1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
|
<html>
<head>
<meta HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=windows-1252">
<title>Writing Python Extensions in C++</title>
<style>
H1, H2, H3, H4 {color: #000099;
background-color: lightskyblue}
h3 {position: relative; left: 20px}
p {position: relative; left: 20px; margin-right: 20px}
pre {color: #0000cc; background-color: #eeeeee; position: relative; left: 40px; margin-right: 80px;
border-style: solid; border-color: black; border-width: thin}
kbd {color: #990000}
p cite, ol cite, ul cite {font-family: monospace; font-style: normal; font-size: normal}
li var, pre var, p var, kbd var {color: #009900; font-style: italic}
li samp, pre samp, p samp, kbd samp {color: #009900; font-weight: bold}
li p {position: relative; left: 0}
table { position: relative; left: 20px; border: solid #888888 1px; background-color: #eeeeee}
table th {border: solid #888888 1px; background-color: #88dd88; color: black}
table td {border: solid #888888 1px}
table td.code {border: solid #888888 1px;font-family: monospace; font-style: normal; font-size: normal}
p.param {background-color: #eeeeee; border-top: lightskyblue solid 4}
</style>
</head>
<body bgcolor="#FFFFFF">
<h1 ALIGN="center">Writing Python Extensions in C++</h1>
<p ALIGN="CENTER">Barry Scott<br>
Reading, Berkshire, England<br>
<a href="mailto:barry@barrys-emacs.org">barry@barrys-emacs.org</a><br>
</p>
<p ALIGN="CENTER">Paul F. Dubois, <a href="mailto:dubois1@llnl.gov">dubois1@llnl.gov</a><br>
Lawrence Livermore National Laboratory<br>
Livermore, California, U.S.A.</p>
<p>PyCXX is designed to make it easier to extend Python with C++</p>
<p>PyCXX is a set of C++ facilities to make it easier to write Python extensions.
The chief way in which PyCXX makes it easier to write Python extensions is that it greatly
increases the probability that your program will not make a reference-counting error and
will not have to continually check error returns from the Python C API. PyCXX
integrates Python with C++ in these ways: </p>
<ul>
<li>C++ exception handling is relied on to detect errors and clean up. In a complicated
function this is often a tremendous problem when writing in C. With PyCXX, we let the
compiler keep track of what objects need to be dereferenced when an error occurs.
<li>The Standard Template Library (STL) and its many algorithms plug and play with Python
containers such as lists and tuples.
<li>The optional CXX_Extensions facility allows you to replace the clumsy C tables with
objects and method calls that define your modules and extension objects.
</ul>
<h3>Download and Installation</h3>
<p>Download PyCXX from <a href="http://sourceforge.net/projects/cxx/">http://sourceforge.net/projects/cxx/</a>.</p>
<p>The distribution layout is:</p>
<table>
<tr><th>Directory</th><th>Description</th></tr>
<tr><td class=code>.</td><td>Makefile for Unix and Windows, Release documentation</td>
<tr><td class=code>./CXX</td><td>Header files</td>
<tr><td class=code>./Src</td><td>Source files</td>
<tr><td class=code>./Doc</td><td>Documentation</td>
<tr><td class=code>./Demo</td><td>Testing and Demonstartion files</td>
</table>
<p>To use PyCXX you use its include files and add its source routines to your module.</p>
<p>Installation:</p>
<ul>
<li>Install the PyCXX files into a directory of your choice. For example:<br>
Windows: <cite>C:\PyCXX</cite><br>
Unix: <cite>/usr/local/PyCXX</cite>
<li>Tell your compiler where the PyCXX header files are:<br>
Windows: <cite>cl /I=C:\PyCXX ...</cite><br>
Unix: <cite>g++ -I/usr/local/PyCXX ...</cite>
<li>Include PyCXX headers files in your code using the CXX prefix:<br>
<cite>#include "CXX/Object.hxx"</cite>
</ul>
<p>The header file CXX/config.h may need to be adjusted for the
compiler you use. As of this writing, only a fairly obscure reference to part of the
standard library needs this adjustment. Unlike prior releases, PyCXX now assumes namespace
support and a standard C++ library. </p>
<h3>Use of namespaces</h3>
<p>All PyCXX assets are in namespace "Py". You need to include
the Py:: prefix when referring to them, or include the statement:</p>
<p>using namespace Py;</p>
<h2>Wrappers for standard objects: CXX_Objects.h</h2>
<p>Header file CXX_Objects.h requires adding file Src/cxxsupport.cxx to
your module sources. CXX_Objects provides a set of wrapper classes that allow you access
to most of the Python C API using a C++ notation that closely resembles Python. For
example, this Python:</p>
<pre>d = {}
d["a"] = 1
d["b"] = 2
alist = d.keys()
print alist</pre>
<p>Can be written in C++:</p>
<pre>Dict d;
List alist;
d["a"] = Int(1);
d["b"] = Int(2);
alist = d.keys();
std::cout << alist << std::endl;
</pre>
<p>You can optionally use the CXX/Extensions.hxx facility described later
to define Python extension modules and extension objects.</p>
<h3>We avoid programming with Python object pointers</h3>
<p>The essential idea is that we avoid, as much as possible, programming with pointers to
Python objects, that is, variables of type <cite>PyObject*</cite>. Instead,
we use instances of a family of C++ classes that represent the
usual Python objects. This family is easily extendible to include new kinds of Python
objects.</p>
<p>For example, consider the case in which we wish to write a method, taking a single
integer argument, that will create a Python <cite>dict</cite>
and insert into it that the integer plus one under the key <cite>value</cite>.
In C we might do that as follows:</p>
<pre>static PyObject* mymodule_addvalue (PyObject* self, PyObject* args)
{
PyObject *d;
PyObject* f;
int k;
PyArgs_ParseTuple(args, "i", &k);
d = PyDict_New();
if (!d)
return NULL;
f = PyInt_NEW(k+1);
if(!f)
{
Py_DECREF(d); /* have to get rid of d first */
return NULL;
}
if(PyDict_SetItemString(d, "value", f) == -1)
{
Py_DECREF(f);
Py_DECREF(d);
return NULL;
}
return d;
}</pre>
<p>If you have written a significant Python extension, this tedium looks all too familiar.
The vast bulk of the coding is error checking and cleanup. Now compare the same thing
written in C++ using CXX/Objects.hxx. The things with Python-like names (Int, Dict, Tuple) are
from CXX/Objects.hxx.</p>
<pre>static PyObject* mymodule_addvalue (PyObject* self, PyObject* pargs)
{
try {
Tuple args(pargs);
args.verify_length(1);
Dict d;
Int k = args[0];
d["value"] = k + 1;
return new_reference_to(d);
}
catch (const PyException&)
{
return NULL;
}
}</pre>
<p>If there are not the right number of arguments or the argument is not an
integer, an exception is thrown. In this case we choose to catch it and convert it into a
Python exception. The C++ exception handling mechanism takes care all the cleanup.</p>
<p>Note that the creation of the <cite>Int k</cite> got the first argument <em>and</em> verified
that it is an <cite>Int</cite>.</p>
<p>Just to peek ahead, if you wrote this method in an
ExtensionModule-derived module of your own, it would be a method and it could be written
even more simply:</p>
<pre>
Object addvalue (Object & self, const Tuple & args)
{
args.verify_length(1);
Dict d;
Int k = args[0];
d["value"] = k + 1;
return d;
}
</pre>
<h2>The basic concept is to wrap Python pointers</h2>
<p>The basic concept of CXX/Objects.hxx is to create a wrapper around
each <cite>PyObject *</cite> so that the reference counting can be
done automatically, thus eliminating the most frequent source of errors. In addition, we
can then add methods and operators so that Python objects can be manipulated in C++
much like you would in Python.</p>
<p>Each <cite>Object</cite> contains a <cite>PyObject *</cite>
to which it owns a reference. When an <cite>Object</cite> is destroyed, it releases its ownership on
the pointer. Since C++ calls the destructors on objects that are about to go out of scope,
we are guaranteed that we will keep the reference counts right even if we unexpectedly
leave a routine with an exception.</p>
<p>As a matter of philosophy, CXX/Objects.hxx prevents the creation of instances of its
classes unless the instance will be a valid instance of its class. When an attempt is made
to create an object that will not be valid, an exception is thrown.</p>
<p>Class <cite>Object</cite> represents the most general kind of Python object. The rest of the classes
that represent Python objects inherit from it.</p>
<pre>Object
Type
Int
Float
Long
Complex
Char
Sequence -> SeqBase<T>
String
Tuple
List
Mapping -> MapBase<T>
Dict
Callable
Module</pre>
<p>There are several constructors for each of these classes. For example, you can create
an <cite>Int</cite> from an integer as in</p>
<pre>Int s(3)</pre>
<p>However, you can also create an instance of one of these classes using any <cite>PyObject*</cite> or
another <cite>Object</cite>. If the corresponding Python object does not actually have the type
desired, an exception is thrown. This is accomplished as follows. Class <cite>Object</cite> defines a
virtual function <cite>accepts</cite>:</p>
<pre>virtual bool accepts(PyObject* p)</pre>
<p>The base class version of <cite>accepts</cite> returns true for any pointer p except 0. This means
we can create an Object using any <cite>PyObject *</cite>, or from any other
<cite>Object</cite>. However, if we attempt to create an <cite>Int</cite> from a <cite>PyObject *</cite>,
the overridding version
of <cite>accepts</cite> in class <cite>Int</cite> will only accept pointers that correspond to Python ints.
Therefore if we have a <cite>Tuple t</cite> and we wish to get the first element and be sure it is an
<cite>Int</cite>, we do</p>
<pre>Int first_element = t[0]</pre>
<p>This will not only accomplish the goal of extracting the first element of the <cite>Tuple t</cite>,
but it will ensure that the result is an <cite>Int</cite>. If not, an exception is thrown. The
exception mechanism is discussed later.</p>
<h2>Class Object</h2>
<p>Class <cite>Object</cite> serves as the base class for the other classes. Its default constructor
constructs a <cite>Py_None</cite>, the unique object of Python type <cite>None</cite>. The interface to <cite>Object</cite>
consists of a large number of methods corresponding to the operations that are defined for
every Python object. In each case, the methods throw an exception if anything goes
wrong.</p>
<p>There is no method corresponding to <cite>PyObject_SetItem</cite> with an arbitrary Python object
as a key. Instead, create an instance of a more specific child of <cite>Object</cite> and use the
appropriate facilities.</p>
<p>The comparison operators use the Python comparison function to compare values. The
method <cite>is</cite> is available to test for absolute identity.</p>
<p>A conversion to standard library string type <cite>std::string</cite> is supplied using method
<cite>as_string</cite>. Stream output of PyCXX <cite>Object</cite> instances uses this conversion,
which in turn uses the Python object's str() representation.</p>
<p>All the numeric operators are defined on all possible combinations of <cite>Object</cite>,
<cite>long</cite>, and <cite>double</cite>. These use the corresponding Python operators,
and should the operation fail for some reason, an exception is thrown.</p>
<h3>Dealing with pointers returned by the Python C API</h3>
<p>Often, <cite>PyObject *</cite> pointers are acquired from some function,
particularly functions in the Python C API. If you wish to make an object from the pointer
returned by such a function, you need to know if the function returns you an <i>owned</i>
or <i>unowned</i> reference. Unowned references are unusual but there are some cases where
unowned references are returned.</p>
<p>Usually, <cite>Object</cite> and its children acquire a new reference when constructed from a
<cite>PyObject *</cite>. This is usually not the right behavior if the reference comes from one
of the Python C API calls.</p>
<p>If p is an owned reference, you can add the boolean <cite>true</cite> as an extra
argument in the creation routine, <cite>Object(p, true)</cite>, or use the function <cite>asObject(p)</cite> which
returns an <cite>Object</cite> created using the owned reference. For example, the routine
<cite>PyString_FromString</cite> returns an owned reference to a Python string object. You could write:</p>
<pre>Object w = asObject( PyString_FromString("my string") );</pre>
<p>or using the constructor,</p>
<pre>Object w( PyString_FromString("my string"), true );</pre>
<p>In fact, you would never do this, since PyCXX has a class String and you can just say: </p>
<pre>String w( "my string" );</pre>
<p>Indeed, since most of the Python C API is similarly embodied in <cite>Object</cite>
and its descendents, you probably will not use asObject all that often.</p>
<h3>Table 1: Class Object</h3>
<table cellspacing=0 cellpadding=3px width="95%">
<tr>
<th>Returns</th>
<th>Name(signature)</th>
<th>Comment</th>
</tr>
<tr>
<td colspan="3"><p align="center"><strong>Basic Methods</strong></td>
</tr>
<tr>
<td class=code>explicit </td>
<td class=code>Object (PyObject* pyob=Py_None, bool owned=false) </td>
<td>Construct from pointer. </td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Object (const Object& ob)</td>
<td>Copycons; acquires an owned reference.</td>
</tr>
<tr>
<td class=code>Object&</td>
<td class=code>operator= (const Object& rhs) </td>
<td>Acquires an owned reference.</td>
</tr>
<tr>
<td class=code>Object&</td>
<td class=code>operator= (PyObject* rhsp) </td>
<td>Acquires an owned reference.</td>
</tr>
<tr>
<td class=code>virtual</td>
<td class=code>~Object () </td>
<td>Releases the reference.</td>
</tr>
<tr>
<td class=code>void</td>
<td class=code>increment_reference_count() </td>
<td>Explicitly increment the count</td>
</tr>
<tr>
<td class=code>void</td>
<td class=code>decrement_reference_count()</td>
<td>Explicitly decrement count but not to zero</td>
</tr>
<tr>
<td class=code>PyObject*</td>
<td class=code>operator* () const</td>
<td>Lends the pointer</td>
</tr>
<tr>
<td class=code>PyObject*</td>
<td class=code>ptr () const</td>
<td>Lends the pointer</td>
</tr>
<tr>
<td class=code>virtual bool</td>
<td class=code>accepts (PyObject *pyob) const</td>
<td>Would assignment of pyob to this object succeed?</td>
</tr>
<tr>
<td class=code>std::string</td>
<td class=code>as_string() const</td>
<td>str() representation</td>
</tr>
<tr>
<td colspan="3" align="center"><strong>Python API Interface</strong></td>
</tr>
<tr>
<td class=code>int</td>
<td class=code>reference_count () const </td>
<td>reference count</td>
</tr>
<tr>
<td class=code>Type</td>
<td class=code>type () const</td>
<td>associated type object</td>
</tr>
<tr>
<td class=code>String</td>
<td class=code>str () const</td>
<td>str() representation</td>
</tr>
<tr>
<td class=code>String</td>
<td class=code>repr () const</td>
<td>repr () representation</td>
</tr>
<tr>
<td class=code>bool</td>
<td class=code>hasAttr (const std::string& s) const</td>
<td>hasattr(this, s)</td>
</tr>
<tr>
<td class=code>Object</td>
<td class=code>getAttr (const std::string& s) const</td>
<td>getattr(this, s)</td>
</tr>
<tr>
<td class=code>Object</td>
<td class=code>getItem (const Object& key) const</td>
<td>getitem(this, key)</td>
</tr>
<tr>
<td class=code>long</td>
<td class=code>hashValue () const</td>
<td>hash(this)</td>
</tr>
<tr>
<td class=code>void</td>
<td class=code>setAttr (const std::string& s,<br>const Object& value)</td>
<td>this.s = value</td>
</tr>
<tr>
<td class=code>void</td>
<td class=code>delAttr (const std::string& s) </td>
<td>del this.s</td>
</tr>
<tr>
<td class=code>void</td>
<td class=code>delItem (const Object& key) </td>
<td>del this[key]</td>
</tr>
<tr>
<td class=code>bool</td>
<td class=code>isCallable () const</td>
<td>does this have callable behavior?</td>
</tr>
<tr>
<td class=code>bool</td>
<td class=code>isList () const</td>
<td>is this a Python list?</td>
</tr>
<tr>
<td class=code>bool</td>
<td class=code>isMapping () const</td>
<td>does this have mapping behaviors?</td>
</tr>
<tr>
<td class=code>bool</td>
<td class=code>isNumeric () const</td>
<td>does this have numeric behaviors?</td>
</tr>
<tr>
<td class=code>bool</td>
<td class=code>isSequence () const </td>
<td>does this have sequence behaviors?</td>
</tr>
<tr>
<td class=code>bool</td>
<td class=code>isTrue () const</td>
<td>is this true in the Python sense?</td>
</tr>
<tr>
<td class=code>bool</td>
<td class=code>isType (const Type& t) const</td>
<td>is type(this) == t?</td>
</tr>
<tr>
<td class=code>bool</td>
<td class=code>isTuple() const</td>
<td>is this a Python tuple?</td>
</tr>
<tr>
<td class=code>bool</td>
<td class=code>isString() const</td>
<td>is this a Python string?</td>
</tr>
<tr>
<td class=code>bool</td>
<td class=code>isUnicode() const</td>
<td>is this a Python Unicode string?</td>
</tr>
<tr>
<td class=code>bool</td>
<td class=code>isDict() const</td>
<td>is this a Python dictionary?</td>
</tr>
<tr>
<td colspan="3" align="center"><strong>Comparison Operators</strong></td>
</tr>
<tr>
<td class=code>bool</td>
<td class=code>is(PyObject* pother) const</td>
<td>test for identity</td>
</tr>
<tr>
<td class=code>bool</td>
<td class=code>is(const Object& other) const</td>
<td>test for identity</td>
</tr>
<tr>
<td class=code>bool </td>
<td class=code>operator==(const Object& o2) const</td>
<td>Comparisons use Python cmp</td>
</tr>
<tr>
<td class=code>bool</td>
<td class=code>operator!=(const Object& o2) const</td>
<td>Comparisons use Python cmp</td>
</tr>
<tr>
<td class=code>bool</td>
<td class=code>operator>=(const Object& o2) const</td>
<td>Comparisons use Python cmp</td>
</tr>
<tr>
<td class=code>bool</td>
<td class=code>operator<=(const Object& o2) const </td>
<td>Comparisons use Python cmp</td>
</tr>
<tr>
<td class=code>bool</td>
<td class=code>operator<(const Object& o2) const</td>
<td>Comparisons use Python cmp</td>
</tr>
<tr>
<td class=code>bool</td>
<td class=code>operator>(const Object& o2) const</td>
<td>Comparisons use Python cmp</td>
</tr>
</table>
<h1>The Basic Types</h1>
<p>Corresponding to each of the basic Python types is a class that inherits from Object.
Here are the interfaces for those types. Each of them inherits from Object and therefore
has all of the inherited methods listed for Object. Where a virtual function is overridden
in a class, the name is underlined. </p>
<h2>Class Type</h2>
<p>Class Type corresponds to Python type objects. There is no default constructor.</p>
<h3>Table 2: class Type</h3>
<table cellspacing=0 cellpadding=3px width="95%">
<tr>
<th>Returns</th>
<th>Name and Signature</th>
<th>Comments</th>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Type (PyObject* pyob, bool owned = false)</td>
<td>Constructor</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Type (const Object& ob)</td>
<td>Constructor</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Type(const Type& t)</td>
<td>Copycons</td>
</tr>
<tr>
<td class=code>Type&</td>
<td class=code>operator= (const Object& rhs) </td>
<td>Assignment</td>
</tr>
<tr>
<td class=code>Type&</td>
<td class=code>operator= (PyObject* rhsp) </td>
<td>Assignment</td>
</tr>
<tr>
<td class=code>virtual bool</td>
<td class=code><u>accepts</u> (PyObject *pyob) const</td>
<td>Uses PyType_Check</td>
</tr>
</table>
<h2>Class Int</h2>
<p>Class Int, derived publically from Object, corresponds to Python ints. Note that the
latter correspond to C long ints. Class Int has an implicit user-defined conversion to
long int. All constructors, on the other hand, are explicit. The default constructor
creates a Python int zero.</p>
<h3>Table 3: class Int</h3>
<table cellspacing=0 cellpadding=3px width="95%">
<tr>
<th>Returns</td>
<th>Name and Signature</td>
<th>Comments</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Int (PyObject *pyob, bool owned= false, bool owned = false)</td>
<td>Constructor</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Int (const Int& ob)</td>
<td>Constructor</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Int (long v = 0L)</td>
<td>Construct from long</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Int (int v)</td>
<td>Contruct from int</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Int (const Object& ob)</td>
<td>Copycons</td>
</tr>
<tr>
<td class=code>Int&</td>
<td class=code>operator= (const Object& rhs)</td>
<td>Assignment</td>
</tr>
<tr>
<td class=code>Int&</td>
<td class=code>operator= (PyObject* rhsp)</td>
<td>Assignment</td>
</tr>
<tr>
<td class=code>virtual bool </td>
<td class=code> (PyObject *pyob) const </td>
<td>Based on PyInt_Check</td>
</tr>
<tr>
<td class=code>long</td>
<td class=code>operator long() const </td>
<td><em>Implicit</em> conversion to long int</td>
</tr>
<tr>
<td class=code>Int&</td>
<td class=code>operator= (int v)</td>
<td>Assign from int</td>
</tr>
<tr>
<td class=code>Int&</td>
<td class=code>operator= (long v) </td>
<td>Assign from long</td>
</tr>
</table>
<hr>
<h2>Class Long</h2>
<p>Class Long, derived publically from Object, corresponds to Python type long. In Python,
a long is an integer type of unlimited size, and is usually used for applications such as
cryptography, not as a normal integer. Implicit conversions to both double and long are
provided, although the latter may of course fail if the number is actually too big. All
constructors are explicit. The default constructor produces a Python long zero.</p>
<h3>Table 4: Class Long</h3>
<table cellspacing=0 cellpadding=3px width="95%">
<tr>
<th>Returns</td>
<th>Name and Signature</td>
<th>Comments</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Long (PyObject *pyob</a>, bool owned = false)</td>
<td>Constructor</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Long (const Int& ob)</td>
<td>Constructor</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Long (long v = 0L)</td>
<td>Construct from long</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Long (int v)</td>
<td>Contruct from int</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Long (const Object& ob)</td>
<td>Copycons</td>
</tr>
<tr>
<td class=code>Long&</td>
<td class=code>operator= (const Object& rhs)</td>
<td>Assignment</td>
</tr>
<tr>
<td class=code>Long&</td>
<td class=code>operator= (PyObject* rhsp)</td>
<td>Assignment</td>
</tr>
<tr>
<td class=code>virtual bool</td>
<td class=code>(PyObject *pyob) const </td>
<td>Based on PyLong_Check</td>
</tr>
<tr>
<td class=code>double</td>
<td class=code>operator double() const </td>
<td><em>Implicit</em> conversion to double</td>
</tr>
<tr>
<td class=code>long</td>
<td class=code>operator long() const</td>
<td><em>Implicit</em> conversion to long</td>
</tr>
<tr>
<td class=code>Long&</td>
<td class=code>operator= (int v)</td>
<td>Assign from int</td>
</tr>
<tr>
<td class=code>Long&</td>
<td class=code>operator= (long v) </td>
<td>Assign from long</td>
</tr>
</table>
<h2>Class Float</h2>
<p>Class Float corresponds to Python floats, which in turn correspond to C double. The
default constructor produces the Python float 0.0. </p>
<h3>Table 5: Class Float</h3>
<table cellspacing=0 cellpadding=3px width="95%">
<tr>
<th>Returns</td>
<th>Name and Signature</td>
<th>Comments</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Float (PyObject *pyob</a>, bool owned = false)
</td>
<td>Constructor</td>
</tr>
<tr>
<td class=code></td>
<td class=code>Float (const Float& f) </td>
<td>Construct from float</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Float (double v=0.0)</td>
<td>Construct from double</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Float (const Object& ob)</td>
<td>Copycons</td>
</tr>
<tr>
<td class=code>Float&</td>
<td class=code>operator= (const Object& rhs)</td>
<td>Assignment</td>
</tr>
<tr>
<td class=code>Float&</td>
<td class=code>operator= (PyObject* rhsp)</td>
<td>Assignment</td>
</tr>
<tr>
<td class=code>virtual bool </td>
<td class=code>accepts (PyObject *pyob) const</td>
<td>Based on PyFloat_Check</td>
</tr>
<tr>
<td class=code>double </td>
<td class=code>operator double () const</td>
<td><em>Implicit</em> conversion to double</td>
</tr>
<tr>
<td class=code>Float& </td>
<td class=code>operator= (double v)</td>
<td>Assign from double</td>
</tr>
<tr>
<td class=code>Float& </td>
<td class=code>operator= (int v)</td>
<td>Assign from int</td>
</tr>
<tr>
<td class=code>Float& </td>
<td class=code>operator= (long v)</td>
<td>Assign from long</td>
</tr>
<tr>
<td class=code>Float& </td>
<td class=code>operator= (const Int& iob)</td>
<td>Assign from Int</td>
</tr>
</table>
<h1>Sequences</h1>
<p>PyCXX implements a quite sophisticated wrapper class for Python sequences. While every
effort has been made to disguise the sophistication, it may pop up in the form of obscure
compiler error messages, so in this documentation we will first detail normal usage and
then discuss what is under the hood.</p>
<p>The basic idea is that we would like the subscript operator [] to work properly, and to
be able to use STL-style iterators and STL algorithms across the elements of the sequence.</p>
<p>Sequences are implemented in terms of a templated base class, SeqBase<T>. The
parameter T is the answer to the question, sequence of what? For Lists, for example, T is
Object, because the most specific thing we know about an element of a List is simply that
it is an Object. (Class List is defined below; it is a descendent of Object that holds a
pointer to a Python list). For strings, T is Char, which is a wrapper in turn of Python
strings whose length is one.</p>
<p>For convenience, the word <strong>Sequence</strong> is a typedef of SeqBase<Object>.</p>
<h2>General sequences</h2>
<p>Suppose you are writing an extension module method that expects the first argument to
be any kind of Python sequence, and you wish to return the length of that sequence. You
might write:</p>
<pre>static PyObject*
my_module_seqlen (PyObject *self, PyObject* args) {
try
{
Tuple t(args); // set up a Tuple pointing to the arguments.
if(t.length() != 1)
throw PyException("Incorrect number of arguments to seqlen.");
Sequence s = t[0]; // get argument and be sure it is a sequence
return new_reference_to(Int(s.length()));
}
catch(const PyException&)
{
return Py_Null;
}
}</pre>
<p>As we will explain later, the try/catch structure converts any errors, such as the
first argument not being a sequence, into a Python exception.</p>
<h3>Subscripting</h3>
<p>When a sequence is subscripted, the value returned is a special kind of object which
serves as a proxy object. The general idea of proxy objects is discussed in Scott Meyers'
book, "More Effective C++". Proxy objects are necessary because when one
subscripts a sequence it is not clear whether the value is to be used or the location
assigned to. Our proxy object is even more complicated than normal because a sequence
reference such as s[i] is not a direct reference to the i'th object of s. </p>
<p>In normal use, you are not supposed to notice this magic going on behind your back. You
write:</p>
<pre>Object t;
Sequence s;
s[2] = t + s[1]</pre>
<p>and here is what happens: s[1] returns a proxy object. Since there is no addition
operator in Object that takes a proxy as an argument, the compiler decides to invoke an
automatic conversion of the proxy to an Object, which returns the desired component of s.
The addition takes place, and then there is an assignment operator in the proxy class
created by the s[2], and that assignment operator stuffs the result into the 2 component
of s.</p>
<p>It is possible to fool this mechanism and end up with a compiler failing to admit that
a s[i] is an Object. If that happens, you can work around it by writing Object(s[i]),
which makes the desired implicit conversion, explicit.</p>
<h3>Iterators</h3>
<p>Each sequence class provides the following interface. The class seqref<T> is the
proxy class. We omit the details of the iterator, const_iterator, and seqref<T>
here. See CXX_Objects.h if necessary. The purpose of most of this interface is to satisfy
requirements of the STL.</p>
<h3>The SeqBase<T> Interface</h3>
<p>SeqBase<T> inherits from Object.</p>
<table cellspacing=0 cellpadding=3px width="95%">
<tr>
<th>Type</td>
<th>Name</td>
</tr>
<tr>
<td class=code>typedef int </td>
<td class=code>size_type</td>
</tr>
<tr>
<td class=code>typedef seqref<T></td>
<td class=code>reference</td>
</tr>
<tr>
<td class=code>typedef T </td>
<td class=code>const_reference</td>
</tr>
<tr>
<td class=code>typedef seqref<T>*</td>
<td class=code>pointer</td>
</tr>
<tr>
<td class=code>typedef int </td>
<td class=code>difference_type</td>
</tr>
<tr>
<td class=code>virtual size_type</td>
<td class=code>max_size() const</td>
</tr>
<tr>
<td class=code>virtual size_type </td>
<td class=code>capacity() const;</td>
</tr>
<tr>
<td class=code>virtual void </td>
<td class=code>swap(SeqBase<T>& c);</td>
</tr>
<tr>
<td class=code>virtual size_type </td>
<td class=code>size () const;</td>
</tr>
<tr>
<td class=code>explicit </td>
<td class=code>SeqBase<T> ();</td>
</tr>
<tr>
<td class=code>explicit </td>
<td class=code>SeqBase<T> (PyObject* pyob, bool owned = false);</td>
</tr>
<tr>
<td class=code>explicit </td>
<td class=code>SeqBase<T> (const Object& ob);</td>
</tr>
<tr>
<td class=code>SeqBase<T>& </td>
<td class=code>operator= (const Object& rhs);</td>
</tr>
<tr>
<td class=code>SeqBase<T>& </td>
<td class=code>operator= (PyObject* rhsp);</td>
</tr>
<tr>
<td class=code>virtual bool </td>
<td class=code>accepts (PyObject *pyob) const;</td>
</tr>
<tr>
<td class=code>size_type </td>
<td class=code>length () const ;</td>
</tr>
<tr>
<td class=code>const T </td>
<td class=code>operator[](size_type index) const; </td>
</tr>
<tr>
<td class=code>seqref<T> </td>
<td class=code>operator[](size_type index); </td>
</tr>
<tr>
<td class=code>virtual T </td>
<td class=code>getItem (size_type i) const;</td>
</tr>
<tr>
<td class=code>virtual void </td>
<td class=code>setItem (size_type i, const T& ob);</td>
</tr>
<tr>
<td class=code>SeqBase<T> </td>
<td class=code>repeat (int count) const;</td>
</tr>
<tr>
<td class=code>SeqBase<T> </td>
<td class=code>concat (const SeqBase<T>& other) const ;</td>
</tr>
<tr>
<td class=code>const T </td>
<td class=code>front () const;</td>
</tr>
<tr>
<td class=code>seqref<T> </td>
<td class=code>front();</td>
</tr>
<tr>
<td class=code>const T </td>
<td class=code>back () const;</td>
</tr>
<tr>
<td class=code>seqref<T> </td>
<td class=code>back(); </td>
</tr>
<tr>
<td class=code>void </td>
<td class=code>verify_length(size_type required_size);</td>
</tr>
<tr>
<td class=code>void </td>
<td class=code>verify_length(size_type min_size, size_type max_size);</td>
</tr>
<tr>
<td class=code>class</td>
<td class=code>iterator;</td>
</tr>
<tr>
<td class=code>iterator </td>
<td class=code>begin (); </td>
</tr>
<tr>
<td class=code>iterator </td>
<td class=code>end ();</td>
</tr>
<tr>
<td class=code>class </td>
<td class=code>const_iterator;</td>
</tr>
<tr>
<td class=code>const_iterator </td>
<td class=code>begin () const;</td>
</tr>
<tr>
<td class=code>const_iterator </td>
<td class=code>end () const;</td>
</tr>
</table>
<p>Any heir of class Object that has a sequence behavior should inherit from class
SeqBase<T>, where T is specified as the type of object that represents the
individual elements of the sequence. The requirements on T are that it has a constructor
that takes a PyObject* as an argument, that it has a default constructor, a copy
constructor, and an assignment operator. In short, any properly defined heir of Object
will work. </p>
<h2>Classes Char and String</h2>
<p>Python strings are unusual in that they are immutable sequences of characters. However,
there is no character type per se; rather, when subscripted strings return a string of
length one. To simulate this, we define two classes Char and String. The Char class
represents a Python string object of length one. The String class represents a Python
string, and its elements make up a sequence of Char's.</p>
<p>The user interface for Char is limited. Unlike String, for example, it is not a
sequence.</p>
<h3>The Char interface</h3>
<p>Char inherits from Object.</p>
<table cellspacing=0 cellpadding=3px width="95%">
<tr>
<th>Type</td>
<th>Name</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Char (PyObject *pyob, bool owned = false)</td>
</tr>
<tr>
<td class=code></td>
<td class=code>Char (const Object& ob) </td>
</tr>
<tr>
<td class=code></td>
<td class=code>Char (const std::string& v = "") </td>
</tr>
<tr>
<td class=code></td>
<td class=code>Char (char v)</td>
</tr>
<tr>
<td class=code></td>
<td class=code>Char (Py_UNICODE v)</td>
</tr>
<tr>
<td class=code>Char&</td>
<td class=code>operator= (const std::string& v)</td>
</tr>
<tr>
<td class=code>Char&</td>
<td class=code>operator= (char v) </td>
</tr>
<tr>
<td class=code>Char&</td>
<td class=code>operator= (Py_UNICODE v) </td>
</tr>
<tr>
<td class=code>Char&</td>
<td class=code>operator= (std::basic_string<Py_UNICODE> v) </td>
</tr>
<tr>
<td class=code></td>
<td class=code>operator String() const</td>
</tr>
<tr>
<td class=code></td>
<td class=code>operator std::string () const </td>
</tr>
</table>
<h3>The String Interface</h3>
<p>String inherits from SeqBase<Char>.</p>
<table cellspacing=0 cellpadding=3px width="95%">
<tr>
<th>Type</td>
<th>Name</td>
</tr>
<tr>
<td class=code>explicit </td>
<td class=code>String (PyObject *pyob, bool owned = false)</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>String (const Object& ob)</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>String (const std::string& v = "")</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>String (const std::string& v, const char *encoding, const char *error="strict")</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>String (const char *s, const char *encoding, const char *error="strict")</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>String (const char *s, int len, const char *encoding, const char *error="strict")</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>String (const std::string& v, std::string::size_type vsize)</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>String (const char* v)</td>
</tr>
<tr>
<td class=code>String&</td>
<td class=code>operator= (const std::string& v) </td>
</tr>
<tr>
<td class=code>std::string</td>
<td class=code>operator std::string () const</td>
</tr>
<tr>
<td class=code>String</td>
<td class=code>encode( const char *encoding, const char *error="strict" )</td>
</tr>
<tr>
<td class=code>String</td>
<td class=code>decode( const char *encoding, const char *error="strict" )</td>
</tr>
<tr>
<td class=code>std::string</td>
<td class=code>as_std_string() const</td>
</tr>
<tr>
<td class=code>unicodestring</td>
<td class=code>as_unicodestring() const</td>
</tr>
</table>
<h2>Class Tuple</h2>
<p>Class Tuple represents Python tuples. A Tuple is a Sequence. There are two kinds of
constructors: one takes a PyObject* as usual, the other takes an integer number as an
argument and returns a Tuple of that length, each component initialized to Py_None. The
default constructor produces an empty Tuple. </p>
<p>Tuples are not immutable, but attempts to assign to their components will fail if the
reference count is not 1. That is, it is safe to set the elements of a Tuple you have just
made, but not thereafter.</p>
<p>Example: create a Tuple containing (1, 2, 4)</p>
<pre>Tuple t(3)
t[0] = Int(1)
t[1] = Int(2)
t[2] = Int(4)</pre>
<p>Example: create a Tuple from a list:</p>
<pre>Dict d
...
Tuple t(d.keys())</pre>
<h3>The Tuple Interface</h3>
<p>Tuple inherits from Sequence.. Special run-time checks prevent modification if the
reference count is greater than one.</p>
<table cellspacing=0 cellpadding=3px width="95%">
<tr>
<th>Type</td>
<th>Name</td>
<th>Comment</td>
</tr>
<tr>
<td class=code>virtual void</td>
<td class=code>setItem (int offset, const Object&ob) </td>
<td>setItem is overriden to handle tuples properly. </td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Tuple (PyObject *pyob, bool owned = false)</td>
<td></td>
</tr>
<tr>
<td class=code> </td>
<td class=code>Tuple (const Object& ob)</td>
<td></td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Tuple (int size = 0)</td>
<td>Create a tuple of the given size. Items initialize to Py_None. Default is an empty
tuple.</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Tuple (const Sequence& s)</td>
<td>Create a tuple from any sequence.</td>
</tr>
<tr>
<td class=code>Tuple&</td>
<td class=code>operator= (const Object& rhs)</td>
<td></td>
</tr>
<tr>
<td class=code>Tuple&</td>
<td class=code>operator= (PyObject* rhsp)</td>
<td></td>
</tr>
<tr>
<td class=code>Tuple</td>
<td class=code>getSlice (int i, int j) const </td>
<td>Equivalent to python's t[i:j]</td>
</tr>
</table>
<h2>Class List</h2>
<p>Class List represents a Python list, and the methods available faithfully reproduce the
Python API for lists. A List is a Sequence.</p>
<h3>The List Interface</h3>
<p>List inherits from Sequence.</p>
<table cellspacing=0 cellpadding=3px width="95%">
<tr>
<th>Type</td>
<th>Name</td>
<th>Comment</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>List (PyObject *pyob, bool owned = false)</td>
<td></td>
</tr>
<tr>
<td class=code> </td>
<td class=code>List (const Object& ob)</td>
<td></td>
</tr>
<tr>
<td class=code> </td>
<td class=code>List (int size = 0)</td>
<td>Create a list of the given size. Items initialized to Py_None. Default is an empty list.</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>List (const Sequence& s)</td>
<td>Create a list from any sequence.</td>
</tr>
<tr>
<td class=code>List&</td>
<td class=code>operator= (const Object& rhs)</td>
<td></td>
</tr>
<tr>
<td class=code>List&</td>
<td class=code>operator= (PyObject* rhsp)</td>
<td></td>
</tr>
<tr>
<td class=code>List</td>
<td class=code>getSlice (int i, int j) const</td>
<td></td>
</tr>
<tr>
<td class=code>void</td>
<td class=code>setSlice (int i, int j, const Object& v) </td>
<td></td>
</tr>
<tr>
<td class=code>void</td>
<td class=code>append (const Object& ob)</td>
<td></td>
</tr>
<tr>
<td class=code>void</td>
<td class=code>insert (int i, const Object& ob)</td>
<td></td>
</tr>
<tr>
<td class=code>void</td>
<td class=code>sort ()</td>
<td>Sorts the list in place, using Python's member function. You can also use
the STL sort function on any List instance.</td>
</tr>
<tr>
<td class=code>void</td>
<td class=code>reverse ()</td>
<td>Reverses the list in place, using Python's member function.</td>
</tr>
</table>
<h1>Mappings</h1>
<p>A class MapBase<T> is used as the base class for Python objects with a mapping
behavior. The key behavior of this class is the ability to set and use items by
subscripting with strings. A proxy class mapref<T> is defined to produce the correct
behavior for both use and assignment.</p>
<p>For convenience, <cite>Mapping</cite> is a typedef for <cite>MapBase<Object></cite>.</p>
<h3>The MapBase<T> interface</h3>
<p>MapBase<T> inherits from Object. T should be chosen to reflect the kind of
element returned by the mapping.</p>
<table cellspacing=0 cellpadding=3px width="95%">
<tr>
<th>Type</td>
<th>Name</td>
<th>Comment</td>
</tr>
<tr>
<td class=code>T</td>
<td class=code>operator[](const std::string& key) const</td>
<td></td>
</tr>
<tr>
<td class=code>mapref<T> </td>
<td class=code>operator[](const std::string& key)</td>
<td></td>
</tr>
<tr>
<td class=code>int</td>
<td class=code>length () const</td>
<td>Number of entries.</td>
</tr>
<tr>
<td class=code>int</td>
<td class=code>hasKey (const std::string& s) const </td>
<td>Is m[s] defined?</td>
</tr>
<tr>
<td class=code>T</td>
<td class=code>getItem (const std::string& s) const</td>
<td>m[s]</td>
</tr>
<tr>
<td class=code>virtual void</td>
<td class=code>setItem (const std::string& s, const Object& ob)</td>
<td>m[s] = ob</td>
</tr>
<tr>
<td class=code>void</td>
<td class=code>delItem (const std::string& s)</td>
<td>del m[s]</td>
</tr>
<tr>
<td class=code>void</td>
<td class=code>delItem (const Object& s)</td>
<td></td>
</tr>
<tr>
<td class=code>List</td>
<td class=code>keys () const</td>
<td>A list of the keys.</td>
</tr>
<tr>
<td class=code>List</td>
<td class=code>values () const</td>
<td>A list of the values.</td>
</tr>
<tr>
<td class=code>List</td>
<td class=code>items () const</td>
<td>Each item is a key-value pair.</td>
</tr>
</table>
<h2>Class Dict</h2>
<p>Class Dict represents Python dictionarys. A Dict is a Mapping. Assignment to
subscripts can be used to set the components.</p>
<pre>Dict d
d["Paul Dubois"] = "(925)-422-5426"</pre>
<h3>Interface for Class Dict</h3>
<p>Dict inherits from MapBase<Object>.</p>
<table cellspacing=0 cellpadding=3px width="95%">
<tr>
<th>Type</td>
<th>Name</td>
<th>Comment</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Dict (PyObject *pyob</a>, bool owned = false)</td>
<td></td>
</tr>
<tr>
<td class=code> </td>
<td class=code>Dict (const Dict& ob)</td>
<td></td>
</tr>
<tr>
<td class=code> </td>
<td class=code>Dict () </td>
<td>Creates an empty dictionary</td>
</tr>
<tr>
<td class=code>Dict&</td>
<td class=code>operator= (const Object& rhs)</td>
<td></td>
</tr>
<tr>
<td class=code>Dict&</td>
<td class=code>operator= (PyObject* rhsp)</td>
<td></td>
</tr>
</table>
<h1>Other classes and facilities.</h1>
<p>Class Callable provides an interface to those Python objects that support a call
method. Class Module holds a pointer to a module. If you want to create an extension
module, however, see the extension facility. There is a large set of numeric operators.</p>
<h3>Interface to class Callable</h3>
<table cellspacing=0 cellpadding=3px width="95%">
<tr>
<th>Type</td>
<th>Name</td>
<th>Comment</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Callable (PyObject *pyob</a>, bool owned = false)</td>
<td></td>
</tr>
<tr>
<td class=code>Callable& </td>
<td class=code>operator= (const Object& rhs)</td>
<td></td>
</tr>
<tr>
<td class=code>Callable& </td>
<td class=code>operator= (PyObject* rhsp)</td>
<td></td>
</tr>
<tr>
<td class=code>Object</td>
<td class=code>apply(const Tuple& args) const</td>
<td>Call the object with the given arguments</td>
</tr>
<tr>
<td class=code>Object</td>
<td class=code>apply(PyObject* pargs = 0) const </td>
<td>Call the object with args as the arguments. Checks that pargs is a tuple.</td>
</tr>
</table>
<h3>Interface to class Module</h3>
<table cellspacing=0 cellpadding=3px width="95%">
<tr>
<th>Type</td>
<th>Name</td>
<th>Comment</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Module (PyObject* pyob, bool owned = false)</td>
<td></td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>Module (const std::string name)</td>
<td>Construct from name of module; does the import if needed.</td>
</tr>
<tr>
<td class=code></td>
<td class=code>Module (const Module& ob) </td>
<td>Copy constructor</td>
</tr>
<tr>
<td class=code>Module&</td>
<td class=code>operator= (const Object& rhs) </td>
<td>Assignment</td>
</tr>
<tr>
<td class=code>Module&</td>
<td class=code>operator= (PyObject* rhsp) </td>
<td>Assignment</td>
</tr>
</table>
<h3>Numeric interface</h3>
<p>Unary operators for plus and minus, and binary operators +, -, *, /, and % are defined
for pairs of objects and for objects with scalar integers or doubles (in either
order). Functions abs(ob) and coerce(o1, o2) are also defined. </p>
<p>The signature for coerce is:</p>
<pre>inline std::pair<Object,Object> coerce(const Object& a, const Object& b)</pre>
<p>Unlike the C API function, this simply returns the pair after coercion.</p>
<h3>Stream I/O</h3>
<p>Any object can be printed using stream I/O, using std::ostream& operator<<
(std::ostream& os, const Object& ob). The object's str() representation is
converted to a standard string which is passed to std::ostream& operator<<
(std::ostream& os, const std::string&).</p>
<h2>Exceptions</h2>
<p>The Python exception facility and the C++ exception facility can be merged via the use
of try/catch blocks in the bodies of extension objects and module functions.</p>
<h3>Class Exception and its children</h3>
<p>A set of classes is provided. Each is derived from class Exception, and represents a
particular sort of Python exception, such as IndexError, RuntimeError, ValueError. Each of
them (other than Exception) has a constructor which takes an explanatory string as an
argument, and is used in a throw statement such as:</p>
<pre>throw IndexError("Index too large in MyObject access.");</pre>
<p>If in using a routine from the Python API, you discover that it has returned a NULL
indicating an error, then Python has already set the error message. In that case you
merely throw Exception.</p>
<h3>List of Exceptions</h3>
<p>The exception hierarchy mirrors the Python exception hierarchy. The concrete exception
classes are shown here.</p>
<table cellspacing=0 cellpadding=3px width="95%">
<tr>
<th>Type</th>
<th>Interface for class Exception</th>
</tr>
<tr>
<td class=code>explicit </td>
<td class=code>Exception()</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>Exception (const std::string& reason) </td>
</tr>
<tr>
<td class=code> </td>
<td class=code>Exception (PyObject* exception, const std::string& reason) </td>
</tr>
<tr>
<td class=code>void </td>
<td class=code>clear()</td>
</tr>
<tr>
<td class=code></td>
<td>Constructors for other children of class Exception</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>TypeError (const std::string& reason)</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>IndexError (const std::string& reason)</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>AttributeError (const std::string& reason)</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>NameError (const std::string& reason)</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>RuntimeError (const std::string& reason)</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>SystemError (const std::string& reason)</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>KeyError (const std::string& reason)</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>ValueError (const std::string& reason)</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>OverflowError (const std::string& reason)</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>ZeroDivisionError (const std::string& reason)</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>MemoryError (const std::string& reason)</td>
</tr>
<tr>
<td class=code> </td>
<td class=code>SystemExit (const std::string& reason)</td>
</tr>
</table>
<h2>Using Exceptions in extension methods</h2>
<p>The exception facility allows you to integrate the C++ and Python exception mechanisms.
To do this, you must use the style described below when writing module methods in the old
C style. </p>
<p>Note: If using the ExtensionModule or PythonExtension mechanisms described below, the
method handlers include exception handling so that you only need to use exceptions
explicitly in unusual cases.</p>
<h3>Catching Exceptions from the Python API or PyCXX.</h3>
<p>When writing an extension module method, you can use the following boilerplate. Any
exceptions caused by the Python API or PyCXX itself will be converted into a Python
exception. Note that Exception is the most general of the exceptions listed above, and
therefore this one catch clause will serve to catch all of them. You may wish to catch
other exceptions, not in the Exception family, in the same way. If so, you need to make
sure you set the error in Python before returning.</p>
<pre>static PyObject *
some_module_method(PyObject* self, PyObject* args)
{
Tuple a(args); // we know args is a Tuple
try {
...calculate something from a...
return ...something, usually of the form new_reference_to(some Object);
}
catch(const Exception&) {
//Exception caught, passing it on to Python
return Null ();
}
}
</pre>
<h3>How to clear an Exception</h3>
<p>If you anticipate that an Exception may be thrown and wish to recover from it, change
the catch phrase to set a reference to an Exception, and use the method clear() from class
Exception to clear it.:</p>
<pre>catch(Exception& e)
{
e.clear();
...now decide what to do about it...
}
</pre>
<h2>Extension Facilities</h2>
<p>CXX/Extensions.hxx provides facilities for:
<ul>
<li>Creating a Python extension module</li>
<li>Creating new Python extension types</li>
</ul>
<p>These facilities use CXX/Objects.hxx and its support file cxxsupport.cxx.</p>
<p>If you use CXX/Extensions.hxx you must also include source files cxxextensions.c and
cxx_extensions.cxx</p>
<h3>Creating an Python extension module</h3>
<p>The usual method of creating a Python extension module is to declare and initialize its
method table in C. This requires knowledge of the correct form for the table and the order
in which entries are to be made into it, and requires casts to get everything to compile
without warning. The PyCXX header file CXX/Extensions.h offers a simpler method. Here is a
sample usage, in which a module named "example" is created. Note that two
details are necessary:
<ul>
<li>The initialization function must be declared to have external C linkage and to have the
expected name. This is a requirement imposed by Python</li>
<li>The ExtensionModule object must have a storage class that survives the call to the
initialization function. This is most easily accomplished by using a static local inside
the initialization function, as in initexample below.</li>
</ul>
<p>To create an extension module, you inherit from class ExtensionModule templated on
yourself: In the constructor, you make calls to register methods of this class with Python
as extension module methods. In this example, two methods are added (this is a simplified
form of the example in Demo/example.cxx):</p>
<pre>class example_module : public ExtensionModule<example_module>
{
public:
example_module()
: ExtensionModule<example_module>( "example" )
{
add_varargs_method("sum", &example_module::ex_sum, "sum(arglist) = sum of arguments");
add_varargs_method("test", &example_module::ex_test, "test(arglist) runs a test suite");
initialize( "documentation for the example module" );
}
virtual ~example_module() {}
private:
Object ex_sum(const Tuple &a) { ... }
Object ex_test(const Tuple &a) { ... }
};
</pre>
<p>To initialize the extension, you just instantiate one static instance (static so it
does not destroy itself!):</p>
<pre>void initexample()
{
static example_module* example = new example_module;
}</pre>
<p>The methods can be written to take Tuples as arguments and return Objects. If
exceptions occur they are trapped for you and a Python exception is generated. So, for
example, the implementation of ex_sum might be:</p>
<pre>Object ex_sum (const Tuple &a)
{
Float f(0.0);
for( int i = 0; i < a.length(); i++ )
{
Float g(a[i]);
f = f + g;
}
return f;
}</pre>
<p>class ExtensionModule contains methods to return itself as a Module object, or to
return its dictionary.</p>
<h3>Interface to class ExtensionModule</h3>
<table cellspacing=0 cellpadding=3px width="95%">
<tr>
<th>Type</td>
<th>Name</td>
<th>Comment</td>
</tr>
<tr>
<td class=code>explicit</td>
<td class=code>ExtensionModule (char* name) </td>
<td>Create an extension module named "name"</td>
</tr>
<tr>
<td class=code>virtual </td>
<td class=code>~ExtensionModule () </td>
<td>Destructor</td>
</tr>
<tr>
<td class=code>Dict</td>
<td class=code>moduleDictionary() const</td>
<td>Returns the module dictionary; module must be initialized.</td>
</tr>
<tr>
<td class=code>Module</td>
<td class=code>module() const</td>
<td>This module as a Module.</td>
</tr>
<tr>
<td class=code>void </td>
<td class=code>add_varargs_method (char *name, method_varargs_function_t method, char *documentation="")</td>
<td>Add a method to the module.</td>
</tr>
<tr>
<td class=code>void </td>
<td class=code>add_keyword_method (char *name, method_keyword_function_t method, char *documentation=""</td>
<td>Add a method that takes keywords</td>
</tr>
<tr>
<td class=code>void</td>
<td class=code>initialize() (protected, call from constructor)</td>
<td>Initialize the module once all methods have been added. </td>
</tr>
</table>
<p>The signatures above are:</p>
<pre>typedef Object (T::*method_varargs_function_t)( const Tuple &args );
typedef Object (T::*method_keyword_function_t)( const Tuple &args, const Dict &kws
);</pre>
<p>That is, the methods take a Tuple or a Tuple and a Dict, and return an Object. The
example below has an & in front of the name of the method; we found one compiler that
needed this.</p>
<h2>Creating a Python extension type</h2>
<p>One of the great things about Python is the way you can create your own object types
and have Python welcome them as first-class citizens. Unfortunately, part of the way you
have to do this is not great. Key to the process is the creation of a Python "type
object". All instances of this type must share a reference to this one unique type
object. The type object itself has a multitude of "slots" into which the
addresses of functions can be added in order to give the object the desired behavior. </p>
<p>Creating extension objects is of course harder since you must specify
how the object behaves and give it methods. This is shown in some detail in the example
range.h and range.cxx, with the test routine rangetest.cxx, in directory Demo. If you have never
created a Python extension before, you should read the Extension manual first and be very
familiar with Python's "special class methods". Then what follows will make more
sense.</p>
<p>The basic idea is to inherit from PythonExtension templated on your self</p>
<pre>class MyObject: public PythonExtension<MyObject> {...}</pre>
<p>As a consequence:
<ul>
<li>MyObject is a child of PyObject, so that a MyObject* is-a PyObject*. </li>
<li>A static method <cite>check(PyObject*)</cite> is created in class MyObject. This function
returns a boolean, testing whether or not the argument is in fact a pointer to an instance
of MyObject.</li>
<li>The user can connect methods of MyObject to Python so that they are methods on MyObject
objects. Each such method has the signature:<br>
Object method_name (const Tuple& args).</li>
<li>The user can override virtual methods of PythonExtension in order to set behaviors.</li>
<li>A method is created to handle the deletion of an instance if and when its reference
count goes to zero. This method ensures the calling of the class destructor ~MyObject(),
if any, and releases the memory (see below).</li>
<li>Both automatic and heap-based instances of MyObject can be created.</li>
</ul>
<h3>Sample usage of PythonExtension</h3>
<p>Here is a brief overview. You create a class that inherits from PythonExtension
templated upon itself. You override various methods from PythonExtension to implement
behaviors, such as getattr, sequence_item, etc. You can also add methods to the object
that are usable from Python using a similar scheme as for module methods above. </p>
<p>One of the consequences of inheriting from PythonExtension is that you are inheriting
from PyObject itself. So your class is-a PyObject and instances of it can be passed to the
Python C API. Note: this example uses the namespace feature of PyCXX.</p>
<p>Hint: You can avoid needing to specify the Py:: prefix if you include the C++ statement
<cite>using Py;</cite> at the top of your files.</p>
<pre>class range: public Py::PythonExtension<range> {
public:
... constructors, data, etc.
... methods not callable from Python
// initializer, see below
static void init_type();
// override functions from PythonExtension
virtual Py::Object repr();
virtual Py::Object getattr( const char *name );
virtual int sequence_length();
virtual Py::Object sequence_item( int i );
virtual Py::Object sequence_concat( const Py::Object &j );
virtual Py::Object sequence_slice( int i, int j );
// define python methods of this object
Py::Object amethod (const Py::Tuple& args);
Py::Object value (const Py::Tuple& args);
Py::Object assign (const Py::Tuple& args);
};</pre>
<p>
To initialize the type we provide a static method that we can call from some module's
initializer. We set the name, doc string, and indicate which behaviors range objects
support. Then we adds the methods.</p>
<pre>void range::init_type()
{
behaviors().name("range");
behaviors().doc("range objects: start, stop, step");
behaviors().supportRepr();
behaviors().supportGetattr();
behaviors().supportSequenceType();
add_varargs_method("amethod", &range::amethod,
"demonstrate how to document amethod");
add_varargs_method("assign", &range::assign);
add_varargs_method("value", &range::value);
}</pre>
</a>
<p>Do not forget to add the call range::init_type() to some module's init function. You will want
a method in some module that can create range objects, too.</p>
<h3>Interface to PythonExtension <T></h3>
<p>Your extension class T inherits PythonExtension<T>.</p>
<table cellspacing=0 cellpadding=3px width="95%">
<tr>
<th>Type</td>
<th>Name</td>
<th>Comment</td>
</tr>
<tr>
<td class=code>virtual </td>
<td class=code>~PythonExtension<T>() </td>
<td>Destructor</td>
</tr>
<tr>
<td class=code>PyTypeObject* </td>
<td class=code>type_object() const</td>
<td>Returns the object type object.</td>
</tr>
<tr>
<td class=code>int</td>
<td class=code>check (PyObject* p)</td>
<td>Is p a T?</td>
</tr>
<tr>
<td colspan="3"><strong>Protected </strong></td>
</tr>
<tr>
<td class=code>void </td>
<td class=code>add_varargs_method (char *name, method_keyword_function_t method, char *documentation=""</td>
<td>Add a method that takes arguments</td>
</tr>
<tr>
<td class=code>void </td>
<td class=code>add_keyword_method (char *name, method_keyword_function_t method, char *documentation=""</td>
<td>Add a method that takes keywords</td>
</tr>
<tr>
<td class=code>static PythonType&</td>
<td class=code>behaviors()</td>
<td>The type object</td>
</tr>
<tr>
<td class=code>void</td>
<td class=code>initialize() (protected, call from constructor)</td>
<td>Initialize the module once all methods have been added. </td>
</tr>
</table>
<p>As before the signatures for the methods are Object mymethod(const Tuple&
args) and Object mykeywordmethod (const Tuple& args, const Dict& keys). In this
case, the methods must be methods of T.</p>
<p>To set the behaviors of the object you override some or all of these methods from
PythonExtension<T>:</p>
<pre> virtual int print( FILE *, int );
virtual Object getattr( const char * );
virtual int setattr( const char *, const Object & );
virtual Object getattro( const Object & );
virtual int setattro( const Object &, const Object & );
virtual int compare( const Object & );
virtual Object repr();
virtual Object str();
virtual long hash();
virtual Object call( const Object &, const Object & );
// Sequence methods
virtual int sequence_length();
virtual Object sequence_concat( const Object & );
virtual Object sequence_repeat( int );
virtual Object sequence_item( int );
virtual Object sequence_slice( int, int );
virtual int sequence_ass_item( int, const Object & );
virtual int sequence_ass_slice( int, int, const Object & );
// Mapping
virtual int mapping_length();
virtual Object mapping_subscript( const Object & );
virtual int mapping_ass_subscript( const Object &, const Object & );
// Number
virtual int number_nonzero();
virtual Object number_negative();
virtual Object number_positive();
virtual Object number_absolute();
virtual Object number_invert();
virtual Object number_int();
virtual Object number_float();
virtual Object number_long();
virtual Object number_oct();
virtual Object number_hex();
virtual Object number_add( const Object & );
virtual Object number_subtract( const Object & );
virtual Object number_multiply( const Object & );
virtual Object number_divide( const Object & );
virtual Object number_remainder( const Object & );
virtual Object number_divmod( const Object & );
virtual Object number_lshift( const Object & );
virtual Object number_rshift( const Object & );
virtual Object number_and( const Object & );
virtual Object number_xor( const Object & );
virtual Object number_or( const Object & );
virtual Object number_power( const Object &, const Object & );
// Buffer
virtual int buffer_getreadbuffer( int, void** );
virtual int buffer_getwritebuffer( int, void** );
virtual int buffer_getsegcount( int* );</pre>
<p>Note that dealloc is not one of the functions you can override. That is what your
destructor is for. As noted below, dealloc behavior is provided for you by
PythonExtension.</p>
<h3>Type initialization</h3>
<p>To initialize your type, supply a static public member function that can be called
from the extension module. In that function, obtain the PythonType object by calling
behaviors() and apply appropriate "support" methods from PythonType to turn on
the support for that behavior or set of behaviors.</p>
<pre> void supportPrint(void);
void supportGetattr(void);
void supportSetattr(void);
void supportGetattro(void);
void supportSetattro(void);
void supportCompare(void);
void supportRepr(void);
void supportStr(void);
void supportHash(void);
void supportCall(void);
void supportSequenceType(void);
void supportMappingType(void);
void supportNumberType(void);
void supportBufferType(void);</pre>
<p>Then call add_varargs_method or add_keyword_method to add any methods desired to the
object.</p>
<h3>Notes on memory management and extension objects</h3>
<p>Normal Python objects exist only on the heap. That is unfortunate, as object creation
and destruction can be relatively expensive. Class PythonExtension allows creation of both
local and heap-based objects.</p>
<p>If an extension object is created using operator new, as in:</p>
<pre>range* my_r_ref = new range(1, 20, 3)</pre>
<p>then the entity my_r_ref can be thought of as "owning" the reference created
in the new object. Thus, the object will never have a reference count of zero. If the
creator wishes to delete this object, they should either make sure the reference count is
1 and then do delete my_r_ref, or decrement the reference with Py_DECREF(my_r_ref).</p>
<p>Should my_r_ref give up ownership by being used in an Object constructor, all will
still be well. When the Object goes out of scope its destructor will be called, and that
will decrement the reference count, which in turn will trigger the special dealloc routine
that calls the destructor and deletes the pointer.</p>
<p>If the object is created with automatic scope, as in:</p>
<pre>range my_r(1, 20, 3)</pre>
<p>then my_r can be thought of as owning the reference, and when my_r goes out of scope
the object will be destroyed. Of course, care must be taken not to have kept any permanent
reference to this object. Fortunately, in the case of an exception, the C++ exception
facility will call the destructor of my_r. Naturally, care must be taken not to end up
with a dangling reference, but such objects can be created and destroyed more efficiently
than heap-based PyObjects.</p>
<h2>Putting it all together</h2>
<p>The Demo directory of the distribution contains an extensive example of how to use many
of the facilities in PyCXX. It also serves as a test routine. This test is not completely
exhaustive but does excercise much of the facility.</p>
<h2>Acknowledgment</h2>
<p>Thank you to Geoffrey Furnish for patiently teaching me the finer points of C++ and its
template facility, and his critique of PyCXX in particular. With version 4 I welcome Barry
Scott as co-author. -- Paul Dubois</p>
</body>
</html>
|