1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
import math
import re
import pytest
from dirty_equals import FunctionCheck, HasAttributes, IsInstance
from pydantic_core import CoreConfig, SchemaValidator, ValidationError
from pydantic_core import core_schema as cs
from .conftest import Err, plain_repr
def test_on_field():
v = SchemaValidator(cs.str_schema(min_length=2, max_length=5))
r = plain_repr(v)
assert 'min_length:Some(2)' in r
assert 'max_length:Some(5)' in r
assert v.isinstance_python('test') is True
assert v.isinstance_python('test long') is False
def test_on_config():
v = SchemaValidator(cs.str_schema(), config=CoreConfig(str_max_length=5))
assert 'max_length:Some(5)' in plain_repr(v)
assert v.isinstance_python('test') is True
assert v.isinstance_python('test long') is False
def test_field_priority_arg():
v = SchemaValidator(cs.str_schema(max_length=5), config=CoreConfig(str_max_length=10))
assert 'max_length:Some(5)' in plain_repr(v)
assert v.isinstance_python('test') is True
assert v.isinstance_python('test long') is False
class MyModel:
# this is not required, but it avoids `__pydantic_fields_set__` being included in `__dict__`
__slots__ = '__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__'
def test_on_model_class():
v = SchemaValidator(
cs.model_schema(
cls=MyModel,
config=CoreConfig(str_max_length=5),
schema=cs.model_fields_schema(fields={'f': cs.model_field(schema=cs.str_schema())}),
)
)
assert 'max_length:Some(5)' in plain_repr(v)
assert v.isinstance_python({'f': 'test'}) is True
assert v.isinstance_python({'f': 'test long'}) is False
def test_field_priority_model():
v = SchemaValidator(
cs.model_schema(
cls=MyModel,
config=CoreConfig(str_max_length=10),
schema=cs.model_fields_schema(fields={'f': cs.model_field(schema=cs.str_schema(max_length=5))}),
)
)
assert 'max_length:Some(5)' in plain_repr(v)
assert v.isinstance_python({'f': 'test'}) is True
assert v.isinstance_python({'f': 'test long'}) is False
@pytest.mark.parametrize(
'config,float_field_schema,input_value,expected',
[
(
CoreConfig(),
cs.float_schema(),
{'x': 'nan'},
IsInstance(MyModel) & HasAttributes(x=FunctionCheck(math.isnan)),
),
(
CoreConfig(allow_inf_nan=True),
cs.float_schema(),
{'x': 'nan'},
IsInstance(MyModel) & HasAttributes(x=FunctionCheck(math.isnan)),
),
(
CoreConfig(allow_inf_nan=False),
cs.float_schema(),
{'x': 'nan'},
Err('Input should be a finite number [type=finite_number,'),
),
# field `allow_inf_nan` (if set) should have priority over global config
(
CoreConfig(allow_inf_nan=True),
cs.float_schema(allow_inf_nan=False),
{'x': 'nan'},
Err('Input should be a finite number [type=finite_number,'),
),
(
CoreConfig(allow_inf_nan=False),
cs.float_schema(allow_inf_nan=True),
{'x': 'nan'},
IsInstance(MyModel) & HasAttributes(x=FunctionCheck(math.isnan)),
),
],
ids=repr,
)
def test_allow_inf_nan(config: CoreConfig, float_field_schema, input_value, expected):
v = SchemaValidator(
cs.model_schema(
cls=MyModel,
schema=cs.model_fields_schema(fields={'x': cs.model_field(schema=float_field_schema)}),
config=config,
)
)
if isinstance(expected, Err):
with pytest.raises(ValidationError, match=re.escape(expected.message)):
v.validate_python(input_value)
else:
output_dict = v.validate_python(input_value)
assert output_dict == expected
@pytest.mark.parametrize(
'config,input_str',
(
(CoreConfig(), 'type=string_type, input_value=123, input_type=int'),
(CoreConfig(hide_input_in_errors=False), 'type=string_type, input_value=123, input_type=int'),
(CoreConfig(hide_input_in_errors=True), 'type=string_type'),
),
)
def test_hide_input_in_errors(config, input_str):
v = SchemaValidator(
cs.model_schema(
cls=MyModel, schema=cs.model_fields_schema(fields={'f': cs.model_field(schema=cs.str_schema())})
),
config=config,
)
with pytest.raises(ValidationError, match=re.escape(f'Input should be a valid string [{input_str}]')):
assert v.validate_python({'f': 123})
def test_cache_strings():
v = SchemaValidator(cs.str_schema())
assert 'cache_strings=True' in plain_repr(v)
v = SchemaValidator(cs.str_schema(), config=CoreConfig(cache_strings=True))
assert 'cache_strings=True' in plain_repr(v)
v = SchemaValidator(cs.str_schema(), config=CoreConfig(cache_strings=False))
assert 'cache_strings=False' in plain_repr(v)
v = SchemaValidator(cs.str_schema(), config=CoreConfig(cache_strings='keys'))
assert "cache_strings='keys'" in plain_repr(v)
|