1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
|
"""Computation of reductions on vectors."""
from __future__ import division
__copyright__ = "Copyright (C) 2009 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
Based on code/ideas by Mark Harris <mharris@nvidia.com>.
Original License:
Copyright 1993-2007 NVIDIA Corporation. All rights reserved.
NOTICE TO USER:
This source code is subject to NVIDIA ownership rights under U.S. and
international Copyright laws.
NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE
CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR
IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS SOURCE CODE.
U.S. Government End Users. This source code is a "commercial item" as
that term is defined at 48 C.F.R. 2.101 (OCT 1995), consisting of
"commercial computer software" and "commercial computer software
documentation" as such terms are used in 48 C.F.R. 12.212 (SEPT 1995)
and is provided to the U.S. Government only as a commercial end item.
Consistent with 48 C.F.R.12.212 and 48 C.F.R. 227.7202-1 through
227.7202-4 (JUNE 1995), all U.S. Government End Users acquire the
source code with only those rights set forth herein.
"""
from pycuda.tools import context_dependent_memoize
from pycuda.tools import dtype_to_ctype
import numpy as np
def get_reduction_module(out_type, block_size,
neutral, reduce_expr, map_expr, arguments,
name="reduce_kernel", keep=False, options=None, preamble=""):
from pycuda.compiler import SourceModule
src = """
#include <pycuda-complex.hpp>
#define BLOCK_SIZE %(block_size)d
#define READ_AND_MAP(i) (%(map_expr)s)
#define REDUCE(a, b) (%(reduce_expr)s)
%(preamble)s
typedef %(out_type)s out_type;
extern "C"
__global__
void %(name)s(out_type *out, %(arguments)s,
unsigned int seq_count, unsigned int n)
{
// Needs to be variable-size to prevent the braindead CUDA compiler from
// running constructors on this array. Grrrr.
extern __shared__ out_type sdata[];
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*BLOCK_SIZE*seq_count + tid;
out_type acc = %(neutral)s;
for (unsigned s = 0; s < seq_count; ++s)
{
if (i >= n)
break;
acc = REDUCE(acc, READ_AND_MAP(i));
i += BLOCK_SIZE;
}
sdata[tid] = acc;
__syncthreads();
#if (BLOCK_SIZE >= 512)
if (tid < 256) { sdata[tid] = REDUCE(sdata[tid], sdata[tid + 256]); }
__syncthreads();
#endif
#if (BLOCK_SIZE >= 256)
if (tid < 128) { sdata[tid] = REDUCE(sdata[tid], sdata[tid + 128]); }
__syncthreads();
#endif
#if (BLOCK_SIZE >= 128)
if (tid < 64) { sdata[tid] = REDUCE(sdata[tid], sdata[tid + 64]); }
__syncthreads();
#endif
if (tid < 32)
{
// 'volatile' required according to Fermi compatibility guide 1.2.2
volatile out_type *smem = sdata;
if (BLOCK_SIZE >= 64) smem[tid] = REDUCE(smem[tid], smem[tid + 32]);
if (BLOCK_SIZE >= 32) smem[tid] = REDUCE(smem[tid], smem[tid + 16]);
if (BLOCK_SIZE >= 16) smem[tid] = REDUCE(smem[tid], smem[tid + 8]);
if (BLOCK_SIZE >= 8) smem[tid] = REDUCE(smem[tid], smem[tid + 4]);
if (BLOCK_SIZE >= 4) smem[tid] = REDUCE(smem[tid], smem[tid + 2]);
if (BLOCK_SIZE >= 2) smem[tid] = REDUCE(smem[tid], smem[tid + 1]);
}
if (tid == 0) out[blockIdx.x] = sdata[0];
}
""" % {
"out_type": out_type,
"arguments": arguments,
"block_size": block_size,
"neutral": neutral,
"reduce_expr": reduce_expr,
"map_expr": map_expr,
"name": name,
"preamble": preamble
}
return SourceModule(src, options=options, keep=keep, no_extern_c=True)
def get_reduction_kernel_and_types(stage, out_type, block_size,
neutral, reduce_expr, map_expr=None, arguments=None,
name="reduce_kernel", keep=False, options=None, preamble=""):
if stage == 1:
if map_expr is None:
map_expr = "in[i]"
elif stage == 2:
if map_expr is None:
map_expr = "pycuda_reduction_inp[i]"
in_arg = "const %s *pycuda_reduction_inp" % out_type
if arguments:
arguments = in_arg + ", " + arguments
else:
arguments = in_arg
else:
assert False
mod = get_reduction_module(out_type, block_size,
neutral, reduce_expr, map_expr, arguments,
name, keep, options, preamble)
from pycuda.tools import get_arg_type
func = mod.get_function(name)
arg_types = [get_arg_type(arg) for arg in arguments.split(",")]
func.prepare("P%sII" % "".join(arg_types))
return func, arg_types
class ReductionKernel:
def __init__(self, dtype_out,
neutral, reduce_expr, map_expr=None, arguments=None,
name="reduce_kernel", keep=False, options=None, preamble=""):
self.dtype_out = dtype_out
self.block_size = 512
s1_func, self.stage1_arg_types = get_reduction_kernel_and_types(
1, dtype_to_ctype(dtype_out), self.block_size,
neutral, reduce_expr, map_expr,
arguments, name=name+"_stage1", keep=keep, options=options,
preamble=preamble)
self.stage1_func = s1_func.prepared_async_call
# stage 2 has only one input and no map expression
s2_func, self.stage2_arg_types = get_reduction_kernel_and_types(
2, dtype_to_ctype(dtype_out), self.block_size,
neutral, reduce_expr, arguments=arguments,
name=name+"_stage2", keep=keep, options=options,
preamble=preamble)
self.stage2_func = s2_func.prepared_async_call
assert [i for i, arg_tp in enumerate(self.stage1_arg_types) if arg_tp == "P"], \
"ReductionKernel can only be used with functions that have at least one " \
"vector argument"
def __call__(self, *args, **kwargs):
MAX_BLOCK_COUNT = 1024
SMALL_SEQ_COUNT = 4
s1_func = self.stage1_func
s2_func = self.stage2_func
kernel_wrapper = kwargs.get("kernel_wrapper")
if kernel_wrapper is not None:
s1_func = kernel_wrapper(s1_func)
s2_func = kernel_wrapper(s2_func)
stream = kwargs.get("stream")
from gpuarray import empty
f = s1_func
arg_types = self.stage1_arg_types
stage1_args = args
while True:
invocation_args = []
vectors = []
for arg, arg_tp in zip(args, arg_types):
if arg_tp == "P":
if not arg.flags.forc:
raise RuntimeError("ReductionKernel cannot "
"deal with non-contiguous arrays")
vectors.append(arg)
invocation_args.append(arg.gpudata)
else:
invocation_args.append(arg)
repr_vec = vectors[0]
sz = repr_vec.size
if sz <= self.block_size*SMALL_SEQ_COUNT*MAX_BLOCK_COUNT:
total_block_size = SMALL_SEQ_COUNT*self.block_size
block_count = (sz + total_block_size - 1) // total_block_size
seq_count = SMALL_SEQ_COUNT
else:
block_count = MAX_BLOCK_COUNT
macroblock_size = block_count*self.block_size
seq_count = (sz + macroblock_size - 1) // macroblock_size
if block_count == 1:
result = empty((), self.dtype_out, repr_vec.allocator)
else:
result = empty((block_count,), self.dtype_out, repr_vec.allocator)
kwargs = dict(shared_size=self.block_size*self.dtype_out.itemsize)
#print block_count, seq_count, self.block_size, sz
f((block_count, 1), (self.block_size, 1, 1), stream,
*([result.gpudata]+invocation_args+[seq_count, sz]),
**kwargs)
if block_count == 1:
return result
else:
f = s2_func
arg_types = self.stage2_arg_types
args = (result,) + stage1_args
@context_dependent_memoize
def get_sum_kernel(dtype_out, dtype_in):
if dtype_out is None:
dtype_out = dtype_in
return ReductionKernel(dtype_out, "0", "a+b",
arguments="const %(tp)s *in" % {"tp": dtype_to_ctype(dtype_in)},
keep=True)
@context_dependent_memoize
def get_dot_kernel(dtype_out, dtype_a=None, dtype_b=None):
if dtype_out is None:
dtype_out = dtype_a
if dtype_b is None:
if dtype_a is None:
dtype_b = dtype_out
else:
dtype_b = dtype_a
if dtype_a is None:
dtype_a = dtype_out
return ReductionKernel(dtype_out, neutral="0",
reduce_expr="a+b", map_expr="a[i]*b[i]",
arguments="const %(tp_a)s *a, const %(tp_b)s *b" % {
"tp_a": dtype_to_ctype(dtype_a),
"tp_b": dtype_to_ctype(dtype_b),
}, keep=True)
@context_dependent_memoize
def get_subset_dot_kernel(dtype_out, dtype_subset, dtype_a=None, dtype_b=None):
if dtype_out is None:
dtype_out = dtype_a
if dtype_b is None:
if dtype_a is None:
dtype_b = dtype_out
else:
dtype_b = dtype_a
if dtype_a is None:
dtype_a = dtype_out
# important: lookup_tbl must be first--it controls the length
return ReductionKernel(dtype_out, neutral="0",
reduce_expr="a+b", map_expr="a[lookup_tbl[i]]*b[lookup_tbl[i]]",
arguments="const %(tp_lut)s *lookup_tbl, "
"const %(tp_a)s *a, const %(tp_b)s *b" % {
"tp_a": dtype_to_ctype(dtype_a),
"tp_b": dtype_to_ctype(dtype_b),
"tp_lut": dtype_to_ctype(dtype_subset),
})
def get_minmax_neutral(what, dtype):
dtype = np.dtype(dtype)
if issubclass(dtype.type, np.inexact):
if what == "min":
return "MY_INFINITY"
elif what == "max":
return "-MY_INFINITY"
else:
raise ValueError("what is not min or max.")
else:
if what == "min":
return str(np.iinfo(dtype).max)
elif what == "max":
return str(np.iinfo(dtype).min)
else:
raise ValueError("what is not min or max.")
@context_dependent_memoize
def get_minmax_kernel(what, dtype):
if dtype == np.float64:
reduce_expr = "f%s(a,b)" % what
elif dtype == np.float32:
reduce_expr = "f%sf(a,b)" % what
elif dtype.kind in "iu":
reduce_expr = "%s(a,b)" % what
else:
raise TypeError("unsupported dtype specified")
return ReductionKernel(dtype,
neutral=get_minmax_neutral(what, dtype),
reduce_expr="%(reduce_expr)s" % {"reduce_expr": reduce_expr},
arguments="const %(tp)s *in" % {
"tp": dtype_to_ctype(dtype),
}, preamble="#define MY_INFINITY (1./0)")
@context_dependent_memoize
def get_subset_minmax_kernel(what, dtype, dtype_subset):
if dtype == np.float64:
reduce_expr = "f%s(a,b)" % what
elif dtype == np.float32:
reduce_expr = "f%sf(a,b)" % what
elif dtype.kind in "iu":
reduce_expr = "%s(a,b)" % what
else:
raise TypeError("unsupported dtype specified")
return ReductionKernel(dtype,
neutral=get_minmax_neutral(what, dtype),
reduce_expr="%(reduce_expr)s" % {"reduce_expr": reduce_expr},
map_expr="in[lookup_tbl[i]]",
arguments="const %(tp_lut)s *lookup_tbl, "
"const %(tp)s *in" % {
"tp": dtype_to_ctype(dtype),
"tp_lut": dtype_to_ctype(dtype_subset),
}, preamble="#define MY_INFINITY (1./0)")
|