File: curandom.py

package info (click to toggle)
pycuda 2014.1-3
  • links: PTS, VCS
  • area: contrib
  • in suites: jessie, jessie-kfreebsd
  • size: 1,508 kB
  • ctags: 2,194
  • sloc: python: 11,177; cpp: 9,640; makefile: 156; sh: 1
file content (1043 lines) | stat: -rw-r--r-- 38,157 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
from __future__ import division

import numpy as np
import pycuda.compiler
import pycuda.driver as drv
import pycuda.gpuarray as array
from pytools import memoize_method



# {{{ MD5-based random number generation

md5_code = """
/*
 **********************************************************************
 ** Copyright (C) 1990, RSA Data Security, Inc. All rights reserved. **
 **                                                                  **
 ** License to copy and use this software is granted provided that   **
 ** it is identified as the "RSA Data Security, Inc. MD5 Message     **
 ** Digest Algorithm" in all material mentioning or referencing this **
 ** software or this function.                                       **
 **                                                                  **
 ** License is also granted to make and use derivative works         **
 ** provided that such works are identified as "derived from the RSA **
 ** Data Security, Inc. MD5 Message Digest Algorithm" in all         **
 ** material mentioning or referencing the derived work.             **
 **                                                                  **
 ** RSA Data Security, Inc. makes no representations concerning      **
 ** either the merchantability of this software or the suitability   **
 ** of this software for any particular purpose.  It is provided "as **
 ** is" without express or implied warranty of any kind.             **
 **                                                                  **
 ** These notices must be retained in any copies of any part of this **
 ** documentation and/or software.                                   **
 **********************************************************************
 */

/* F, G and H are basic MD5 functions: selection, majority, parity */
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))

/* ROTATE_LEFT rotates x left n bits */
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n))))

/* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4 */
/* Rotation is separate from addition to prevent recomputation */
#define FF(a, b, c, d, x, s, ac) \
  {(a) += F ((b), (c), (d)) + (x) + (ac); \
   (a) = ROTATE_LEFT ((a), (s)); \
   (a) += (b); \
  }
#define GG(a, b, c, d, x, s, ac) \
  {(a) += G ((b), (c), (d)) + (x) + (ac); \
   (a) = ROTATE_LEFT ((a), (s)); \
   (a) += (b); \
  }
#define HH(a, b, c, d, x, s, ac) \
  {(a) += H ((b), (c), (d)) + (x) + (ac); \
   (a) = ROTATE_LEFT ((a), (s)); \
   (a) += (b); \
  }
#define II(a, b, c, d, x, s, ac) \
  {(a) += I ((b), (c), (d)) + (x) + (ac); \
   (a) = ROTATE_LEFT ((a), (s)); \
   (a) += (b); \
  }

#define X0 threadIdx.x
#define X1 threadIdx.y
#define X2 threadIdx.z
#define X3 blockIdx.x
#define X4 blockIdx.y
#define X5 blockIdx.z
#define X6 seed
#define X7 i
#define X8 n
#define X9  blockDim.x
#define X10 blockDim.y
#define X11 blockDim.z
#define X12 gridDim.x
#define X13 gridDim.y
#define X14 gridDim.z
#define X15 0

  unsigned int a = 0x67452301;
  unsigned int b = 0xefcdab89;
  unsigned int c = 0x98badcfe;
  unsigned int d = 0x10325476;

  /* Round 1 */
#define S11 7
#define S12 12
#define S13 17
#define S14 22
  FF ( a, b, c, d, X0 , S11, 3614090360); /* 1 */
  FF ( d, a, b, c, X1 , S12, 3905402710); /* 2 */
  FF ( c, d, a, b, X2 , S13,  606105819); /* 3 */
  FF ( b, c, d, a, X3 , S14, 3250441966); /* 4 */
  FF ( a, b, c, d, X4 , S11, 4118548399); /* 5 */
  FF ( d, a, b, c, X5 , S12, 1200080426); /* 6 */
  FF ( c, d, a, b, X6 , S13, 2821735955); /* 7 */
  FF ( b, c, d, a, X7 , S14, 4249261313); /* 8 */
  FF ( a, b, c, d, X8 , S11, 1770035416); /* 9 */
  FF ( d, a, b, c, X9 , S12, 2336552879); /* 10 */
  FF ( c, d, a, b, X10, S13, 4294925233); /* 11 */
  FF ( b, c, d, a, X11, S14, 2304563134); /* 12 */
  FF ( a, b, c, d, X12, S11, 1804603682); /* 13 */
  FF ( d, a, b, c, X13, S12, 4254626195); /* 14 */
  FF ( c, d, a, b, X14, S13, 2792965006); /* 15 */
  FF ( b, c, d, a, X15, S14, 1236535329); /* 16 */

  /* Round 2 */
#define S21 5
#define S22 9
#define S23 14
#define S24 20
  GG ( a, b, c, d, X1 , S21, 4129170786); /* 17 */
  GG ( d, a, b, c, X6 , S22, 3225465664); /* 18 */
  GG ( c, d, a, b, X11, S23,  643717713); /* 19 */
  GG ( b, c, d, a, X0 , S24, 3921069994); /* 20 */
  GG ( a, b, c, d, X5 , S21, 3593408605); /* 21 */
  GG ( d, a, b, c, X10, S22,   38016083); /* 22 */
  GG ( c, d, a, b, X15, S23, 3634488961); /* 23 */
  GG ( b, c, d, a, X4 , S24, 3889429448); /* 24 */
  GG ( a, b, c, d, X9 , S21,  568446438); /* 25 */
  GG ( d, a, b, c, X14, S22, 3275163606); /* 26 */
  GG ( c, d, a, b, X3 , S23, 4107603335); /* 27 */
  GG ( b, c, d, a, X8 , S24, 1163531501); /* 28 */
  GG ( a, b, c, d, X13, S21, 2850285829); /* 29 */
  GG ( d, a, b, c, X2 , S22, 4243563512); /* 30 */
  GG ( c, d, a, b, X7 , S23, 1735328473); /* 31 */
  GG ( b, c, d, a, X12, S24, 2368359562); /* 32 */

  /* Round 3 */
#define S31 4
#define S32 11
#define S33 16
#define S34 23
  HH ( a, b, c, d, X5 , S31, 4294588738); /* 33 */
  HH ( d, a, b, c, X8 , S32, 2272392833); /* 34 */
  HH ( c, d, a, b, X11, S33, 1839030562); /* 35 */
  HH ( b, c, d, a, X14, S34, 4259657740); /* 36 */
  HH ( a, b, c, d, X1 , S31, 2763975236); /* 37 */
  HH ( d, a, b, c, X4 , S32, 1272893353); /* 38 */
  HH ( c, d, a, b, X7 , S33, 4139469664); /* 39 */
  HH ( b, c, d, a, X10, S34, 3200236656); /* 40 */
  HH ( a, b, c, d, X13, S31,  681279174); /* 41 */
  HH ( d, a, b, c, X0 , S32, 3936430074); /* 42 */
  HH ( c, d, a, b, X3 , S33, 3572445317); /* 43 */
  HH ( b, c, d, a, X6 , S34,   76029189); /* 44 */
  HH ( a, b, c, d, X9 , S31, 3654602809); /* 45 */
  HH ( d, a, b, c, X12, S32, 3873151461); /* 46 */
  HH ( c, d, a, b, X15, S33,  530742520); /* 47 */
  HH ( b, c, d, a, X2 , S34, 3299628645); /* 48 */

  /* Round 4 */
#define S41 6
#define S42 10
#define S43 15
#define S44 21
  II ( a, b, c, d, X0 , S41, 4096336452); /* 49 */
  II ( d, a, b, c, X7 , S42, 1126891415); /* 50 */
  II ( c, d, a, b, X14, S43, 2878612391); /* 51 */
  II ( b, c, d, a, X5 , S44, 4237533241); /* 52 */
  II ( a, b, c, d, X12, S41, 1700485571); /* 53 */
  II ( d, a, b, c, X3 , S42, 2399980690); /* 54 */
  II ( c, d, a, b, X10, S43, 4293915773); /* 55 */
  II ( b, c, d, a, X1 , S44, 2240044497); /* 56 */
  II ( a, b, c, d, X8 , S41, 1873313359); /* 57 */
  II ( d, a, b, c, X15, S42, 4264355552); /* 58 */
  II ( c, d, a, b, X6 , S43, 2734768916); /* 59 */
  II ( b, c, d, a, X13, S44, 1309151649); /* 60 */
  II ( a, b, c, d, X4 , S41, 4149444226); /* 61 */
  II ( d, a, b, c, X11, S42, 3174756917); /* 62 */
  II ( c, d, a, b, X2 , S43,  718787259); /* 63 */
  II ( b, c, d, a, X9 , S44, 3951481745); /* 64 */

  a += 0x67452301;
  b += 0xefcdab89;
  c += 0x98badcfe;
  d += 0x10325476;
"""




def rand(shape, dtype=np.float32, stream=None):
    from pycuda.gpuarray import GPUArray
    from pycuda.elementwise import get_elwise_kernel

    result = GPUArray(shape, dtype)

    if dtype == np.float32:
        func = get_elwise_kernel(
            "float *dest, unsigned int seed",
            md5_code + """
            #define POW_2_M32 (1/4294967296.0f)
            dest[i] = a*POW_2_M32;
            if ((i += total_threads) < n)
                dest[i] = b*POW_2_M32;
            if ((i += total_threads) < n)
                dest[i] = c*POW_2_M32;
            if ((i += total_threads) < n)
                dest[i] = d*POW_2_M32;
            """,
            "md5_rng_float")
    elif dtype == np.float64:
        func = get_elwise_kernel(
            "double *dest, unsigned int seed",
            md5_code + """
            #define POW_2_M32 (1/4294967296.0)
            #define POW_2_M64 (1/18446744073709551616.)

            dest[i] = a*POW_2_M32 + b*POW_2_M64;

            if ((i += total_threads) < n)
            {
              dest[i] = c*POW_2_M32 + d*POW_2_M64;
            }
            """,
            "md5_rng_float")
    elif dtype in [np.int32, np.uint32]:
        func = get_elwise_kernel(
            "unsigned int *dest, unsigned int seed",
            md5_code + """
            dest[i] = a;
            if ((i += total_threads) < n)
                dest[i] = b;
            if ((i += total_threads) < n)
                dest[i] = c;
            if ((i += total_threads) < n)
                dest[i] = d;
            """,
            "md5_rng_int")
    else:
        raise NotImplementedError;

    func.prepared_async_call(result._grid, result._block, stream,
            result.gpudata, np.random.randint(2**31-1), result.size)

    return result

# }}}

# {{{ CURAND wrapper

try:
    import pycuda._driver as _curand # used to be separate module
except ImportError:
    def get_curand_version():
        return None
else:
    get_curand_version = _curand.get_curand_version

if get_curand_version() >= (3, 2, 0):
    direction_vector_set = _curand.direction_vector_set
    _get_direction_vectors = _curand._get_direction_vectors

if get_curand_version() >= (4, 0, 0):
    _get_scramble_constants32 = _curand._get_scramble_constants32
    _get_scramble_constants64 = _curand._get_scramble_constants64

# {{{ Base class

gen_template = """
__global__ void %(name)s(%(state_type)s *s, %(out_type)s *d, const int n)
{
  const int tidx = blockIdx.x*blockDim.x+threadIdx.x;
  const int delta = blockDim.x*gridDim.x;
  for (int idx = tidx; idx < n; idx += delta)
    d[idx] = curand%(suffix)s(&s[tidx]);
}
"""

gen_log_template = """
__global__ void %(name)s(%(state_type)s *s, %(out_type)s *d, %(in_type)s mean, %(in_type)s stddev, const int n)
{
  const int tidx = blockIdx.x*blockDim.x+threadIdx.x;
  const int delta = blockDim.x*gridDim.x;
  for (int idx = tidx; idx < n; idx += delta)
    d[idx] = curand_log%(suffix)s(&s[tidx], mean, stddev);
}
"""

gen_poisson_template = """
__global__ void %(name)s(%(state_type)s *s, %(out_type)s *d, double lambda, const int n)
{
  const int tidx = blockIdx.x*blockDim.x+threadIdx.x;
  const int delta = blockDim.x*gridDim.x;
  for (int idx = tidx; idx < n; idx += delta)
    d[idx] = curand_poisson%(suffix)s(&s[tidx], lambda);
}
"""

random_source = """
// Uses C++ features (templates); do not surround with extern C
#include <curand_kernel.h>

extern "C"
{

%(generators)s

}
"""

random_skip_ahead32_source = """
extern "C" {
__global__ void skip_ahead(%(state_type)s *s, const int n, const unsigned int skip)
{
  const int idx = blockIdx.x*blockDim.x+threadIdx.x;
  if (idx < n)
    skipahead(skip, &s[idx]);
}

__global__ void skip_ahead_array(%(state_type)s *s, const int n, const unsigned int *skip)
{
  const int idx = blockIdx.x*blockDim.x+threadIdx.x;
  if (idx < n)
      skipahead(skip[idx], &s[idx]);
}
}
"""

random_skip_ahead64_source = """
extern "C" {
__global__ void skip_ahead(%(state_type)s *s, const int n, const unsigned long long skip)
{
  const int idx = blockIdx.x*blockDim.x+threadIdx.x;
  if (idx < n)
    skipahead(skip, &s[idx]);
}

__global__ void skip_ahead_array(%(state_type)s *s, const int n, const unsigned long long *skip)
{
  const int idx = blockIdx.x*blockDim.x+threadIdx.x;
  if (idx < n)
      skipahead(skip[idx], &s[idx]);
}
}
"""

class _RandomNumberGeneratorBase(object):
    """
    Class surrounding CURAND kernels from CUDA 3.2.
    It allows for generating random numbers with uniform
    and normal probability function of various types.
    """

    gen_info = [
        ("uniform_int", "unsigned int", ""),
        ("uniform_long", "unsigned long long", ""),
        ("uniform_float", "float", "_uniform"),
        ("uniform_double", "double", "_uniform_double"),
        ("normal_float", "float", "_normal"),
        ("normal_double", "double", "_normal_double"),
        ("normal_float2", "float2", "_normal2"),
        ("normal_double2", "double2", "_normal2_double"),
        ]

    gen_log_info = [
        ("normal_log_float", "float", "float", "_normal"),
        ("normal_log_double", "double", "double", "_normal_double"),
        ("normal_log_float2", "float", "float2", "_normal2"),
        ("normal_log_double2", "double", "double2", "_normal2_double"),
        ]

    gen_poisson_info = [
        ("poisson_int", "unsigned int", ""),
        ]

    def __init__(self, state_type, vector_type, generator_bits,
        additional_source, scramble_type=None):
        if get_curand_version() < (3, 2, 0):
            raise EnvironmentError("Need at least CUDA 3.2")

        dev = drv.Context.get_device()

        self.block_count = dev.get_attribute(
            pycuda.driver.device_attribute.MULTIPROCESSOR_COUNT)

        from pycuda.characterize import has_double_support

        def do_generate(out_type):
            result = True
            if "double" in out_type:
                result = result and has_double_support()
            if "2" in out_type:
                result = result and self.has_box_muller
            return result

        my_generators = [
                (name, out_type, suffix)
                for name, out_type, suffix in self.gen_info
                if do_generate(out_type)]

        if get_curand_version() >= (4, 0, 0):
            my_log_generators = [
                    (name, in_type, out_type, suffix)
                    for name, in_type, out_type, suffix in self.gen_log_info
                    if do_generate(out_type)]

        if get_curand_version() >= (5, 0, 0):
            my_poisson_generators = [
                    (name, out_type, suffix)
                    for name, out_type, suffix in self.gen_poisson_info
                    if do_generate(out_type)]

        generator_sources = [
                gen_template % {
                    "name": name, "out_type": out_type, "suffix": suffix,
                    "state_type": state_type, }
                for name, out_type, suffix in my_generators]
        
        if get_curand_version() >= (4, 0, 0):
            generator_sources.extend([
                    gen_log_template % {
                        "name": name, "in_type": in_type, "out_type": out_type,
                        "suffix": suffix, "state_type": state_type, }
                    for name, in_type, out_type, suffix in my_log_generators])

        if get_curand_version() >= (5, 0, 0):
            generator_sources.extend([
                    gen_poisson_template % {
                        "name": name, "out_type": out_type, "suffix": suffix,
                        "state_type": state_type, }
                    for name, out_type, suffix in my_poisson_generators])

        source = (random_source + additional_source) % {
            "state_type": state_type,
            "vector_type": vector_type,
            "scramble_type": scramble_type,
            "generators": "\n".join(generator_sources)}

        # store in instance to let subclass constructors get to it.
        self.module = module = pycuda.compiler.SourceModule(source, no_extern_c=True)

        self.generators = {}
        for name, out_type, suffix  in my_generators:
            gen_func = module.get_function(name)
            gen_func.prepare("PPi")
            self.generators[name] = gen_func
        if get_curand_version() >= (4, 0, 0):
            for name, in_type, out_type, suffix  in my_log_generators:
                gen_func = module.get_function(name)
                if in_type == "float":
                    gen_func.prepare("PPffi")
                if in_type == "double":
                    gen_func.prepare("PPddi")
                self.generators[name] = gen_func
        if get_curand_version() >= (5, 0, 0):
            for name, out_type, suffix  in my_poisson_generators:
                gen_func = module.get_function(name)
                gen_func.prepare("PPdi")
                self.generators[name] = gen_func

        self.generator_bits = generator_bits
        self._prepare_skipahead()

        self.state_type = state_type
        self._state = None

    def _prepare_skipahead(self):
        self.skip_ahead = self.module.get_function("skip_ahead")
        if self.generator_bits == 32:
            self.skip_ahead.prepare("PiI")
        if self.generator_bits == 64:
            self.skip_ahead.prepare("PiQ")
        self.skip_ahead_array = self.module.get_function("skip_ahead_array")
        self.skip_ahead_array.prepare("PiP")

    def _kernels(self):
        return (
                list(self.generators.itervalues())
                + [self.skip_ahead, self.skip_ahead_array])

    @property
    @memoize_method
    def generators_per_block(self):
        return min(kernel.max_threads_per_block
                for kernel in self._kernels())

    @property
    def state(self):
        if self._state is None:
            from pycuda.characterize import sizeof
            data_type_size = sizeof(self.state_type, "#include <curand_kernel.h>")

            self._state = drv.mem_alloc(
                self.block_count * self.generators_per_block * data_type_size)

        return self._state

    def fill_uniform(self, data, stream=None):
        if data.dtype == np.float32:
            func = self.generators["uniform_float"]
        elif data.dtype == np.float64:
            func = self.generators["uniform_double"]
        elif data.dtype in [np.int, np.int32, np.uint32]:
            func = self.generators["uniform_int"]
        elif data.dtype in [np.int64, np.uint64] and self.generator_bits >= 64:
            func = self.generators["uniform_long"]
        else:
            raise NotImplementedError

        func.prepared_async_call(
                (self.block_count, 1), (self.generators_per_block, 1, 1), stream,
                self.state, data.gpudata, data.size)

    def fill_normal(self, data, stream=None):
        if data.dtype == np.float32:
            func_name = "normal_float"
        elif data.dtype == np.float64:
            func_name = "normal_double"
        else:
            raise NotImplementedError

        data_size = data.size
        if self.has_box_muller and data_size % 2 == 0:
            func_name += "2"
            data_size //= 2

        func = self.generators[func_name]

        func.prepared_async_call(
                (self.block_count, 1), (self.generators_per_block, 1, 1), stream,
                self.state, data.gpudata, int(data_size))

    def gen_uniform(self, shape, dtype, stream=None):
        result = array.empty(shape, dtype)
        self.fill_uniform(result, stream)
        return result

    def gen_normal(self, shape, dtype, stream=None):
        result = array.empty(shape, dtype)
        self.fill_normal(result, stream)
        return result

    if get_curand_version() >= (4, 0, 0):
        def fill_log_normal(self, data, mean, stddev, stream=None):
            if data.dtype == np.float32:
                func_name = "normal_log_float"
            elif data.dtype == np.float64:
                func_name = "normal_log_double"
            else:
                raise NotImplementedError

            data_size = data.size
            if self.has_box_muller and data_size % 2 == 0:
                func_name += "2"
                data_size //= 2

            func = self.generators[func_name]

            func.prepared_async_call(
                    (self.block_count, 1), (self.generators_per_block, 1, 1), stream,
                    self.state, data.gpudata, mean, stddev, int(data_size))

        def gen_log_normal(self, shape, dtype, mean, stddev, stream=None):
            result = array.empty(shape, dtype)
            self.fill_log_normal(result, mean, stddev, stream)
            return result

    if get_curand_version() >= (5, 0, 0):
        def fill_poisson(self, data, lambda_value, stream=None):
            if data.dtype == np.uint32:
                func_name = "poisson_int"
            else:
                raise NotImplementedError

            func = self.generators[func_name]

            func.prepared_async_call(
                    (self.block_count, 1), (self.generators_per_block, 1, 1), stream,
                    self.state, data.gpudata, lambda_value, data.size)

        def gen_poisson(self, shape, dtype, lambda_value, stream=None):
            result = array.empty(shape, dtype)
            self.fill_poisson(result, lambda_value, stream)
            return result

    def call_skip_ahead(self, i, stream=None):
        self.skip_ahead.prepared_async_call(
                (self.block_count, 1), (self.generators_per_block, 1, 1), stream,
                self.state, self.generators_per_block, i)

    def call_skip_ahead_array(self, i, stream=None):
        self.skip_ahead_array.prepared_async_call(
                (self.block_count, 1), (self.generators_per_block, 1, 1), stream,
                self.state, self.generators_per_block, i.gpudata)

# }}}

# {{{ XORWOW RNG

class _PseudoRandomNumberGeneratorBase(_RandomNumberGeneratorBase):
    def __init__(self, seed_getter, offset, state_type, vector_type,
        generator_bits, additional_source, scramble_type=None):

        super(_PseudoRandomNumberGeneratorBase, self).__init__(
            state_type, vector_type, generator_bits, additional_source)

        generator_count = self.generators_per_block * self.block_count
        if seed_getter is None:
            seed = array.to_gpu(
                    np.asarray(
                        np.random.random_integers(
                            0, (1 << 31) - 2, generator_count),
                        dtype=np.int32))
        else:
            seed = seed_getter(generator_count)

        if not (isinstance(seed, pycuda.gpuarray.GPUArray)
                and seed.dtype == np.int32
                and seed.size == generator_count):
            raise TypeError("seed must be GPUArray of integers of right length")

        p = self.module.get_function("prepare")
        p.prepare("PiPi")

        from pycuda.characterize import has_stack
        has_stack = has_stack()

        if has_stack:
            prev_stack_size = drv.Context.get_limit(drv.limit.STACK_SIZE)

        try:
            if has_stack:
                drv.Context.set_limit(drv.limit.STACK_SIZE, 1<<14) # 16k
            try:
                p.prepared_call(
                        (self.block_count, 1), (self.generators_per_block, 1, 1), self.state,
                        generator_count, seed.gpudata, offset)
            except drv.LaunchError:
                raise ValueError("Initialisation failed. Decrease number of threads.")

        finally:
            if has_stack:
                drv.Context.set_limit(drv.limit.STACK_SIZE, prev_stack_size)

    def _prepare_skipahead(self):
        self.skip_ahead = self.module.get_function("skip_ahead")
        self.skip_ahead.prepare("PiQ")
        self.skip_ahead_array = self.module.get_function("skip_ahead_array")
        self.skip_ahead_array.prepare("PiP")
        self.skip_ahead_sequence = self.module.get_function("skip_ahead_sequence")
        self.skip_ahead_sequence.prepare("PiQ")
        self.skip_ahead_sequence_array = self.module.get_function("skip_ahead_sequence_array")
        self.skip_ahead_sequence_array.prepare("PiP")

    def call_skip_ahead_sequence(self, i, stream=None):
        self.skip_ahead_sequence.prepared_async_call(
                (self.block_count, 1), (self.generators_per_block, 1, 1), stream,
                self.state, self.generators_per_block * self.block_count, i)

    def call_skip_ahead_sequence_array(self, i, stream=None):
        self.skip_ahead_sequence_array.prepared_async_call(
                (self.block_count, 1), (self.generators_per_block, 1, 1), stream,
                self.state, self.generators_per_block * self.block_count, i.gpudata)

    def _kernels(self):
        return (_RandomNumberGeneratorBase._kernels(self)
                + [self.module.get_function("prepare")]
                + [self.module.get_function("skip_ahead_sequence"),
                   self.module.get_function("skip_ahead_sequence_array")])


def seed_getter_uniform(N):
    result = pycuda.gpuarray.empty([N], np.int32)
    import random
    value = random.randint(0, 2**31-1)
    return result.fill(value)

def seed_getter_unique(N):
    result = np.random.randint(0, 2**31-1, N).astype(np.int32)
    return pycuda.gpuarray.to_gpu(result)

xorwow_random_source = """
extern "C" {
__global__ void prepare(%(state_type)s *s, const int n,
    %(vector_type)s *v, const unsigned int o)
{
  const int id = blockIdx.x*blockDim.x+threadIdx.x;
  if (id < n)
    curand_init(v[id], id, o, &s[id]);
}
}
"""

xorwow_skip_ahead_sequence_source = """
extern "C" {
__global__ void skip_ahead_sequence(%(state_type)s *s, const int n, const unsigned long long skip)
{
  const int idx = blockIdx.x*blockDim.x+threadIdx.x;
  if (idx < n)
    skipahead_sequence(skip, &s[idx]);
}

__global__ void skip_ahead_sequence_array(%(state_type)s *s, const int n, const unsigned long long *skip)
{
  const int idx = blockIdx.x*blockDim.x+threadIdx.x;
  if (idx < n)
      skipahead_sequence(skip[idx], &s[idx]);
}
}
"""

if get_curand_version() >= (3, 2, 0):
    class XORWOWRandomNumberGenerator(_PseudoRandomNumberGeneratorBase):
        has_box_muller = True

        def __init__(self, seed_getter=None, offset=0):
            """
            :arg seed_getter: a function that, given an integer count, will yield an `int32`
              :class:`GPUArray` of seeds.
            """

            super(XORWOWRandomNumberGenerator, self).__init__(
                seed_getter, offset,
                'curandStateXORWOW', 'unsigned int', 32, xorwow_random_source+
                xorwow_skip_ahead_sequence_source+random_skip_ahead64_source)

# }}}

# {{{ MRG32k3a RNG

mrg32k3a_random_source = """
extern "C" {
__global__ void prepare(%(state_type)s *s, const int n,
    %(vector_type)s *v, const unsigned int o)
{
  const int id = blockIdx.x*blockDim.x+threadIdx.x;
  if (id < n)
    curand_init(v[id], id, o, &s[id]);
}
}
"""

mrg32k3a_skip_ahead_sequence_source = """
extern "C" {
__global__ void skip_ahead_sequence(%(state_type)s *s, const int n, const unsigned long long skip)
{
  const int idx = blockIdx.x*blockDim.x+threadIdx.x;
  if (idx < n)
    skipahead_sequence(skip, &s[idx]);
}

__global__ void skip_ahead_sequence_array(%(state_type)s *s, const int n, const unsigned long long *skip)
{
  const int idx = blockIdx.x*blockDim.x+threadIdx.x;
  if (idx < n)
      skipahead_sequence(skip[idx], &s[idx]);
}

__global__ void skip_ahead_subsequence(%(state_type)s *s, const int n, const unsigned long long skip)
{
  const int idx = blockIdx.x*blockDim.x+threadIdx.x;
  if (idx < n)
    skipahead_subsequence(skip, &s[idx]);
}

__global__ void skip_ahead_subsequence_array(%(state_type)s *s, const int n, const unsigned long long *skip)
{
  const int idx = blockIdx.x*blockDim.x+threadIdx.x;
  if (idx < n)
      skipahead_subsequence(skip[idx], &s[idx]);
}
}
"""

if get_curand_version() >= (4, 1, 0):
    class MRG32k3aRandomNumberGenerator(_PseudoRandomNumberGeneratorBase):
        has_box_muller = True

        def __init__(self, seed_getter=None, offset=0):
            """
            :arg seed_getter: a function that, given an integer count, will yield an `int32`
              :class:`GPUArray` of seeds.
            """

            super(MRG32k3aRandomNumberGenerator, self).__init__(
                seed_getter, offset,
                'curandStateMRG32k3a', 'unsigned int', 32, mrg32k3a_random_source+
                mrg32k3a_skip_ahead_sequence_source+random_skip_ahead64_source)

        def _prepare_skipahead(self):
            super(MRG32k3aRandomNumberGenerator, self)._prepare_skipahead()
            self.skip_ahead_subsequence = self.module.get_function("skip_ahead_subsequence")
            self.skip_ahead_subsequence.prepare("PiQ")
            self.skip_ahead_subsequence_array = self.module.get_function("skip_ahead_subsequence_array")
            self.skip_ahead_subsequence_array.prepare("PiP")

        def call_skip_ahead_subsequence(self, i, stream=None):
            self.skip_ahead_subsequence.prepared_async_call(
                    (self.block_count, 1), (self.generators_per_block, 1, 1), stream,
                    self.state, self.generators_per_block * self.block_count, i)

        def call_skip_ahead_subsequence_array(self, i, stream=None):
            self.skip_ahead_subsequence_array.prepared_async_call(
                    (self.block_count, 1), (self.generators_per_block, 1, 1), stream,
                    self.state, self.generators_per_block * self.block_count, i.gpudata)

        def _kernels(self):
            return (_PseudoRandomNumberGeneratorBase._kernels(self)
                    + [self.module.get_function("skip_ahead_subsequence"),
                       self.module.get_function("skip_ahead_subsequence_array")])

# }}}

# {{{ Sobol RNG

def generate_direction_vectors(count, direction=None):
    if get_curand_version() >= (4, 0, 0):
        if direction == direction_vector_set.VECTOR_64 or \
            direction == direction_vector_set.SCRAMBLED_VECTOR_64:
            result = np.empty((count, 64), dtype=np.uint64)
        else:
            result = np.empty((count, 32), dtype=np.uint32)
    else:
        result = np.empty((count, 32), dtype=np.uint32)
    _get_direction_vectors(direction, result, count)
    return pycuda.gpuarray.to_gpu(result)

if get_curand_version() >= (4, 0, 0):
    def generate_scramble_constants32(count):
        result = np.empty((count, ), dtype=np.uint32)
        _get_scramble_constants32(result, count)
        return pycuda.gpuarray.to_gpu(result)

    def generate_scramble_constants64(count):
        result = np.empty((count, ), dtype=np.uint64)
        _get_scramble_constants64(result, count)
        return pycuda.gpuarray.to_gpu(result)

sobol_random_source = """
extern "C" {
__global__ void prepare(%(state_type)s *s, const int n,
    %(vector_type)s *v, const unsigned int o)
{
  const int id = blockIdx.x*blockDim.x+threadIdx.x;
  if (id < n)
    curand_init(v[id], o, &s[id]);
}
}
"""

class _SobolRandomNumberGeneratorBase(_RandomNumberGeneratorBase):
    """
    Class surrounding CURAND kernels from CUDA 3.2.
    It allows for generating quasi-random numbers with uniform
    and normal probability function of type int, float, and double.
    """

    has_box_muller = False

    def __init__(self, dir_vector, dir_vector_dtype, dir_vector_size,
        dir_vector_set, offset, state_type, vector_type, generator_bits,
        sobol_random_source):
        super(_SobolRandomNumberGeneratorBase, self).__init__(state_type,
            vector_type, generator_bits, sobol_random_source)

        if dir_vector is None:
            dir_vector = generate_direction_vectors(
                self.block_count * self.generators_per_block, dir_vector_set)

        if not (isinstance(dir_vector, pycuda.gpuarray.GPUArray)
                and dir_vector.dtype == dir_vector_dtype
                and dir_vector.shape == (self.block_count * self.generators_per_block, dir_vector_size)):
            raise TypeError("seed must be GPUArray of integers of right length")

        p = self.module.get_function("prepare")
        p.prepare("PiPi")

        from pycuda.characterize import has_stack
        has_stack = has_stack()

        if has_stack:
            prev_stack_size = drv.Context.get_limit(drv.limit.STACK_SIZE)

        try:
            if has_stack:
                drv.Context.set_limit(drv.limit.STACK_SIZE, 1<<14) # 16k
            try:
                p.prepared_call((self.block_count, 1), (self.generators_per_block, 1, 1),
                    self.state, self.block_count * self.generators_per_block,
                    dir_vector.gpudata, offset)
            except drv.LaunchError:
                raise ValueError("Initialisation failed. Decrease number of threads.")

        finally:
            if has_stack:
                drv.Context.set_limit(drv.limit.STACK_SIZE, prev_stack_size)

    def _kernels(self):
        return (_RandomNumberGeneratorBase._kernels(self)
                + [self.module.get_function("prepare")])

scrambledsobol_random_source = """
extern "C" {
__global__ void prepare( %(state_type)s *s, const int n,
    %(vector_type)s *v, %(scramble_type)s *scramble, const unsigned int o)
{
  const int id = blockIdx.x*blockDim.x+threadIdx.x;
  if (id < n)
    curand_init(v[id], scramble[id], o, &s[id]);
}
}
"""

class _ScrambledSobolRandomNumberGeneratorBase(_RandomNumberGeneratorBase):
    """
    Class surrounding CURAND kernels from CUDA 4.0.
    It allows for generating quasi-random numbers with uniform
    and normal probability function of type int, float, and double.
    """

    has_box_muller = False

    def __init__(self, dir_vector, dir_vector_dtype, dir_vector_size,
        dir_vector_set, scramble_vector, scramble_vector_function,
        offset, state_type, vector_type, generator_bits, scramble_type,
	sobol_random_source):
        super(_ScrambledSobolRandomNumberGeneratorBase, self).__init__(state_type,
            vector_type, generator_bits, sobol_random_source, scramble_type)

        if dir_vector is None:
            dir_vector = generate_direction_vectors(
                self.block_count * self.generators_per_block,
                dir_vector_set)

        if scramble_vector is None:
            scramble_vector = scramble_vector_function(
                self.block_count * self.generators_per_block)

        if not (isinstance(dir_vector, pycuda.gpuarray.GPUArray)
                and dir_vector.dtype == dir_vector_dtype
                and dir_vector.shape == (self.block_count * self.generators_per_block, dir_vector_size)):
            raise TypeError("seed must be GPUArray of integers of right length")

        if not (isinstance(scramble_vector, pycuda.gpuarray.GPUArray)
                and scramble_vector.dtype == dir_vector_dtype
                and scramble_vector.shape == (self.block_count * self.generators_per_block, )):
            raise TypeError("scramble must be GPUArray of integers of right length")

        p = self.module.get_function("prepare")
        p.prepare("PiPPi")

        from pycuda.characterize import has_stack
        has_stack = has_stack()

        if has_stack:
            prev_stack_size = drv.Context.get_limit(drv.limit.STACK_SIZE)

        try:
            if has_stack:
                drv.Context.set_limit(drv.limit.STACK_SIZE, 1<<14) # 16k
            try:
                p.prepared_call((self.block_count, 1), (self.generators_per_block, 1, 1),
                    self.state, self.block_count * self.generators_per_block,
                    dir_vector.gpudata, scramble_vector.gpudata, offset)
            except drv.LaunchError:
                raise ValueError("Initialisation failed. Decrease number of threads.")

        finally:
            if has_stack:
                drv.Context.set_limit(drv.limit.STACK_SIZE, prev_stack_size)

    def _kernels(self):
        return (_RandomNumberGeneratorBase._kernels(self)
                + [self.module.get_function("prepare")])

if get_curand_version() >= (3, 2, 0):
    class Sobol32RandomNumberGenerator(_SobolRandomNumberGeneratorBase):
        """
        Class surrounding CURAND kernels from CUDA 3.2.
        It allows for generating quasi-random numbers with uniform
        and normal probability function of type int, float, and double.
        """

        def __init__(self, dir_vector=None, offset=0):
            super(Sobol32RandomNumberGenerator, self).__init__(dir_vector,
                np.uint32, 32, direction_vector_set.VECTOR_32, offset,
                'curandStateSobol32', 'curandDirectionVectors32_t', 32,
                sobol_random_source+random_skip_ahead32_source)


if get_curand_version() >= (4, 0, 0):
    class ScrambledSobol32RandomNumberGenerator(_ScrambledSobolRandomNumberGeneratorBase):
        """
        Class surrounding CURAND kernels from CUDA 4.0.
        It allows for generating quasi-random numbers with uniform
        and normal probability function of type int, float, and double.
        """

        def __init__(self, dir_vector=None, scramble_vector=None, offset=0):
            super(ScrambledSobol32RandomNumberGenerator, self).__init__(dir_vector,
                np.uint32, 32, direction_vector_set.SCRAMBLED_VECTOR_32,
                scramble_vector, generate_scramble_constants32, offset,
                'curandStateScrambledSobol32', 'curandDirectionVectors32_t',
                32, 'unsigned int',
                scrambledsobol_random_source+random_skip_ahead32_source)

if get_curand_version() >= (4, 0, 0):
    class Sobol64RandomNumberGenerator(_SobolRandomNumberGeneratorBase):
        """
        Class surrounding CURAND kernels from CUDA 4.0.
        It allows for generating quasi-random numbers with uniform
        and normal probability function of type int, float, and double.
        """

        def __init__(self, dir_vector=None, offset=0):
            super(Sobol64RandomNumberGenerator, self).__init__(dir_vector,
                np.uint64, 64, direction_vector_set.VECTOR_64, offset,
                'curandStateSobol64', 'curandDirectionVectors64_t', 64,
                 sobol_random_source+random_skip_ahead64_source)

if get_curand_version() >= (4, 0, 0):
    class ScrambledSobol64RandomNumberGenerator(_ScrambledSobolRandomNumberGeneratorBase):
        """
        Class surrounding CURAND kernels from CUDA 4.0.
        It allows for generating quasi-random numbers with uniform
        and normal probability function of type int, float, and double.
        """

        def __init__(self, dir_vector=None, scramble_vector=None, offset=0):
            super(ScrambledSobol64RandomNumberGenerator, self).__init__(dir_vector,
                np.uint64, 64, direction_vector_set.SCRAMBLED_VECTOR_64,
                scramble_vector, generate_scramble_constants64, offset,
                'curandStateScrambledSobol64', 'curandDirectionVectors64_t',
                64, 'unsigned long long',
                scrambledsobol_random_source+random_skip_ahead64_source)

# }}}

# }}}





# vim: foldmethod=marker