File: driver.rst

package info (click to toggle)
pycuda 2016.1.2%2Bgit20161024-1
  • links: PTS, VCS
  • area: contrib
  • in suites: stretch
  • size: 1,560 kB
  • ctags: 2,268
  • sloc: python: 11,951; cpp: 9,839; makefile: 139; sh: 1
file content (2052 lines) | stat: -rw-r--r-- 58,847 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
.. _reference-doc:

Device Interface
================

.. module:: pycuda
.. moduleauthor:: Andreas Kloeckner <inform@tiker.net>

Version Queries
---------------

.. data:: VERSION

    Gives the numeric version of PyCUDA as a variable-length tuple
    of integers. Enables easy version checks such as
    *VERSION >= (0, 93)*.

    Added in PyCUDA 0.93.

.. data:: VERSION_STATUS

    A text string such as `"rc4"` or `"beta"` qualifying the status
    of the release.

    .. versionadded:: 0.93

.. data:: VERSION_TEXT

    The full release name (such as `"0.93rc4"`) in string form.

    .. versionadded:: 0.93

.. module:: pycuda.driver
    :synopsis: Use CUDA devices from Python

.. _errors:

Error Reporting
---------------

.. exception:: Error

    Base class of all PyCuda errors.

.. exception:: CompileError

    Thrown when :class:`pycuda.compiler.SourceModule` compilation fails.

    .. attribute:: msg

        .. versionadded:: 0.94

    .. attribute:: stdout

        .. versionadded:: 0.94

    .. attribute:: stderr

        .. versionadded:: 0.94

    .. attribute:: command_line

        .. versionadded:: 0.94


.. exception:: MemoryError

    Thrown when :func:`mem_alloc` or related functionality fails.

.. exception:: LogicError

    Thrown when PyCuda was confronted with a situation where it is likely
    that the programmer has made a mistake. :exc:`LogicErrors` do not depend
    on outer circumstances defined by the run-time environment.

    Example: CUDA was used before it was initialized.

.. exception:: LaunchError

    Thrown when kernel invocation has failed. (Note that this will often be
    reported by the next call after the actual kernel invocation.)

.. exception:: RuntimeError

    Thrown when a unforeseen run-time failure is encountered that is not
    likely due to programmer error.

    Example: A file was not found.


Constants
---------

.. class:: ctx_flags

    Flags for :meth:`Device.make_context`. CUDA 2.0 and above only.

    .. attribute:: SCHED_AUTO

        If there are more contexts than processors, yield, otherwise spin
        while waiting for CUDA calls to complete.

    .. attribute:: SCHED_SPIN

        Spin while waiting for CUDA calls to complete.

    .. attribute:: SCHED_YIELD

         Yield to other threads while waiting for CUDA calls to complete.

    .. attribute:: SCHED_MASK

        Mask of valid scheduling flags in this bitfield.

    .. attribute:: SCHED_BLOCKING_SYNC

        Use blocking synchronization. CUDA 2.2 and newer.

    .. attribute:: MAP_HOST

        Support mapped pinned allocations. CUDA 2.2 and newer.

    .. attribute:: LMEM_RESIZE_TO_MAX

        Keep local memory allocation after launch. CUDA 3.2 and newer.
        Rumored to decrease Fermi launch overhead?

        .. versionadded:: 2011.1

    .. attribute:: FLAGS_MASK

        Mask of valid flags in this bitfield.


.. class:: event_flags

    Flags for :class:`Event`. CUDA 2.2 and newer.

    .. attribute:: DEFAULT
    .. attribute:: BLOCKING_SYNC
    .. attribute:: DISABLE_TIMING

        CUDA 3.2 and newer.

        .. versionadded:: 0.94

    .. attribute:: INTERPROCESS

        CUDA 4.1 and newer.

        .. versionadded:: 2011.2

.. class:: device_attribute

    .. attribute:: MAX_THREADS_PER_BLOCK
    .. attribute:: MAX_BLOCK_DIM_X
    .. attribute:: MAX_BLOCK_DIM_Y
    .. attribute:: MAX_BLOCK_DIM_Z
    .. attribute:: MAX_GRID_DIM_X
    .. attribute:: MAX_GRID_DIM_Y
    .. attribute:: MAX_GRID_DIM_Z
    .. attribute:: TOTAL_CONSTANT_MEMORY
    .. attribute:: WARP_SIZE
    .. attribute:: MAX_PITCH
    .. attribute:: CLOCK_RATE
    .. attribute:: TEXTURE_ALIGNMENT
    .. attribute:: GPU_OVERLAP
    .. attribute:: MULTIPROCESSOR_COUNT

        CUDA 2.0 and above only.

    .. attribute:: SHARED_MEMORY_PER_BLOCK

        Deprecated as of CUDA 2.0. See below for replacement.

    .. attribute:: MAX_SHARED_MEMORY_PER_BLOCK

        CUDA 2.0 and above only.

    .. attribute:: REGISTERS_PER_BLOCK

        Deprecated as of CUDA 2.0. See below for replacement.

    .. attribute:: MAX_REGISTERS_PER_BLOCK

        CUDA 2.0 and above.

    .. attribute:: KERNEL_EXEC_TIMEOUT

        CUDA 2.2 and above.

    .. attribute:: INTEGRATED

        CUDA 2.2 and above.

    .. attribute:: CAN_MAP_HOST_MEMORY

        CUDA 2.2 and above.

    .. attribute:: COMPUTE_MODE

        CUDA 2.2 and above. See :class:`compute_mode`.

    .. attribute:: MAXIMUM_TEXTURE1D_WIDTH
        MAXIMUM_TEXTURE2D_WIDTH
        MAXIMUM_TEXTURE2D_HEIGHT
        MAXIMUM_TEXTURE3D_WIDTH
        MAXIMUM_TEXTURE3D_HEIGHT
        MAXIMUM_TEXTURE3D_DEPTH
        MAXIMUM_TEXTURE2D_ARRAY_WIDTH
        MAXIMUM_TEXTURE2D_ARRAY_HEIGHT
        MAXIMUM_TEXTURE2D_ARRAY_NUMSLICES

        CUDA 3.0 and above.

        .. versionadded:: 0.94

    .. attribute:: MAXIMUM_TEXTURE2D_LAYERED_WIDTH
        MAXIMUM_TEXTURE2D_LAYERED_HEIGHT
        MAXIMUM_TEXTURE2D_LAYERED_LAYERS
        MAXIMUM_TEXTURE1D_LAYERED_WIDTH
        MAXIMUM_TEXTURE1D_LAYERED_LAYERS

        CUDA 4.0 and above.

        .. versionadded:: 2011.1

    .. attribute:: SURFACE_ALIGNMENT

        CUDA 3.0 (post-beta) and above.

        .. versionadded:: 0.94

    .. attribute:: CONCURRENT_KERNELS

        CUDA 3.0 (post-beta) and above.

        .. versionadded:: 0.94

    .. attribute:: ECC_ENABLED

        CUDA 3.0 (post-beta) and above.

        .. versionadded:: 0.94

    .. attribute:: PCI_BUS_ID

        CUDA 3.2 and above.

        .. versionadded:: 0.94

    .. attribute:: PCI_DEVICE_ID

        CUDA 3.2 and above.

        .. versionadded:: 0.94

    .. attribute:: TCC_DRIVER

        CUDA 3.2 and above.

        .. versionadded:: 0.94

    .. attribute:: MEMORY_CLOCK_RATE
        GLOBAL_MEMORY_BUS_WIDTH
        L2_CACHE_SIZE
        MAX_THREADS_PER_MULTIPROCESSOR
        ASYNC_ENGINE_COUNT
        UNIFIED_ADDRESSING

        CUDA 4.0 and above.

        .. versionadded:: 2011.1

    .. attribute :: MAXIMUM_TEXTURE2D_GATHER_WIDTH
        MAXIMUM_TEXTURE2D_GATHER_HEIGHT
        MAXIMUM_TEXTURE3D_WIDTH_ALTERNATE
        MAXIMUM_TEXTURE3D_HEIGHT_ALTERNATE
        MAXIMUM_TEXTURE3D_DEPTH_ALTERNATE
        PCI_DOMAIN_ID
        TEXTURE_PITCH_ALIGNMENT
        MAXIMUM_TEXTURECUBEMAP_WIDTH
        MAXIMUM_TEXTURECUBEMAP_LAYERED_WIDTH
        MAXIMUM_TEXTURECUBEMAP_LAYERED_LAYERS
        MAXIMUM_SURFACE1D_WIDTH
        MAXIMUM_SURFACE2D_WIDTH
        MAXIMUM_SURFACE2D_HEIGHT
        MAXIMUM_SURFACE3D_WIDTH
        MAXIMUM_SURFACE3D_HEIGHT
        MAXIMUM_SURFACE3D_DEPTH
        MAXIMUM_SURFACE1D_LAYERED_WIDTH
        MAXIMUM_SURFACE1D_LAYERED_LAYERS
        MAXIMUM_SURFACE2D_LAYERED_WIDTH
        MAXIMUM_SURFACE2D_LAYERED_HEIGHT
        MAXIMUM_SURFACE2D_LAYERED_LAYERS
        MAXIMUM_SURFACECUBEMAP_WIDTH
        MAXIMUM_SURFACECUBEMAP_LAYERED_WIDTH
        MAXIMUM_SURFACECUBEMAP_LAYERED_LAYERS
        MAXIMUM_TEXTURE1D_LINEAR_WIDTH
        MAXIMUM_TEXTURE2D_LINEAR_WIDTH
        MAXIMUM_TEXTURE2D_LINEAR_HEIGHT
        MAXIMUM_TEXTURE2D_LINEAR_PITCH

        CUDA 4.1 and above.

        .. versionadded:: 2011.2

    .. attribute :: MAXIMUM_TEXTURE2D_MIPMAPPED_WIDTH
        MAXIMUM_TEXTURE2D_MIPMAPPED_HEIGHT
        COMPUTE_CAPABILITY_MAJOR
        COMPUTE_CAPABILITY_MINOR
        MAXIMUM_TEXTURE1D_MIPMAPPED_WIDTH

        CUDA 5.0 and above.

        .. versionadded:: 2014.1

    .. attribute :: STREAM_PRIORITIES_SUPPORTED

        CUDA 5.5 and above.

        .. versionadded:: 2014.1

    .. attribute :: GLOBAL_L1_CACHE_SUPPORTED
        LOCAL_L1_CACHE_SUPPORTED
        MAX_SHARED_MEMORY_PER_MULTIPROCESSOR
        MAX_REGISTERS_PER_MULTIPROCESSOR
        MANAGED_MEMORY
        MULTI_GPU_BOARD
        MULTI_GPU_BOARD_GROUP_ID

        CUDA 6.0 and above.

        .. versionadded:: 2014.1

.. class:: pointer_attribute

    .. attribute:: CONTEXT
        MEMORY_TYPE
        DEVICE_POINTER
        HOST_POINTER

    CUDA 4.0 and above.

    .. versionadded:: 2011.1

.. class:: profiler_output_mode

    .. attribute:: KEY_VALUE_PAIR
        CSV

    CUDA 4.0 and above.

    .. versionadded:: 2011.1

.. class:: function_attribute

    Flags for :meth:`Function.get_attribute`. CUDA 2.2 and newer.

    .. attribute:: MAX_THREADS_PER_BLOCK
    .. attribute:: SHARED_SIZE_BYTES
    .. attribute:: CONST_SIZE_BYTES
    .. attribute:: LOCAL_SIZE_BYTES
    .. attribute:: NUM_REGS
    .. attribute:: PTX_VERSION

        CUDA 3.0 (post-beta) and above.

        .. versionadded:: 0.94

    .. attribute:: BINARY_VERSION

        CUDA 3.0 (post-beta) and above.

        .. versionadded:: 0.94

    .. attribute:: MAX

.. class:: func_cache

    See :meth:`Function.set_cache_config`. CUDA 3.0 (post-beta) and above.

    .. versionadded:: 0.94

    .. attribute:: PREFER_NONE
    .. attribute:: PREFER_SHARED
    .. attribute:: PREFER_L1
    .. attribute:: PREFER_EQUAL

        CUDA 4.1 and above.

        .. versionadded:: 2011.2

.. class:: shared_config

    See :meth:`Function.set_shared_config`. CUDA 4.2 and above.

    .. attribute:: DEFAULT_BANK_SIZE
    .. attribute:: FOUR_BYTE_BANK_SIZE
    .. attribute:: EIGHT_BYTE_BANK_SIZE

.. class:: array_format

    .. attribute:: UNSIGNED_INT8
    .. attribute:: UNSIGNED_INT16
    .. attribute:: UNSIGNED_INT32
    .. attribute:: SIGNED_INT8
    .. attribute:: SIGNED_INT16
    .. attribute:: SIGNED_INT32
    .. attribute:: HALF
    .. attribute:: FLOAT

.. class:: array3d_flags

    .. attribute :: 2DARRAY

        CUDA 3.0 and above. Deprecated--use :attr:`LAYERED`.

        .. versionadded:: 0.94

    .. attribute :: LAYERED

        CUDA 4.0 and above.

        .. versionadded:: 2011.1

    .. attribute :: SURFACE_LDST

        CUDA 3.1 and above.

        .. versionadded:: 0.94

    .. attribute :: CUBEMAP TEXTURE_GATHER

        CUDA 4.1 and above.

        .. versionadded:: 2011.2

.. class:: address_mode

    .. attribute:: WRAP
    .. attribute:: CLAMP
    .. attribute:: MIRROR
    .. attribute:: BORDER

        CUDA 3.2 and above.

        .. versionadded:: 0.94

.. class:: filter_mode

    .. attribute:: POINT
    .. attribute:: LINEAR

.. class:: memory_type

    .. attribute:: HOST
    .. attribute:: DEVICE
    .. attribute:: ARRAY

.. class:: compute_mode

    CUDA 2.2 and newer.

    .. attribute:: DEFAULT
    .. attribute:: PROHIBITED
    .. attribute:: EXCLUSIVE_PROCESS

        CUDA 4.0 and above.

        .. versionadded:: 2011.1

.. class:: jit_option

    CUDA 2.1 and newer.

    .. attribute:: MAX_REGISTERS
    .. attribute:: THREADS_PER_BLOCK
    .. attribute:: WALL_TIME
    .. attribute:: INFO_LOG_BUFFER
    .. attribute:: INFO_LOG_BUFFER_SIZE_BYTES
    .. attribute:: ERROR_LOG_BUFFER
    .. attribute:: ERROR_LOG_BUFFER_SIZE_BYTES
    .. attribute:: OPTIMIZATION_LEVEL
    .. attribute:: TARGET_FROM_CUCONTEXT
    .. attribute:: TARGET
    .. attribute:: FALLBACK_STRATEGY

.. class:: jit_target

    CUDA 2.1 and newer.

    .. attribute:: COMPUTE_10
    .. attribute:: COMPUTE_11
    .. attribute:: COMPUTE_12
    .. attribute:: COMPUTE_13
    .. attribute:: COMPUTE_20

        CUDA 3.0 and above.

        .. versionadded:: 0.94

    .. attribute:: COMPUTE_21

        CUDA 3.2 and above.

        .. versionadded:: 0.94

.. class:: jit_fallback

    CUDA 2.1 and newer.

    .. attribute:: PREFER_PTX
    .. attribute:: PREFER_BINARY

.. class:: host_alloc_flags

    Flags to be used to allocate :ref:`pagelocked_memory`.

    .. attribute:: PORTABLE
    .. attribute:: DEVICEMAP
    .. attribute:: WRITECOMBINED

.. class:: mem_attach_flags

    Flags to be used to allocate :ref:`managed_memory`.

    ..versionadded:: 2014.1

    .. attribute:: GLOBAL
    .. attribute:: HOST
    .. attribute:: SINGLE

.. class:: mem_host_register_flags

    .. attribute:: PORTABLE
    .. attribute:: DEVICEMAP

    CUDA 4.0 and newer.

    .. versionadded:: 2011.1

.. class:: limit

    Limit values for :meth:`Context.get_limit` and :meth:`Context.set_limit`.

    CUDA 3.1 and newer.

    .. versionadded:: 0.94

    .. attribute:: STACK_SIZE
    .. attribute:: PRINTF_FIFO_SIZE
    .. attribute:: MALLOC_HEAP_SIE

        CUDA 3.2 and above.

.. class:: ipc_mem_flags

    .. attribute:: LAZY_ENABLE_PEER_ACCESS


Graphics-related constants
^^^^^^^^^^^^^^^^^^^^^^^^^^

.. class:: graphics_register_flags

    .. versionadded:: 2011.1

    CUDA 4.0 and above.

    .. attribute:: NONE READ_ONLY WRITE_DISCARD SURFACE_LDST

    .. attribute :: TEXTURE_GATHER

        CUDA 4.1 and above.

        .. versionadded:: 2011.2


.. class:: array_cubemap_face

    .. attribute::
        POSITIVE_X NEGATIVE_X
        POSITIVE_Y NEGATIVE_Y
        POSITIVE_Z NEGATIVE_Z

    CUDA 3.2 and above.

    .. versionadded:: 2011.1

Devices and Contexts
--------------------

.. function:: get_version()

    Obtain the version of CUDA against which PyCuda was compiled. Returns a
    3-tuple of integers as *(major, minor, revision)*.

.. function:: get_driver_version()

    Obtain the version of the CUDA driver on top of which PyCUDA is
    running. Returns an integer version number.

.. function:: init(flags=0)

    Initialize CUDA.

    .. warning:: This must be called before any other function in this module.

    See also :mod:`pycuda.autoinit`.

.. class:: Device(number)
        Device(pci_bus_id)

    A handle to the *number*'th CUDA device. See also :mod:`pycuda.autoinit`.

    .. versionchanged:: 2011.2
        The *pci_bus_id* version of the constructor is new in CUDA 4.1.

    .. staticmethod:: count()

        Return the number of CUDA devices found.

    .. method:: name()

    .. method:: pci_bus_id()

        CUDA 4.1 and newer.

        .. versionadded:: 2011.2

    .. method:: compute_capability()

        Return a 2-tuple indicating the compute capability version of this device.

    .. method:: total_memory()

        Return the total amount of memory on the device in bytes.

    .. method:: get_attribute(attr)

        Return the (numeric) value of the attribute *attr*, which may be one of the
        :class:`device_attribute` values.

        All :class:`device_attribute` values may also be directly read
        as (lower-case) attributes on the :class:`Device` object itself,
        e.g. `dev.clock_rate`.

    .. method:: get_attributes()

        Return all device attributes in a :class:`dict`, with keys from
        :class:`device_attribute`.

    .. method:: make_context(flags=ctx_flags.SCHED_AUTO)

        Create a :class:`Context` on this device, with flags taken from the
        :class:`ctx_flags` values.

        Also make the newly-created context the current context.

    .. method:: can_access_peer(dev)

        CUDA 4.0 and newer.

        .. versionadded:: 2011.1

    .. method:: __hash__()
    .. method:: __eq__()
    .. method:: __ne__()

.. class:: Context

    An equivalent of a UNIX process on the compute device.
    Create instances of this class using :meth:`Device.make_context`.
    See also :mod:`pycuda.autoinit`.

    .. method:: detach()

        Decrease the reference count on this context. If the reference count
        hits zero, the context is deleted.

    .. method:: push()

        Make *self* the active context, pushing it on top of the context stack.
        CUDA 2.0 and above only.

    .. staticmethod:: pop()

        Remove any context from the top of the context stack, deactivating it.
        CUDA 2.0 and above only.

    .. staticmethod:: get_device()

        Return the device that the current context is working on.

    .. staticmethod:: synchronize()

        Wait for all activity in the current context to cease, then return.

    .. staticmethod:: set_limit(limit, value)

        See :class:`limit` for possible values of *limit*.

        CUDA 3.1 and above.

        .. versionadded:: 0.94

    .. staticmethod:: get_limit(limit)

        See :class:`limit` for possible values of *limit*.

        CUDA 3.1 and above.

        .. versionadded:: 0.94

    .. staticmethod:: set_cache_config(cc)

        See :class:`func_cache` for possible values of *cc*.

        CUDA 3.2 and above.

        .. versionadded:: 0.94

    .. staticmethod:: get_cache_config()

        Return a value from :class:`func_cache`.

        CUDA 3.2 and above.

        .. versionadded:: 0.94

    .. staticmethod:: set_shared_config(sc)

        See :class:`shared_config` for possible values of *sc*.

        CUDA 4.2 and above.

        .. versionadded:: 2013.1

    .. staticmethod:: get_shared_config()

        Return a value from :class:`shared_config`.

        CUDA 4.2 and above.

        .. versionadded:: 2013.1

    .. method:: get_api_version()

        Return an integer API version number.

        CUDA 3.2 and above.

        .. versionadded:: 0.94

    .. method:: enable_peer_access(peer, flags=0)

        CUDA 4.0 and above.

        .. versionadded:: 2011.1

    .. method:: disable_peer_access(peer, flags=0)

        CUDA 4.0 and above.

        .. versionadded:: 2011.1

Concurrency and Streams
-----------------------

.. class:: Stream(flags=0)

    A handle for a queue of operations that will be carried out in order.

    .. method:: synchronize()

        Wait for all activity on this stream to cease, then return.

    .. method:: is_done()

        Return *True* iff all queued operations have completed.

    .. method:: wait_for_event(evt)

        Enqueues a wait for the given :class:`Event` instance.

        CUDA 3.2 and above.

        .. versionadded:: 2011.1

.. class:: Event(flags=0)

    An event is a temporal 'marker' in a :class:`Stream` that allows taking the time
    between two events--such as the time required to execute a kernel.
    An event's time is recorded when the :class:`Stream` has finished all tasks
    enqueued before the :meth:`record` call.

    See :class:`event_flags` for values for the *flags* parameter.

    .. method:: record(stream=None)

        Insert a recording point for *self* into the :class:`Stream` *stream*.
        Return *self*.

    .. method:: synchronize()

        Wait until the device execution stream reaches this event.
        Return *self*.

    .. method:: query()

        Return *True* if the device execution stream has reached this event.

    .. method:: time_since(event)

        Return the time in milliseconds that has passed between *self* and *event*.
        Use this method as `end.time_since(start)`. Note that this method will fail
        with an "invalid value" error if either of the events has not been reached yet.
        Use :meth:`synchronize` to ensure that the event has been reached.

    .. method:: time_till(event)

        Return the time in milliseconds that has passed between *event* and *self*.
        Use this method as `start.time_till(end)`. Note that this method will fail
        with an "invalid value" error if either of the events has not been reached yet.
        Use :meth:`synchronize` to ensure that the event has been reached.

    .. method:: ipc_handle()

        Return a :class:`bytes` object representing an IPC handle to this event.
        Requires Python 2.6 and CUDA 4.1.

        .. versionadded: 2011.2

    .. staticmethod:: from_ipc_handle(handle)

        Requires Python 2.6 and CUDA 4.1.

        .. versionadded: 2011.2

Memory
------

Global Device Memory
^^^^^^^^^^^^^^^^^^^^

.. function:: mem_get_info()

    Return a tuple *(free, total)* indicating the free and total memory
    in the current context, in bytes.

.. function:: mem_alloc(bytes)

    Return a :class:`DeviceAllocation` object representing a linear
    piece of device memory.

.. function:: to_device(buffer)

    Allocate enough device memory for *buffer*, which adheres to the Python
    :class:`buffer` interface. Copy the contents of *buffer* onto the device.
    Return a :class:`DeviceAllocation` object representing the newly-allocated
    memory.

.. function:: from_device(devptr, shape, dtype, order="C")

    Make a new :class:`numpy.ndarray` from the data at *devptr* on the
    GPU, interpreting them using *shape*, *dtype* and *order*.

.. function:: from_device_like(devptr, other_ary)

    Make a new :class:`numpy.ndarray` from the data at *devptr* on the
    GPU, interpreting them as having the same shape, dtype and order
    as *other_ary*.

.. function:: mem_alloc_pitch(width, height, access_size)

    Allocates a linear piece of device memory at least *width* bytes wide and
    *height* rows high that an be accessed using a data type of size
    *access_size* in a coalesced fashion.

    Returns a tuple *(dev_alloc, actual_pitch)* giving a :class:`DeviceAllocation`
    and the actual width of each row in bytes.

.. class:: DeviceAllocation

    An object representing an allocation of linear device memory.
    Once this object is deleted, its associated device memory is
    freed.

    Objects of this type can be cast to :class:`int` to obtain a linear index
    into this :class:`Context`'s memory.

    .. method:: free()

        Release the held device memory now instead of when this object
        becomes unreachable. Any further use of the object is an error
        and will lead to undefined behavior.

    .. method:: as_buffer(size, offset=0)

        Return the pointer encapsulated by *self* as a Python buffer
        object, with the given *size* and, optionally, *offset*.

        .. versionadded:: 2014.1

.. function:: mem_get_ipc_handle(devptr)

    Return an opaque :class:`bytes` object representing an IPC handle to the
    device pointer *devptr*.

    .. versionadded:: 2011.2

    Requires CUDA 4.1 and Python 2.6.

.. class:: IPCMemoryHandle(ipc_handle, flags=ipc_mem_flags.LAZY_ENABLE_PEER_ACCESS)

    .. versionadded:: 2011.2

    Requires CUDA 4.1 and Python 2.6.

    Objects of this type can be used in the same ways as a
    :class:`DeviceAllocation`.

    .. method:: close()

.. class:: PointerHolderBase

    A base class that facilitates casting to pointers within PyCUDA.
    This allows the user to construct custom pointer types that may
    have been allocated by facilities outside of PyCUDA proper, but
    still need to be objects to facilitate RAII. The user needs to
    supply one method to facilitate the pointer cast:

    .. method:: get_pointer()

        Return the pointer encapsulated by *self*.

    .. method:: as_buffer(size, offset=0)

        Return the pointer encapsulated by *self* as a Python buffer
        object, with the given *size* and, optionally, *offset*.

        .. versionadded:: 2014.1

.. _pagelocked_memory :

Pagelocked Host Memory
^^^^^^^^^^^^^^^^^^^^^^

Pagelocked Allocation
~~~~~~~~~~~~~~~~~~~~~

.. function:: pagelocked_empty(shape, dtype, order="C", mem_flags=0)

    Allocate a pagelocked :class:`numpy.ndarray` of *shape*, *dtype* and *order*.

    *mem_flags* may be one of the values in :class:`host_alloc_flags`.
    It may only be non-zero on CUDA 2.2 and newer.

    For the meaning of the other parameters, please refer to the :mod:`numpy`
    documentation.

.. function:: pagelocked_zeros(shape, dtype, order="C", mem_flags=0)

    Like :func:`pagelocked_empty`, but initialized to zero.

.. function:: pagelocked_empty_like(array, mem_flags=0)

.. function:: pagelocked_zeros_like(array, mem_flags=0)

The :class:`numpy.ndarray` instances returned by these functions
have an attribute *base* that references an object of type

.. class:: PagelockedHostAllocation

    Inherits from :class:`HostPointer`.

    An object representing an allocation of pagelocked
    host memory.  Once this object is deleted, its associated
    device memory is freed.

    .. method:: free()

        Release the held memory now instead of when this object
        becomes unreachable. Any further use of the object (or its
        associated :mod:`numpy` array) is an error
        and will lead to undefined behavior.

    .. method:: get_flags()

        Return a bit field of values from :class:`host_alloc_flags`.

        Only available on CUDA 3.2 and newer.

        .. versionadded:: 0.94

.. class:: HostAllocation

    A deprecated name for :class:`PagelockedHostAllocation`.

.. _aligned_host_memory :

Aligned Host Memory
~~~~~~~~~~~~~~~~~~~

.. function:: aligned_empty(shape, dtype, order="C", alignment=4096)

    Allocate an :class:`numpy.ndarray` of *shape*, *dtype* and *order*,
    with data aligned to *alignment* bytes.

    For the meaning of the other parameters, please refer to the :mod:`numpy`
    documentation.

    .. versionadded:: 2011.1

.. function:: aligned_zeros(shape, dtype, order="C", alignment=4096)

    Like :func:`aligned_empty`, but with initialization to zero.

    .. versionadded:: 2011.1

.. function:: aligned_empty_like(array, alignment=4096)

    .. versionadded:: 2011.1

.. function:: aligned_zeros_like(array, alignment=4096)

    .. versionadded:: 2011.1

The :class:`numpy.ndarray` instances returned by these functions
have an attribute *base* that references an object of type

.. class:: AlignedHostAllocation

    Inherits from :class:`HostPointer`.

    An object representing an allocation of aligned
    host memory.

    .. method:: free()

        Release the held memory now instead of when this object
        becomes unreachable. Any further use of the object (or its
        associated :mod:`numpy` array) is an error
        and will lead to undefined behavior.

Post-Allocation Pagelocking
~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: register_host_memory(ary, flags=0)

    Returns a :class:`numpy.ndarray` which shares memory with *ary*.
    This memory will be page-locked as long as the return value of
    this function is alive.

    The returned array's *base* attribute contains a
    :class:`RegisteredHostMemory` instance, whose *base* attribute
    in turn contains *ary*.

    CUDA 4.0 and newer.

    *ary*'s data address and size must be page-aligned. One way to achieve this
    is to use the functions in :ref:`aligned_host_memory`.

    .. versionadded:: 2011.1

.. class:: RegisteredHostMemory

    Inherits from :class:`HostPointer`.

    CUDA 4.0 and newer.

    .. versionadded:: 2011.1

    .. method:: unregister()

        Unregister the page-lock on the host memory held by this instance.
        Note that this does not free the memory, it only frees the
        page-lock.

    .. attribute:: base

        Contains the Python object from which this instance was constructed.

.. class:: HostPointer

    Represents a page-locked host pointer.

    .. method:: get_device_pointer()

        Return a device pointer that indicates the address at which
        this memory is mapped into the device's address space.

        Only available on CUDA 2.2 and newer.

.. _managed_memory :

Managed Memory
^^^^^^^^^^^^^^

CUDA 6.0 adds support for a "Unified Memory" model, which creates a managed
virtual memory space that is visible to both CPUs and GPUs.  The OS will
migrate the physical pages associated with managed memory between the CPU and
GPU as needed.  This allows a numpy array on the host to be passed to kernels
without first creating a DeviceAllocation and manually copying the host data
to and from the device.

.. note::

    Managed memory is only available for some combinations of CUDA device,
    operating system, and host compiler target architecture.  Check the CUDA
    C Programming Guide and CUDA release notes for details.

.. warning::

    This interface to managed memory should be considered experimental. It is
    provided as a preview, but for now the same interface stability guarantees
    as for the rest of PyCUDA do not apply.

Managed Memory Allocation
~~~~~~~~~~~~~~~~~~~~~~~~~

.. function:: managed_empty(shape, dtype, order="C", mem_flags=0)

    Allocate a managed :class:`numpy.ndarray` of *shape*, *dtype* and *order*.

    *mem_flags* may be one of the values in :class:`mem_attach_flags`.

    For the meaning of the other parameters, please refer to the :mod:`numpy`
    documentation.

    Only available on CUDA 6.0 and newer.

    .. versionadded:: 2014.1

.. function:: managed_zeros(shape, dtype, order="C", mem_flags=0)

    Like :func:`managed_empty`, but initialized to zero.

    Only available on CUDA 6.0 and newer.

    .. versionadded:: 2014.1

.. function:: managed_empty_like(array, mem_flags=0)

    Only available on CUDA 6.0 and newer.

    .. versionadded:: 2014.1

.. function:: managed_zeros_like(array, mem_flags=0)

    Only available on CUDA 6.0 and newer.

    .. versionadded:: 2014.1

The :class:`numpy.ndarray` instances returned by these functions
have an attribute *base* that references an object of type

.. class:: ManagedAllocation

    An object representing an allocation of managed
    host memory.  Once this object is deleted, its associated
    CUDA managed memory is freed.

    .. method:: free()

        Release the held memory now instead of when this object
        becomes unreachable. Any further use of the object (or its
        associated :mod:`numpy` array) is an error
        and will lead to undefined behavior.

    .. method:: get_device_pointer()

        Return a device pointer that indicates the address at which
        this memory is mapped into the device's address space.  For
        managed memory, this is also the host pointer.

    .. method:: attach(mem_flags, stream=None)

        Alter the visibility of the managed allocation to be one of the values
        in :class:`mem_attach_flags`.  A managed array can be made visible to
        the host CPU and the entire CUDA context with
        *mem_attach_flags.GLOBAL*, or limited to the CPU only with
        *mem_attach_flags.HOST*.  If *mem_attach_flags.SINGLE* is selected,
        then the array will only be visible to CPU and the provided instance
        of :class:`Stream`.


Managed Memory Usage
~~~~~~~~~~~~~~~~~~~~

A managed numpy array is constructed and used on the host in a similar manner
to a pagelocked array::

    from pycuda.autoinit import context
    import pycuda.driver as cuda
    import numpy as np

    a = cuda.managed_empty(shape=10, dtype=np.float32, mem_flags=cuda.mem_attach_flags.GLOBAL)
    a[:] = np.linspace(0, 9, len(a)) # Fill array on host

It can be passed to a GPU kernel, and used again on the host without
an explicit copy::

    from pycuda.compiler import SourceModule
    mod = SourceModule("""
    __global__ void doublify(float *a)
    {
        a[threadIdx.x] *= 2;
    }
    """)
    doublify = mod.get_function("doublify")

    doublify(a, grid=(1,1), block=(len(a),1,1))
    context.synchronize() # Wait for kernel completion before host access

    median = np.median(a) # Computed on host!

.. warning::

    The CUDA Unified Memory model has very specific rules regarding concurrent
    access of managed memory allocations.  Host access to any managed array
    is not allowed while the GPU is executing a kernel, regardless of whether
    the array is in use by the running kernel.  Failure to follow the
    concurrency rules will generate a segmentation fault, *causing the Python
    interpreter to terminate immediately*.

    Users of managed numpy arrays should read the "Unified Memory Programming"
    appendix of the CUDA C Programming Guide for further details on the
    concurrency restrictions.

    If you are encountering interpreter terminations due to concurrency issues,
    the `faulthandler <http://pypi.python.org/pypi/faulthandler>` module may be
    helpful in locating the location in your Python program where the faulty
    access is occurring.

Arrays and Textures
^^^^^^^^^^^^^^^^^^^

.. class:: ArrayDescriptor

    .. attribute:: width
    .. attribute:: height
    .. attribute:: format

        A value of type :class:`array_format`.

    .. attribute:: num_channels

.. class:: ArrayDescriptor3D

    .. attribute:: width
    .. attribute:: height
    .. attribute:: depth
    .. attribute:: format

        A value of type :class:`array_format`. CUDA 2.0 and above only.

    .. attribute:: num_channels

.. class:: Array(descriptor)

    A 2D or 3D memory block that can only be accessed via
    texture references.

    *descriptor* can be of type :class:`ArrayDescriptor` or
    :class:`ArrayDescriptor3D`.

    .. method::  free()

        Release the array and its device memory now instead of when
        this object becomes unreachable. Any further use of the
        object is an error and will lead to undefined behavior.

    .. method::  get_descriptor()

        Return a :class:`ArrayDescriptor` object for this 2D array,
        like the one that was used to create it.

    .. method::  get_descriptor_3d()

        Return a :class:`ArrayDescriptor3D` object for this 3D array,
        like the one that was used to create it.  CUDA 2.0 and above only.

    .. attribute:: handle

       Return an :class:`int` representing the address in device memory where
       this array resides.


.. class:: SurfaceReference()

    .. note::

        Instances of this class can only be constructed through
        :meth:`Module.get_surfref`.

    CUDA 3.1 and above.

    .. versionadded:: 0.94

    .. method:: set_array(array, flags=0)

        Bind *self* to the :class:`Array` *array*.

        As long as *array* remains bound to this texture reference, it will not be
        freed--the texture reference keeps a reference to the array.

    .. method:: get_array()

        Get back the :class:`Array` to which *self* is bound.

        .. note::

            This will be a different object than the one passed to
            :meth:`set_array`, but it will compare equal.

.. class:: TextureReference()

    A handle to a binding of either linear memory or an :class:`Array` to
    a texture unit.

    .. method:: set_array(array)

        Bind *self* to the :class:`Array` *array*.

        As long as *array* remains bound to this texture reference, it will not be
        freed--the texture reference keeps a reference to the array.

    .. method:: set_address(devptr, bytes, allow_offset=False)

        Bind *self* to the a chunk of linear memory starting at the integer address
        *devptr*, encompassing a number of *bytes*. Due to alignment requirements,
        the effective texture bind address may be different from the requested one
        by an offset. This method returns this offset in bytes. If *allow_offset*
        is ``False``, a nonzero value of this offset will cause an exception to be
        raised.

        Unlike for :class:`Array` objects, no life support is provided for linear memory
        bound to texture references.

    .. method:: set_address_2d(devptr, descr, pitch)

        Bind *self* as a 2-dimensional texture to a chunk of global memory
        at *devptr*. The line-to-line offset in bytes is given by *pitch*.
        Width, height and format are given in the :class:`ArrayDescriptor`
        *descr*. :meth:`set_format` need not and should not be called in
        addition to this method.

    .. method:: set_format(fmt, num_components)

        Set the texture to have :class:`array_format` *fmt* and to have
        *num_components* channels.

    .. method:: set_address_mode(dim, am)

        Set the address mode of dimension *dim* to *am*, which must be one of the
        :class:`address_mode` values.

    .. method:: set_flags(flags)

        Set the flags to a combination of the *TRSF_XXX* values.

    .. method:: get_array()

        Get back the :class:`Array` to which *self* is bound.

        .. note::

            This will be a different object than the one passed to
            :meth:`set_array`, but it will compare equal.

    .. method:: get_address_mode(dim)
    .. method:: get_filter_mode()
    .. method:: get_format()

        Return a tuple *(fmt, num_components)*, where *fmt* is
        of type :class:`array_format`, and *num_components* is the
        number of channels in this texture.

        (Version 2.0 and above only.)

    .. method:: get_flags()

.. data:: TRSA_OVERRIDE_FORMAT
.. data:: TRSF_READ_AS_INTEGER
.. data:: TRSF_NORMALIZED_COORDINATES
.. data:: TR_DEFAULT

.. function:: matrix_to_array(matrix, order)

    Turn the two-dimensional :class:`numpy.ndarray` object *matrix* into an
    :class:`Array`.
    The `order` argument can be either `"C"` or `"F"`. If
    it is `"C"`, then `tex2D(x,y)` is going to fetch `matrix[y,x]`,
    and vice versa for for `"F"`.

.. function:: np_to_array(nparray, order, allowSurfaceBind=False)

    Turn a :class:`numpy.ndarray` with 2D or 3D structure, into an
    :class:`Array`.
    The `order` argument can be either `"C"` or `"F"`.
    If `allowSurfaceBind` is passed as *True* the returned :class:`Array`
    can be read and write with :class:`SurfaceReference` in addition of reads by
    :class:`TextureReference`.
    Function automatically detect *dtype* and adjust channels to
    supported :class:`array_format`. Also add direct support
    for `np.float64`, `np.complex64` and `np.complex128` formats.

    .. highlight:: c

    Example of use::

        #include <pycuda-helpers.hpp>

        texture<fp_tex_double, 3, cudaReadModeElementType> my_tex; // complex128: fp_tex_cdouble
                                                                   // complex64 : fp_tex_cfloat
                                                                   // float64   : fp_tex_double
        surface<void, 3, cudaReadModeElementType> my_surf;         // Surfaces in 2D needs 'cudaSurfaceType2DLayered'

        __global__ void f()
        {
          ...
          fp_tex3D(my_tex, i, j, k);
          fp_surf3Dwrite(myvar, my_surf, i, j, k, cudaBoundaryModeClamp); // fp extensions don't need width in bytes
          fp_surf3Dread(&myvar, my_surf, i, j, k, cudaBoundaryModeClamp);
          ...
        }

    .. versionadded:: 2015.1

.. function:: gpuarray_to_array(gpuparray, order, allowSurfaceBind=False)

    Turn a :class:`GPUArray` with 2D or 3D structure, into an
    :class:`Array`. Same structure and use of :func:`np_to_array`

    .. versionadded:: 2015.1

.. function:: make_multichannel_2d_array(matrix, order)

    Turn the three-dimensional :class:`numpy.ndarray` object *matrix* into
    an 2D :class:`Array` with multiple channels.

    Depending on `order`, the `matrix`'s shape is interpreted as

    * `height, width, num_channels` for `order == "C"`,
    * `num_channels, width, height` for `order == "F"`.

    .. note ::

        This function assumes that *matrix* has been created with
        the memory order *order*. If that is not the case, the
        copied data will likely not be what you expect.

.. _memset:

Initializing Device Memory
^^^^^^^^^^^^^^^^^^^^^^^^^^

.. function:: memset_d8(dest, data, count)
.. function:: memset_d16(dest, data, count)
.. function:: memset_d32(dest, data, count)

    .. note::

        *count* is the number of elements, not bytes.

.. function:: memset_d2d8(dest, pitch, data, width, height)
.. function:: memset_d2d16(dest, pitch, data, width, height)
.. function:: memset_d2d32(dest, pitch, data, width, height)

Unstructured Memory Transfers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. function:: memcpy_htod(dest, src)

    Copy from the Python buffer *src* to the device pointer *dest*
    (an :class:`int` or a :class:`DeviceAllocation`). The size of
    the copy is determined by the size of the buffer.

.. function:: memcpy_htod_async(dest, src, stream=None)

    Copy from the Python buffer *src* to the device pointer *dest*
    (an :class:`int` or a :class:`DeviceAllocation`) asynchronously,
    optionally serialized via *stream*. The size of
    the copy is determined by the size of the buffer.

    *src* must be page-locked memory, see, e.g. :func:`pagelocked_empty`.

    New in 0.93.

.. function:: memcpy_dtoh(dest, src)

    Copy from the device pointer *src* (an :class:`int` or a
    :class:`DeviceAllocation`) to the Python buffer *dest*. The size of the copy
    is determined by the size of the buffer.

.. function:: memcpy_dtoh_async(dest, src, stream=None)

    Copy from the device pointer *src* (an :class:`int` or a
    :class:`DeviceAllocation`) to the Python buffer *dest* asynchronously,
    optionally serialized via *stream*. The size of the copy
    is determined by the size of the buffer.

    *dest* must be page-locked memory, see, e.g. :func:`pagelocked_empty`.

    New in 0.93.

.. function:: memcpy_dtod(dest, src, size)
.. function:: memcpy_dtod_async(dest, src, size, stream=None)

    CUDA 3.0 and above.

    .. versionadded:: 0.94

.. function:: memcpy_peer(dest, src, size, dest_context=None, src_context=None)
.. function:: memcpy_peer_async(dest, src, size, dest_context=None, src_context=None, stream=None)

    CUDA 4.0 and above.

    .. versionadded:: 2011.1

.. function:: memcpy_dtoa(ary, index, src, len)
.. function:: memcpy_atod(dest, ary, index, len)
.. function:: memcpy_htoa(ary, index, src)
.. function:: memcpy_atoh(dest, ary, index)
.. function:: memcpy_atoa(dest, dest_index, src, src_index, len)

Structured Memory Transfers
^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. class:: Memcpy2D()

    .. attribute:: src_x_in_bytes

        X Offset of the origin of the copy. (initialized to 0)

    .. attribute:: src_y

        Y offset of the origin of the copy. (initialized to 0)

    .. attribute:: src_pitch

        Size of a row in bytes at the origin of the copy.

    .. method:: set_src_host(buffer)

        Set the *buffer*, which must be a Python object adhering to the buffer interface,
        to be the origin of the copy.

    .. method:: set_src_array(array)

        Set the :class:`Array` *array* to be the origin of the copy.

    .. method:: set_src_device(devptr)

        Set the device address *devptr* (an :class:`int` or a
        :class:`DeviceAllocation`) as the origin of the copy.

    .. method:: set_src_unified(buffer)

        Same as :meth:`set_src_host`, except that *buffer* may also correspond
        to device memory.

        CUDA 4.0 and above. Requires unified addressing.

        .. versionadded:: 2011.1

    .. attribute :: dst_x_in_bytes

        X offset of the destination of the copy. (initialized to 0)

    .. attribute :: dst_y

        Y offset of the destination of the copy. (initialized to 0)

    .. attribute :: dst_pitch

        Size of a row in bytes at the destination of the copy.

    .. method:: set_dst_host(buffer)

        Set the *buffer*, which must be a Python object adhering to the buffer interface,
        to be the destination of the copy.

    .. method:: set_dst_array(array)

        Set the :class:`Array` *array* to be the destination of the copy.

    .. method:: set_dst_device(devptr)

        Set the device address *devptr* (an :class:`int` or a
        :class:`DeviceAllocation`) as the destination of the copy.

    .. method:: set_dst_unified(buffer)

        Same as :meth:`set_dst_host`, except that *buffer* may also correspond
        to device memory.

        CUDA 4.0 and above. Requires unified addressing.

        .. versionadded:: 2011.1

    .. attribute:: width_in_bytes

        Number of bytes to copy for each row in the transfer.

    .. attribute:: height

        Number of rows to copy.

    .. method:: __call__([aligned=True])

        Perform the specified memory copy, waiting for it to finish.
        If *aligned* is *False*, tolerate device-side misalignment
        for device-to-device copies that may lead to loss of
        copy bandwidth.

    .. method:: __call__(stream)

        Perform the memory copy asynchronously, serialized via the :class:`Stream`
        *stream*. Any host memory involved in the transfer must be page-locked.


.. class:: Memcpy3D()

    :class:`Memcpy3D` has the same members as :class:`Memcpy2D`, and additionally
    all of the following:

    .. attribute:: src_height

        Ignored when source is an :class:`Array`. May be 0 if Depth==1.

    .. attribute:: src_z

        Z offset of the origin of the copy. (initialized to 0)

    .. attribute:: dst_height

        Ignored when destination is an :class:`Array`. May be 0 if Depth==1.

    .. attribute:: dst_z

        Z offset of the destination of the copy. (initialized to 0)

    .. attribute:: depth

    :class:`Memcpy3D` is supported on CUDA 2.0 and above only.

.. class:: Memcpy3DPeer()

    :class:`Memcpy3DPeer` has the same members as :class:`Memcpy3D`,
    and additionally all of the following:

    .. method:: set_src_context(ctx)

    .. method:: set_dst_context(ctx)

    CUDA 4.0 and newer.

    .. versionadded:: 2011.1


Code on the Device: Modules and Functions
-----------------------------------------

.. class:: Module

    Handle to a CUBIN module loaded onto the device. Can be created with
    :func:`module_from_file` and :func:`module_from_buffer`.

    .. method:: get_function(name)

        Return the :class:`Function` *name* in this module.

        .. warning::

            While you can obtain different handles to the same function using this
            method, these handles all share the same state that is set through
            the ``set_XXX`` methods of :class:`Function`. This means that you
            can't obtain two different handles to the same function and
            :meth:`Function.prepare` them in two different ways.

    .. method:: get_global(name)

        Return a tuple `(device_ptr, size_in_bytes)` giving the device address
        and size of the global *name*.

        The main use of this method is to find the address of pre-declared
        `__constant__` arrays so they can be filled from the host before kernel
        invocation.

    .. method:: get_texref(name)

        Return the :class:`TextureReference` *name* from this module.

    .. method:: get_surfref(name)

        Return the :class:`SurfaceReference` *name* from this module.

        CUDA 3.1 and above.

        .. versionadded:: 0.94

.. function:: module_from_file(filename)

    Create a :class:`Module` by loading the CUBIN file *filename*.

.. function:: module_from_buffer(buffer, options=[], message_handler=None)

    Create a :class:`Module` by loading a PTX or CUBIN module from
    *buffer*, which must support the Python buffer interface.
    (For example, :class:`str` and :class:`numpy.ndarray` do.)

    :param options: A list of tuples (:class:`jit_option`, value).
    :param message_handler: A callable that is called with a
      arguments of ``(compile_success_bool, info_str, error_str)``
      which allows the user to process error and warning messages
      from the PTX compiler.

    Loading PTX modules as well as non-default values of *options* and
    *message_handler* are only allowed on CUDA 2.1 and newer.

.. class:: Function

    Handle to a *__global__* function in a :class:`Module`. Create using
    :meth:`Module.get_function`.

    .. method:: __call__(arg1, ..., argn, block=block_size, [grid=(1,1), [stream=None, [shared=0, [texrefs=[], [time_kernel=False]]]]])

        Launch *self*, with a thread block size of *block*. *block* must be a 3-tuple
        of integers.

        *arg1* through *argn* are the positional C arguments to the kernel. See
        :meth:`param_set` for details. See especially the warnings there.

        *grid* specifies, as a 2-tuple, the number of thread blocks to launch, as a
        two-dimensional grid.
        *stream*, if specified, is a :class:`Stream` instance serializing the
        copying of input arguments (if any), execution, and the copying
        of output arguments (again, if any).
        *shared* gives the number of bytes available to the kernel in
        *extern __shared__* arrays.
        *texrefs* is a :class:`list` of :class:`TextureReference` instances
        that the function will have access to.

        The function returns either *None* or the number of seconds spent
        executing the kernel, depending on whether *time_kernel* is *True*.

        This is a convenience interface that can be used instead of the
        :meth:`param_*` and :meth:`launch_*` methods below.  For a faster (but
        mildly less convenient) way of invoking kernels, see :meth:`prepare` and
        :meth:`prepared_call`.

        *arg1* through *argn* are allowed to be of the following types:

        * Subclasses of :class:`numpy.number`. These are sized number types
          such as :class:`numpy.uint32` or :class:`numpy.float32`.

        * :class:`DeviceAllocation` instances, which will become a device pointer
          to the allocated memory.

        * Instances of :class:`ArgumentHandler` subclasses. These can be used to
          automatically transfer :mod:`numpy` arrays onto and off of the device.

        * Objects supporting the Python :class:`buffer` interface. These chunks
          of bytes will be copied into the parameter space verbatim.

        * :class:`GPUArray` instances.

        .. warning::

            You cannot pass values of Python's native :class:`int` or :class:`float`
            types to param_set. Since there is no unambiguous way to guess the size
            of these integers or floats, it complains with a :exc:`TypeError`.

        .. note::

            This method has to guess the types of the arguments passed to it,
            which can make it somewhat slow. For a kernel that is invoked often,
            this can be inconvenient. For a faster (but mildly less convenient) way
            of invoking kernels, see :meth:`prepare` and :meth:`prepared_call`.

    .. method:: param_set_texref(texref)

        Make the :class:`TextureReference` texref available to the function.

    .. method:: prepare(arg_types, shared=None, texrefs=[])

        Prepare the invocation of this function by

        * setting up the argument types as `arg_types`. `arg_types` is expected
          to be an iterable containing type characters understood by the
          :mod:`struct` module or :class:`numpy.dtype` objects.

          (In addition, PyCUDA understands *'F'* and *'D'* for single- and
          double precision floating point numbers.)

        * Registering the texture references `texrefs` for use with this functions.
          The :class:`TextureReference` objects in `texrefs` will be retained,
          and whatever these references are bound to at invocation time will
          be available through the corresponding texture references within the
          kernel.

        Return `self`.

    .. method:: prepared_call(grid, block, *args, shared_size=0)

        Invoke `self` using :meth:`launch_grid`, with `args` a grid size of `grid`,
        and a block size of *block*.
        Assumes that :meth:`prepare` was called on *self*.
        The texture references given to :meth:`prepare` are set up as parameters, as
        well.

        .. versionchanged:: 2012.1
            *shared_size* was added.

    .. method:: prepared_timed_call(grid, block, *args, shared_size=0)

        Invoke `self` using :meth:`launch_grid`, with `args`, a grid size of `grid`,
        and a block size of *block*.
        Assumes that :meth:`prepare` was called on *self*.
        The texture references given to :meth:`prepare` are set up as parameters, as
        well.

        Return a 0-ary callable that can be used to query the GPU time consumed by
        the call, in seconds. Once called, this callable will block until
        completion of the invocation.

        .. versionchanged:: 2012.1
            *shared_size* was added.

    .. method:: prepared_async_call(grid, block, stream, *args, shared_size=0)

        Invoke `self` using :meth:`launch_grid_async`, with `args`, a grid size
        of `grid`, and a block size of *block*, serialized into the
        :class:`pycuda.driver.Stream` `stream`.  If `stream` is None, do the
        same as :meth:`prepared_call`.  Assumes that :meth:`prepare` was called
        on *self*.  The texture references given to :meth:`prepare` are set up
        as parameters, as well.

        .. versionchanged:: 2012.1
            *shared_size* was added.

    .. method:: get_attribute(attr)

        Return one of the attributes given by the
        :class:`function_attribute` value *attr*.

        All :class:`function_attribute` values may also be directly read
        as (lower-case) attributes on the :class:`Function` object itself,
        e.g. `func.num_regs`.

        CUDA 2.2 and newer.

        .. versionadded:: 0.93

    .. attribute:: set_cache_config(fc)

        See :class:`func_cache` for possible values of *fc*.

        CUDA 3.0 (post-beta) and newer.

        .. versionadded:: 0.94

    .. attribute:: set_shared_config(sc)

        See :class:`shared_config` for possible values of *sc*.

        CUDA 4.2 and newer.

        .. versionadded:: 2013.1

    .. attribute:: local_size_bytes

        The number of bytes of local memory used by this function.

        On CUDA 2.1 and below, this is only available if this function is part
        of a :class:`pycuda.compiler.SourceModule`.  It replaces the now-deprecated attribute
        `lmem`.

    .. attribute:: shared_size_bytes

        The number of bytes of shared memory used by this function.

        On CUDA 2.1 and below, this is only available if this function is part
        of a :class:`pycuda.compiler.SourceModule`.  It replaces the now-deprecated attribute
        `smem`.

    .. attribute:: num_regs

        The number of 32-bit registers used by this function.

        On CUDA 2.1 and below, this is only available if this function is part
        of a :class:`pycuda.compiler.SourceModule`.  It replaces the now-deprecated attribute
        `registers`.

    .. method:: set_shared_size(bytes)

        Set *shared* to be the number of bytes available to the kernel in
        *extern __shared__* arrays.

        .. warning:: Deprecated as of version 2011.1.

    .. method:: set_block_shape(x, y, z)

        Set the thread block shape for this function.

        .. warning:: Deprecated as of version 2011.1.

    .. method:: param_set(arg1, ... argn)

        Set the thread block shape for this function.

        .. warning:: Deprecated as of version 2011.1.

    .. method:: param_set_size(bytes)

        Size the parameter space to *bytes*.

        .. warning:: Deprecated as of version 2011.1.

    .. method:: param_seti(offset, value)

        Set the integer at *offset* in the parameter space to *value*.

        .. warning:: Deprecated as of version 2011.1.

    .. method:: param_setf(offset, value)

        Set the float at *offset* in the parameter space to *value*.

        .. warning:: Deprecated as of version 2011.1.

    .. method:: launch()

        Launch a single thread block of *self*.

        .. warning:: Deprecated as of version 2011.1.

    .. method:: launch_grid(width, height)

        Launch a width*height grid of thread blocks of *self*.

        .. warning:: Deprecated as of version 2011.1.

    .. method:: launch_grid_async(width, height, stream)

        Launch a width*height grid of thread blocks of *self*, sequenced
        by the :class:`Stream` *stream*.

        .. warning:: Deprecated as of version 2011.1.


.. class:: ArgumentHandler(array)

.. class:: In(array)

    Inherits from :class:`ArgumentHandler`. Indicates that :class:`buffer`
    *array* should be copied to the compute device before invoking the kernel.

.. class:: Out(array)

    Inherits from :class:`ArgumentHandler`. Indicates that :class:`buffer`
    *array* should be copied off the compute device after invoking the kernel.

.. class:: InOut(array)

    Inherits from :class:`ArgumentHandler`. Indicates that :class:`buffer`
    *array* should be copied both onto the compute device before invoking
    the kernel, and off it afterwards.

Profiler Control
================

CUDA 4.0 and newer.


.. function:: initialize_profiler(config_file, output_file, output_mode)

    *output_mode* is one of the attributes of :class:`profiler_output_mode`.

    .. versionadded:: 2011.1

.. function:: start_profiler()

    .. versionadded:: 2011.1

.. function:: stop()

    .. versionadded:: 2011.1

Just-in-time Compilation
========================

.. module:: pycuda.compiler

.. data:: DEFAULT_NVCC_FLAGS

    .. versionadded:: 2011.1

    If no *options* are given in the calls below, the value of this list-type
    variable is used instead. This may be useful for injecting necessary flags
    into the compilation of automatically compiled kernels, such as those used
    by the module :mod:`pycuda.gpuarray`.

    The initial value of this variable is taken from the environment variable
    :envvar:`PYCUDA_DEFAULT_NVCC_FLAGS`.

    If you modify this variable in your code, please be aware that this is a
    globally shared variable that may be modified by multiple packages. Please
    exercise caution in such modifications--you risk breaking other people's
    code.

.. class:: SourceModule(source, nvcc="nvcc", options=None, keep=False, no_extern_c=False, arch=None, code=None, cache_dir=None, include_dirs=[])

    Create a :class:`Module` from the CUDA source code *source*. The Nvidia
    compiler *nvcc* is assumed to be on the :envvar:`PATH` if no path to it is
    specified, and is invoked with *options* to compile the code. If *keep* is
    *True*, the compiler output directory is kept, and a line indicating its
    location in the file system is printed for debugging purposes.

    Unless *no_extern_c* is *True*, the given source code is wrapped in
    *extern "C" { ... }* to prevent C++ name mangling.

    `arch` and `code` specify the values to be passed for the :option:`-arch`
    and :option:`-code` options on the :program:`nvcc` command line. If `arch` is
    `None`, it defaults to the current context's device's compute capability.
    If `code` is `None`, it will not be specified.

    `cache_dir` gives the directory used for compiler caching.  If `None`
    then `cache_dir` is taken to be :envvar:`PYCUDA_CACHE_DIR` if set or
    a sensible per-user default.  If passed as `False`, caching is disabled.

    If the environment variable :envvar:`PYCUDA_DISABLE_CACHE` is set to
    any value then caching is disabled.  This preference overrides any
    value of `cache_dir` and can be used to disable caching globally.

    This class exhibits the same public interface as :class:`pycuda.driver.Module`, but
    does not inherit from it.

    *Change note:* :class:`SourceModule` was moved from :mod:`pycuda.driver` to
    :mod:`pycuda.compiler` in version 0.93.

.. function:: compile(source, nvcc="nvcc", options=None, keep=False,
        no_extern_c=False, arch=None, code=None, cache_dir=None,
        include_dirs=[])

    Perform the same compilation as the corresponding
    :class:`SourceModule` constructor, but only return
    resulting *cubin* file as a string. In particular,
    do not upload the code to the GPU.