File: test_simple.py

package info (click to toggle)
pydantic-core 2.41.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,828 kB
  • sloc: python: 35,564; javascript: 211; makefile: 128
file content (171 lines) | stat: -rw-r--r-- 5,524 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import json
from enum import IntEnum

import pytest

from pydantic_core import CoreConfig, SchemaSerializer, core_schema

try:
    import numpy
except ImportError:
    numpy = None


class IntSubClass(int):
    pass


class MyIntEnum(IntEnum):
    one = 1
    two = 2


class FloatSubClass(float):
    pass


# A number well outside of i64 range
_BIG_NUMBER_BYTES = b'1' + (b'0' * 40)


@pytest.mark.parametrize('custom_type_schema', [None, 'any'])
@pytest.mark.parametrize(
    'schema_type,value,expected_python,expected_json',
    [
        ('int', 1, 1, b'1'),
        ('int', int(_BIG_NUMBER_BYTES), int(_BIG_NUMBER_BYTES), _BIG_NUMBER_BYTES),
        ('bool', True, True, b'true'),
        ('bool', False, False, b'false'),
        ('float', 1.0, 1.0, b'1.0'),
        ('float', 42.31415, 42.31415, b'42.31415'),
        ('none', None, None, b'null'),
        ('int', IntSubClass(42), IntSubClass(42), b'42'),
        ('int', MyIntEnum.one, MyIntEnum.one, b'1'),
        ('float', FloatSubClass(42), FloatSubClass(42), b'42.0'),
    ],
)
def test_simple_serializers(schema_type, value, expected_python, expected_json, custom_type_schema):
    if custom_type_schema is None:
        schema = {'type': schema_type}
    else:
        schema = {'type': custom_type_schema}

    s = SchemaSerializer(schema)
    v = s.to_python(value)
    assert v == expected_python
    assert type(v) == type(expected_python)

    assert s.to_json(value) == expected_json

    v_json = s.to_python(value, mode='json')
    v_json_expected = json.loads(expected_json)
    assert v_json == v_json_expected
    assert type(v_json) == type(v_json_expected)


def test_int_to_float():
    """
    See https://github.com/pydantic/pydantic-core/pull/866
    """
    s = SchemaSerializer(core_schema.float_schema())
    v_plain = s.to_python(1)
    assert v_plain == 1
    assert type(v_plain) == int

    v_plain_subclass = s.to_python(IntSubClass(1))
    assert v_plain_subclass == IntSubClass(1)
    assert type(v_plain_subclass) == IntSubClass

    v_json = s.to_python(1, mode='json')
    assert v_json == 1.0
    assert type(v_json) == float

    v_json_subclass = s.to_python(IntSubClass(1), mode='json')
    assert v_json_subclass == 1
    assert type(v_json_subclass) == float

    assert s.to_json(1) == b'1.0'
    assert s.to_json(IntSubClass(1)) == b'1.0'


def test_int_to_float_key():
    """
    See https://github.com/pydantic/pydantic-core/pull/866
    """
    s = SchemaSerializer(core_schema.dict_schema(core_schema.float_schema(), core_schema.float_schema()))
    v_plain = s.to_python({1: 1})
    assert v_plain == {1: 1}
    assert type(list(v_plain.keys())[0]) == int
    assert type(v_plain[1]) == int

    v_json = s.to_python({1: 1}, mode='json')
    assert v_json == {'1': 1.0}
    assert type(v_json['1']) == float

    assert s.to_json({1: 1}) == b'{"1":1.0}'


@pytest.mark.parametrize('schema_type', ['int', 'bool', 'float', 'none'])
def test_simple_serializers_fallback(schema_type):
    s = SchemaSerializer({'type': schema_type})
    with pytest.warns(
        UserWarning,
        match=rf'Expected `{schema_type}` - serialized value may not be as expected \[input_value=\[1, 2, 3\], input_type=list\]',
    ):
        assert s.to_python([1, 2, 3]) == [1, 2, 3]

    with pytest.warns(
        UserWarning,
        match=rf"Expected `{schema_type}` - serialized value may not be as expected \[input_value=\[1, 2, b'bytes'\], input_type=list\]",
    ):
        assert s.to_python([1, 2, b'bytes'], mode='json') == [1, 2, 'bytes']

    with pytest.warns(
        UserWarning,
        match=rf'Expected `{schema_type}` - serialized value may not be as expected \[input_value=\[1, 2, 3\], input_type=list\]',
    ):
        assert s.to_json([1, 2, 3]) == b'[1,2,3]'


@pytest.mark.skipif(numpy is None, reason='numpy is not installed')
def test_numpy():
    s = SchemaSerializer(core_schema.float_schema())
    v = s.to_python(numpy.float64(1.0))
    assert v == 1.0
    assert type(v) == numpy.float64

    v = s.to_python(numpy.float64(1.0), mode='json')
    assert v == 1.0
    assert type(v) == float

    assert s.to_json(numpy.float64(1.0)) == b'1.0'


@pytest.mark.parametrize(
    'value,expected_json,config',
    [
        # default values of ser_json_inf_nan
        (float('inf'), 'null', {}),
        (float('-inf'), 'null', {}),
        (float('nan'), 'null', {}),
        # explicit values of ser_json_inf_nan
        (float('inf'), 'null', CoreConfig(ser_json_inf_nan='null')),
        (float('-inf'), 'null', CoreConfig(ser_json_inf_nan='null')),
        (float('nan'), 'null', CoreConfig(ser_json_inf_nan='null')),
        (float('inf'), 'Infinity', CoreConfig(ser_json_inf_nan='constants')),
        (float('-inf'), '-Infinity', CoreConfig(ser_json_inf_nan='constants')),
        (float('nan'), 'NaN', CoreConfig(ser_json_inf_nan='constants')),
        (float('inf'), '"Infinity"', CoreConfig(ser_json_inf_nan='strings')),
        (float('-inf'), '"-Infinity"', CoreConfig(ser_json_inf_nan='strings')),
        (float('nan'), '"NaN"', CoreConfig(ser_json_inf_nan='strings')),
    ],
)
def test_float_inf_and_nan_serializers(value, expected_json, config):
    s = SchemaSerializer(core_schema.float_schema(), config)

    # Python can represent these values without needing any changes
    assert s.to_python(value) is value
    assert s.to_python(value, mode='json') is value

    # Serialized JSON value respects the ser_json_inf_nan setting
    assert s.to_json(value).decode() == expected_json