray
Vector Types
------------
.. class :: vec
All of CUDA's supported vector types, such as `float3` and `long4` are
available as :mod:`numpy` data types within this class. These
:class:`numpy.dtype` instances have field names of `x`, `y`, `z`, and `w`
just like their CUDA counterparts. They will work both for parameter passing
to kernels as well as for passing data back and forth between kernels and
Python code. For each type, a `make_type` function is also provided (e.g.
`make_float3(x,y,z)`).
The :class:`GPUArray` Array Class
---------------------------------
.. class:: GPUArray(shape, dtype, *, allocator=None, order="C")
A :class:`numpy.ndarray` work-alike that stores its data and performs its
computations on the compute device. *shape* and *dtype* work exactly as in
:mod:`numpy`. Arithmetic methods in :class:`GPUArray` support the
broadcasting of scalars. (e.g. `array+5`) If the
*allocator* is a callable that, upon being called with an argument of the number
of bytes to be allocated, returns an object that can be cast to an
:class:`int` representing the address of the newly allocated memory.
Observe that both :func:`pycuda.driver.mem_alloc` and
:meth:`pycuda.tools.DeviceMemoryPool.alloc` are a model of this interface.
All arguments beyond *allocator* should be considered keyword-only.
.. attribute :: gpudata
The :class:`pycuda.driver.DeviceAllocation` instance created for the memory that backs
this :class:`GPUArray`.
.. attribute :: shape
The tuple of lengths of each dimension in the array.
.. attribute :: dtype
The :class:`numpy.dtype` of the items in the GPU array.
.. attribute :: size
The number of meaningful entries in the array. Can also be computed by
multiplying up the numbers in :attr:`shape`.
.. attribute :: mem_size
The total number of entries, including padding, that are present in
the array. Padding may arise for example because of pitch adjustment by
:func:`pycuda.driver.mem_alloc_pitch`.
.. attribute :: nbytes
The size of the entire array in bytes. Computed as :attr:`size` times
``dtype.itemsize``.
.. attribute :: strides
Tuple of bytes to step in each dimension when traversing an array.
.. attribute :: flags
Return an object with attributes `c_contiguous`, `f_contiguous` and `forc`,
which may be used to query contiguity properties in analogy to
:attr:`numpy.ndarray.flags`.
.. attribute :: ptr
Return an :class:`int` reflecting the address in device memory where
this array resides.
.. versionadded: 2011.1
.. method :: __len__()
Returns the size of the leading dimension of *self*.
.. warning ::
This method existed in version 0.93 and below, but it returned the value
of :attr:`size` instead of its current value. The change was made in order
to match :mod:`numpy`.
.. method :: reshape(shape)
Returns an array containing the same data with a new shape.
.. method :: ravel()
Returns flattened array containing the same data.
.. method :: view(dtype=None)
Returns view of array with the same data. If *dtype* is different from
current dtype, the actual bytes of memory will be reinterpreted.
.. method :: set(ary)
Transfer the contents the :class:`numpy.ndarray` object *ary*
onto the device.
*ary* must have the same dtype and size (not necessarily shape) as *self*.
.. method :: set_async(ary, stream=None)
Asynchronously transfer the contents the :class:`numpy.ndarray` object *ary*
onto the device, optionally sequenced on *stream*.
*ary* must have the same dtype and size (not necessarily shape) as *self*.
.. method :: get(ary=None, stream=None, pagelocked=False)
Transfer the contents of *self* into *ary* or a newly allocated
:mod:`numpy.ndarray`. If *ary* is given, it must have the right
size (not necessarily shape) and dtype. If it is not given,
a *pagelocked* specifies whether the new array is allocated
page-locked.
.. method :: get_async(ary=None, stream=None)
Transfer the contents of *self* into *ary* or a newly allocated
:mod:`numpy.ndarray`. If *ary* is given, it must have the right
size (not necessarily shape) and dtype. If it is not given,
a page-locked* array is newly allocated.
.. method :: mul_add(self, selffac, other, otherfac, add_timer=None, stream=None):
Return `selffac*self + otherfac*other`. *add_timer*, if given,
is invoked with the result from
:meth:`pycuda.driver.Function.prepared_timed_call`.
.. method :: __add__(other)
.. method :: __sub__(other)
.. method :: __iadd__(other)
.. method :: __isub__(other)
.. method :: __neg__(other)
.. method :: __mul__(other)
.. method :: __div__(other)
.. method :: __rdiv__(other)
.. method :: __pow__(other)
.. method :: __abs__()
Return a :class:`GPUArray` containing the absolute value of each
element of *self*.
.. UNDOC reverse()
.. method :: fill(scalar, stream=None)
Fill the array with *scalar*.
.. method :: astype(dtype, stream=None)
Return *self*, cast to *dtype*.
.. attribute :: real
Return the real part of *self*, or *self* if it is real.
.. versionadded:: 0.94
.. attribute :: imag
Return the imaginary part of *self*, or *zeros_like(self)* if it is real.
.. versionadded: 0.94
.. method :: conj()
Return the complex conjugate of *self*, or *self* if it is real.
.. versionadded: 0.94
.. method:: bind_to_texref(texref, allow_offset=False)
Bind *self* to the :class:`pycuda.driver.TextureReference` *texref*.
Due to alignment requirements, the effective texture bind address may be
different from the requested one by an offset. This method returns this
offset in units of *self*'s data type. If *allow_offset* is ``False``, a
nonzero value of this offset will cause an exception to be raised.
.. note::
It is recommended to use :meth:`bind_to_texref_ext` instead of
this method.
.. method:: bind_to_texref_ext(texref, channels=1, allow_double_hack=False, allow_offset=False)
Bind *self* to the :class:`pycuda.driver.TextureReference` *texref*.
In addition, set the texture reference's format to match :attr:`dtype`
and its channel count to *channels*. This routine also sets the
texture reference's :data:`pycuda.driver.TRSF_READ_AS_INTEGER` flag,
if necessary.
Due to alignment requirements, the effective texture bind address may be
different from the requested one by an offset. This method returns this
offset in units of *self*'s data type. If *allow_offset* is ``False``, a
nonzero value of this offset will cause an exception to be raised.
.. versionadded:: 0.93
.. highlight:: c
As of this writing, CUDA textures do not natively support double-precision
floating point data. To remedy this deficiency, PyCUDA contains a workaround,
which can be enabled by passing *True* for allow_double_hack. In this case,
use the following code for texture access in your kernel code::
#include <pycuda-helpers.hpp>
texture<fp_tex_double, 1, cudaReadModeElementType> my_tex;
__global__ void f()
{
...
fp_tex1Dfetch(my_tex, threadIdx.x);
...
}
.. highlight:: python
(This workaround was added in version 0.94.)
Constructing :class:`GPUArray` Instances
----------------------------------------
.. function:: to_gpu(ary, allocator=None)
Return a :class:`GPUArray` that is an exact copy of the :class:`numpy.ndarray`
instance *ary*.
See :class:`GPUArray` for the meaning of *allocator*.
.. function:: to_gpu_async(ary, allocator=None, stream=None)
Return a :class:`GPUArray` that is an exact copy of the :class:`numpy.ndarray`
instance *ary*. The copy is done asynchronously, optionally sequenced into
*stream*.
See :class:`GPUArray` for the meaning of *allocator*.
.. function:: empty(shape, dtype, *, allocator=None, order="C")
A synonym for the :class:`GPUArray` constructor.
.. function:: zeros(shape, dtype, *, allocator=None, order="C")
Same as :func:`empty`, but the :class:`GPUArray` is zero-initialized before
being returned.
.. function:: empty_like(other_ary)
Make a new, uninitialized :class:`GPUArray` having the same properties
as *other_ary*.
.. function:: zeros_like(other_ary)
Make a new, zero-initialized :class:`GPUArray` having the same properties
as *other_ary*.
.. function:: arange(start, stop, step, dtype=None, stream=None)
Create a :class:`GPUArray` filled with numbers spaced `step` apart,
starting from `start` and ending at `stop`.
For floating point arguments, the length of the result is
`ceil((stop - start)/step)`. This rule may result in the last
element of the result being greater than `stop`.
*dtype*, if not specified, is taken as the largest common type
of *start*, *stop* and *step*.
.. function:: take(a, indices, stream=None)
Return the :class:`GPUArray` ``[a[indices[0]], ..., a[indices[n]]]``.
For the moment, *a* must be a type that can be bound to a texture.
Conditionals
^^^^^^^^^^^^
.. function:: if_positive(criterion, then_, else_, out=None, stream=None)
Return an array like *then_*, which, for the element at index *i*,
contains *then_[i]* if *criterion[i]>0*, else *else_[i]*. (added in 0.94)
.. function:: maximum(a, b, out=None, stream=None)
Return the elementwise maximum of *a* and *b*. (added in 0.94)
.. function:: minimum(a, b, out=None, stream=None)
Return the elementwise minimum of *a* and *b*. (added in 0.94)
Reductions
^^^^^^^^^^
.. function:: sum(a, dtype=None, stream=None)
.. function:: dot(a, b, dtype=None, stream=None)
.. function:: subset_dot(subset, a, b, dtype=None, stream=None)
.. function:: max(a, stream=None)
.. function:: min(a, stream=None)
.. function:: subset_max(subset, a, stream=None)
.. function:: subset_min(subset, a, stream=None)
Elementwise Functions on :class:`GPUArrray` Instances
-----------------------------------------------------
.. module:: pycuda.cumath
The :mod:`pycuda.cumath` module contains elementwise
workalikes for the functions contained in :mod:`math`.
Rounding and Absolute Value
^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. function:: fabs(array, stream=None)
.. function:: ceil(array, stream=None)
.. function:: floor(array, stream=None)
Exponentials, Logarithms and Roots
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. function:: exp(array, stream=None)
.. function:: log(array, stream=None)
.. function:: log10(array, stream=None)
.. function:: sqrt(array, stream=None)
Trigonometric Functions
^^^^^^^^^^^^^^^^^^^^^^^
.. function:: sin(array, stream=None)
.. function:: cos(array, stream=None)
.. function:: tan(array, stream=None)
.. function:: asin(array, stream=None)
.. function:: acos(array, stream=None)
.. function:: atan(array, stream=None)
Hyperbolic Functions
^^^^^^^^^^^^^^^^^^^^
.. function:: sinh(array, stream=None)
.. function:: cosh(array, stream=None)
.. function:: tanh(array, stream=None)
Floating Point Decomposition and Assembly
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. function:: fmod(arg, mod, stream=None)
Return the floating point remainder of the division `arg/mod`,
for each element in `arg` and `mod`.
.. function:: frexp(arg, stream=None)
Return a tuple `(significands, exponents)` such that
`arg == significand * 2**exponent`.
.. function:: ldexp(significand, exponent, stream=None)
Return a new array of floating point values composed from the
entries of `significand` and `exponent`, paired together as
`result = significand * 2**exponent`.
.. function:: modf(arg, stream=None)
Return a tuple `(fracpart, intpart)` of arrays containing the
integer and fractional parts of `arg`.
Generating Arrays of Random Numbers
-----------------------------------
.. module:: pycuda.curandom
.. function:: rand(shape, dtype=numpy.float32, stream=None)
Return an array of `shape` filled with random values of `dtype`
in the range [0,1).
.. warning::
The following classes are using random number generators that run on the GPU.
Each thread uses its own generator. Creation of those generators requires more
resources than subsequent generation of random numbers. After experiments
it looks like maximum number of active generators on Tesla devices
(with compute capabilities 1.x) is 256. Fermi devices allow for creating
1024 generators without any problems. If there are troubles with creating
objects of class PseudoRandomNumberGenerator or QuasiRandomNumberGenerator
decrease number of created generators
(and therefore number of active threads).
A pseudorandom sequence of numbers satisfies most of the statistical properties
of a truly random sequence but is generated by a deterministic algorithm. A
quasirandom sequence of n-dimensional points is generated by a deterministic
algorithm designed to fill an n-dimensional space evenly.
Quasirandom numbers are more expensive to generate.
.. function:: get_curand_version()
Obtain the version of CURAND against which PyCUDA was compiled. Returns a
3-tuple of integers as *(major, minor, revision)*.
.. function:: seed_getter_uniform(N)
Return an :class:`GPUArray` filled with one random `int32` repeated `N`
times which can be used as a seed for XORWOW generator.
.. function:: seed_getter_unique(N)
Return an :class:`GPUArray` filled with `N` random `int32` which can
be used as a seed for XORWOW generator.
.. class:: XORWOWRandomNumberGenerator(seed_getter=None, offset=0)
:arg seed_getter: a function that, given an integer count, will yield an
`int32` :class:`GPUArray` of seeds.
:arg offset: Starting index into the XORWOW sequence, given seed.
Provides pseudorandom numbers. Generates sequences with period
at least :math:`2^190`.
CUDA 3.2 and above.
.. versionadded:: 2011.1
.. method:: fill_uniform(data, stream=None)
Fills in :class:`GPUArray` *data* with uniformly distributed
pseudorandom values.
.. method:: fill_normal(data, stream=None)
Fills in :class:`GPUArray` *data* with normally distributed
pseudorandom values.
.. method:: call_skip_ahead(i, stream=None)
Forces all generators to skip i values. Is equivalent to generating
i values and discarding results, but is much faster.
.. method:: call_skip_ahead_array(i, stream=None)
Accepts array i of integer values, telling each generator how many
values to skip.
.. method:: call_skip_ahead_sequence(i, stream=None)
Forces all generators to skip i subsequences. Is equivalent to
generating i * :math:`2^67` values and discarding results,
but is much faster.
.. method:: call_skip_ahead_sequence_array(i, stream=None)
Accepts array i of integer values, telling each generator how many
subsequences to skip.
.. function:: generate_direction_vectors(count, direction=direction_vector_set.VECTOR_32)
Return an :class:`GPUArray` `count` filled with direction vectors
used to initialize Sobol generators.
.. function:: generate_scramble_constants32(count)
Return a :class:`GPUArray` filled with `count' 32-bit unsigned integer
numbers used to initialize :class:`ScrambledSobol32RandomNumberGenerator`
.. function:: generate_scramble_constants64(count)
Return a :class:`GPUArray` filled with `count' 64-bit unsigned integer
numbers used to initialize :class:`ScrambledSobol64RandomNumberGenerator`
.. class:: Sobol32RandomNumberGenerator(dir_vector=None, offset=0)
:arg dir_vector: a :class:`GPUArray` of 32-element `int32` vectors which
are used to initialize quasirandom generator; it must contain one vector
for each initialized generator
:arg offset: Starting index into the Sobol32 sequence, given direction
vector.
Provides quasirandom numbers. Generates
sequences with period of :math:`2^32`.
CUDA 3.2 and above.
.. versionadded:: 2011.1
.. method:: fill_uniform(data, stream=None)
Fills in :class:`GPUArray` *data* with uniformly distributed
quasirandom values.
.. method:: fill_normal(data, stream=None)
Fills in :class:`GPUArray` *data* with normally distributed
quasirandom values.
.. method:: call_skip_ahead(i, stream=None)
Forces all generators to skip i values. Is equivalent to generating
i values and discarding results, but is much faster.
.. method:: call_skip_ahead_array(i, stream=None)
Accepts array i of integer values, telling each generator how many
values to skip.
.. class:: ScrambledSobol32RandomNumberGenerator(dir_vector=None, scramble_vector=None, offset=0)
:arg dir_vector: a :class:`GPUArray` of 32-element `uint32` vectors which
are used to initialize quasirandom generator; it must contain one vector
for each initialized generator
:arg scramble_vector: a :class:`GPUArray` of `uint32` elements which
are used to initialize quasirandom generator; it must contain one number
for each initialized generator
:arg offset: Starting index into the Sobol32 sequence, given direction
vector.
Provides quasirandom numbers. Generates
sequences with period of :math:`2^32`.
CUDA 4.0 and above.
.. versionadded:: 2011.1
.. method:: fill_uniform(data, stream=None)
Fills in :class:`GPUArray` *data* with uniformly distributed
quasirandom values.
.. method:: fill_normal(data, stream=None)
Fills in :class:`GPUArray` *data* with normally distributed
quasirandom values.
.. method:: call_skip_ahead(i, stream=None)
Forces all generators to skip i values. Is equivalent to generating
i values and discarding results, but is much faster.
.. method:: call_skip_ahead_array(i, stream=None)
Accepts array i of integer values, telling each generator how many
values to skip.
.. class:: Sobol64RandomNumberGenerator(dir_vector=None, offset=0)
:arg dir_vector: a :class:`GPUArray` of 64-element `uint64` vectors which
are used to initialize quasirandom generator; it must contain one vector
for each initialized generator
:arg offset: Starting index into the Sobol64 sequence, given direction
vector.
Provides quasirandom numbers. Generates
sequences with period of :math:`2^64`.
CUDA 4.0 and above.
.. versionadded:: 2011.1
.. method:: fill_uniform(data, stream=None)
Fills in :class:`GPUArray` *data* with uniformly distributed
quasirandom values.
.. method:: fill_normal(data, stream=None)
Fills in :class:`GPUArray` *data* with normally distributed
quasirandom values.
.. method:: call_skip_ahead(i, stream=None)
Forces all generators to skip i values. Is equivalent to generating
i values and discarding results, but is much faster.
.. method:: call_skip_ahead_array(i, stream=None)
Accepts array i of integer values, telling each generator how many
values to skip.
.. class:: ScrambledSobol64RandomNumberGenerator(dir_vector=None, scramble_vector=None, offset=0)
:arg dir_vector: a :class:`GPUArray` of 64-element `uint64` vectors which
are used to initialize quasirandom generator; it must contain one vector
for each initialized generator
:arg scramble_vector: a :class:`GPUArray` of `uint64` vectors which
are used to initialize quasirandom generator; it must contain one vector
for each initialized generator
:arg offset: Starting index into the ScrambledSobol64 sequence,
given direction vector.
Provides quasirandom numbers. Generates
sequences with period of :math:`2^64`.
CUDA 4.0 and above.
.. versionadded:: 2011.1
.. method:: fill_uniform(data, stream=None)
Fills in :class:`GPUArray` *data* with uniformly distributed
quasirandom values.
.. method:: fill_normal(data, stream=None)
Fills in :class:`GPUArray` *data* with normally distributed
quasirandom values.
.. method:: call_skip_ahead(i, stream=None)
Forces all generators to skip i values. Is equivalent to generating
i values and discarding results, but is much faster.
.. method:: call_skip_ahead_array(i, stream=None)
Accepts array i of integer values, telling each generator how many
values to skip.
Single-pass Custom Expression Evaluation
----------------------------------------
.. module:: pycuda.elementwise
Evaluating involved expressions on :class:`GPUArray` instances can be
somewhat inefficient, because a new temporary is created for each
intermediate result. The functionality in the module :mod:`pycuda.elementwise`
contains tools to help generate kernels that evaluate multi-stage expressions
on one or several operands in a single pass.
.. class:: ElementwiseKernel(arguments, operation, name="kernel", keep=False, options=[], preamble="")
Generate a kernel that takes a number of scalar or vector *arguments*
and performs the scalar *operation* on each entry of its arguments, if that
argument is a vector.
*arguments* is specified as a string formatted as a C argument list.
*operation* is specified as a C assignment statement, without a semicolon.
Vectors in *operation* should be indexed by the variable *i*.
*name* specifies the name as which the kernel is compiled, *keep*
and *options* are passed unmodified to :class:`pycuda.compiler.SourceModule`.
*preamble* specifies some source code that is included before the
elementwise kernel specification. You may use this to include other
files and/or define functions that are used by *operation*.
.. method:: __call__(*args, range=None, slice=None)
Invoke the generated scalar kernel. The arguments may either be scalars or
:class:`GPUArray` instances.
If *range* is given, it must be a :class:`slice` object and specifies
the range of indices *i* for which the *operation* is carried out.
If *slice* is given, it must be a :class:`slice` object and specifies
the range of indices *i* for which the *operation* is carried out,
truncated to the container. Also, *slice* may contain negative indices
to index relative to the end of the array.
Here's a usage example::
import pycuda.gpuarray as gpuarray
import pycuda.driver as cuda
import pycuda.autoinit
import numpy
from pycuda.curandom import rand as curand
a_gpu = curand((50,))
b_gpu = curand((50,))
from pycuda.elementwise import ElementwiseKernel
lin_comb = ElementwiseKernel(
"float a, float *x, float b, float *y, float *z",
"z[i] = a*x[i] + b*y[i]",
"linear_combination")
c_gpu = gpuarray.empty_like(a_gpu)
lin_comb(5, a_gpu, 6, b_gpu, c_gpu)
import numpy.linalg as la
assert la.norm((c_gpu - (5*a_gpu+6*b_gpu)).get()) < 1e-5
(You can find this example as :file:`examples/demo_elementwise.py` in the PyCuda
distribution.)
Custom Reductions
-----------------
.. module:: pycuda.reduction
.. class:: ReductionKernel(dtype_out, neutral, reduce_expr, map_expr=None, arguments=None, name="reduce_kernel", keep=False, options=[], preamble="")
Generate a kernel that takes a number of scalar or vector *arguments*
(at least one vector argument), performs the *map_expr* on each entry of
the vector argument and then the *reduce_expr* on the outcome of that.
*neutral* serves as an initial value. *preamble* offers the possibility
to add preprocessor directives and other code (such as helper functions)
to be added before the actual reduction kernel code.
Vectors in *map_expr* should be indexed by the variable *i*. *reduce_expr*
uses the formal values "a" and "b" to indicate two operands of a binary
reduction operation. If you do not specify a *map_expr*, "in[i]" -- and
therefore the presence of only one input argument -- is automatically
assumed.
*dtype_out* specifies the :class:`numpy.dtype` in which the reduction is
performed and in which the result is returned. *neutral* is
specified as float or integer formatted as string. *reduce_expr* and
*map_expr* are specified as string formatted operations and *arguments*
is specified as a string formatted as a C argument list. *name* specifies
the name as which the kernel is compiled, *keep* and *options* are passed
unmodified to :class:`pycuda.compiler.SourceModule`. *preamble* is specified
as a string of code.
.. method __call__(*args, stream=None)
Here's a usage example::
a = gpuarray.arange(400, dtype=numpy.float32)
b = gpuarray.arange(400, dtype=numpy.float32)
krnl = ReductionKernel(numpy.float32, neutral="0",
reduce_expr="a+b", map_expr="x[i]*y[i]",
arguments="float *x, float *y")
my_dot_prod = krnl(a, b).get()
Parallel Scan / Prefix Sum
--------------------------
.. module:: pycuda.scan
.. class:: ExclusiveScanKernel(dtype, scan_expr, neutral, name_prefix="scan", options=[], preamble="")
Generates a kernel that can compute a `prefix sum <https://secure.wikimedia.org/wikipedia/en/wiki/Prefix_sum>`_
using any associative operation given as *scan_expr*.
*scan_expr* uses the formal values "a" and "b" to indicate two operands of
an associative binary operation. *neutral* is the neutral element
of *scan_expr*, obeying *scan_expr(a, neutral) == a*.
*dtype* specifies the type of the arrays being operated on.
*name_prefix* is used for kernel names to ensure recognizability
in profiles and logs. *options* is a list of compiler options to use
when building. *preamble* specifies a string of code that is
inserted before the actual kernels.
.. method:: __call__(self, input_ary, output_ary=None, allocator=None, queue=None)
.. class:: InclusiveScanKernel(dtype, scan_expr, neutral=None, name_prefix="scan", options=[], preamble="", devices=None)
Works like :class:`ExclusiveScanKernel`. Unlike the exclusive case,
*neutral* is not required.
Here's a usage example::
knl = InclusiveScanKernel(np.int32, "a+b")
n = 2**20-2**18+5
host_data = np.random.randint(0, 10, n).astype(np.int32)
dev_data = gpuarray.to_gpu(queue, host_data)
knl(dev_data)
assert (dev_data.get() == np.cumsum(host_data, axis=0)).all()
Custom data types in Reduction and Scan
---------------------------------------
If you would like to use your own (struct/union/whatever) data types in
scan and reduction, define those types in the *preamble* and let PyCUDA
know about them using this function:
.. function:: pycuda.tools.register_dtype(dtype, name)
*dtype* is a :func:`numpy.dtype`.
.. versionadded: 2011.2
Fast Fourier Transforms
-----------------------
Bogdan Opanchuk's `pyfft <http://pypi.python.org/pypi/pyfft>`_ offers a
variety of GPU-based FFT implementations designed to work with
:class:`pycuda.gpuarray.GPUArray` objects.
|