File: index.md

package info (click to toggle)
pydantic-settings 2.10.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,032 kB
  • sloc: python: 8,080; makefile: 33
file content (2503 lines) | stat: -rw-r--r-- 78,260 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
## Installation

Installation is as simple as:

```bash
pip install pydantic-settings
```

## Usage

If you create a model that inherits from `BaseSettings`, the model initialiser will attempt to determine
the values of any fields not passed as keyword arguments by reading from the environment. (Default values
will still be used if the matching environment variable is not set.)

This makes it easy to:

* Create a clearly-defined, type-hinted application configuration class
* Automatically read modifications to the configuration from environment variables
* Manually override specific settings in the initialiser where desired (e.g. in unit tests)

For example:

```py
from collections.abc import Callable
from typing import Any

from pydantic import (
    AliasChoices,
    AmqpDsn,
    BaseModel,
    Field,
    ImportString,
    PostgresDsn,
    RedisDsn,
)

from pydantic_settings import BaseSettings, SettingsConfigDict


class SubModel(BaseModel):
    foo: str = 'bar'
    apple: int = 1


class Settings(BaseSettings):
    auth_key: str = Field(validation_alias='my_auth_key')  # (1)!

    api_key: str = Field(alias='my_api_key')  # (2)!

    redis_dsn: RedisDsn = Field(
        'redis://user:pass@localhost:6379/1',
        validation_alias=AliasChoices('service_redis_dsn', 'redis_url'),  # (3)!
    )
    pg_dsn: PostgresDsn = 'postgres://user:pass@localhost:5432/foobar'
    amqp_dsn: AmqpDsn = 'amqp://user:pass@localhost:5672/'

    special_function: ImportString[Callable[[Any], Any]] = 'math.cos'  # (4)!

    # to override domains:
    # export my_prefix_domains='["foo.com", "bar.com"]'
    domains: set[str] = set()

    # to override more_settings:
    # export my_prefix_more_settings='{"foo": "x", "apple": 1}'
    more_settings: SubModel = SubModel()

    model_config = SettingsConfigDict(env_prefix='my_prefix_')  # (5)!


print(Settings().model_dump())
"""
{
    'auth_key': 'xxx',
    'api_key': 'xxx',
    'redis_dsn': RedisDsn('redis://user:pass@localhost:6379/1'),
    'pg_dsn': PostgresDsn('postgres://user:pass@localhost:5432/foobar'),
    'amqp_dsn': AmqpDsn('amqp://user:pass@localhost:5672/'),
    'special_function': math.cos,
    'domains': set(),
    'more_settings': {'foo': 'bar', 'apple': 1},
}
"""
```

1. The environment variable name is overridden using `validation_alias`. In this case, the environment variable
   `my_auth_key` will be read instead of `auth_key`.

    Check the [`Field` documentation](fields.md) for more information.

2. The environment variable name is overridden using `alias`. In this case, the environment variable
   `my_api_key` will be used for both validation and serialization instead of `api_key`.

    Check the [`Field` documentation](fields.md#field-aliases) for more information.

3. The [`AliasChoices`][pydantic.AliasChoices] class allows to have multiple environment variable names for a single field.
   The first environment variable that is found will be used.

    Check the [documentation on alias choices](alias.md#aliaspath-and-aliaschoices) for more information.

4. The [`ImportString`][pydantic.types.ImportString] class allows to import an object from a string.
   In this case, the environment variable `special_function` will be read and the function [`math.cos`][] will be imported.

5. The `env_prefix` config setting allows to set a prefix for all environment variables.

    Check the [Environment variable names documentation](#environment-variable-names) for more information.

## Validation of default values

Unlike pydantic `BaseModel`, default values of `BaseSettings` fields are validated by default.
You can disable this behaviour by setting `validate_default=False` either in `model_config`
or on field level by `Field(validate_default=False)`:

```py
from pydantic import Field

from pydantic_settings import BaseSettings, SettingsConfigDict


class Settings(BaseSettings):
    model_config = SettingsConfigDict(validate_default=False)

    # default won't be validated
    foo: int = 'test'


print(Settings())
#> foo='test'


class Settings1(BaseSettings):
    # default won't be validated
    foo: int = Field('test', validate_default=False)


print(Settings1())
#> foo='test'
```

Check the [validation of default values](fields.md#validate-default-values) for more information.

## Environment variable names

By default, the environment variable name is the same as the field name.

You can change the prefix for all environment variables by setting the `env_prefix` config setting,
or via the `_env_prefix` keyword argument on instantiation:

```py
from pydantic_settings import BaseSettings, SettingsConfigDict


class Settings(BaseSettings):
    model_config = SettingsConfigDict(env_prefix='my_prefix_')

    auth_key: str = 'xxx'  # will be read from `my_prefix_auth_key`
```

!!! note
    The default `env_prefix` is `''` (empty string). `env_prefix` is not only for env settings but also for
    dotenv files, secrets, and other sources.

If you want to change the environment variable name for a single field, you can use an alias.

There are two ways to do this:

* Using `Field(alias=...)` (see `api_key` above)
* Using `Field(validation_alias=...)` (see `auth_key` above)

Check the [`Field` aliases documentation](fields.md#field-aliases) for more information about aliases.

`env_prefix` does not apply to fields with alias. It means the environment variable name is the same
as field alias:

```py
from pydantic import Field

from pydantic_settings import BaseSettings, SettingsConfigDict


class Settings(BaseSettings):
    model_config = SettingsConfigDict(env_prefix='my_prefix_')

    foo: str = Field('xxx', alias='FooAlias')  # (1)!
```

1. `env_prefix` will be ignored and the value will be read from `FooAlias` environment variable.

### Case-sensitivity

By default, environment variable names are case-insensitive.

If you want to make environment variable names case-sensitive, you can set the `case_sensitive` config setting:

```py
from pydantic_settings import BaseSettings, SettingsConfigDict


class Settings(BaseSettings):
    model_config = SettingsConfigDict(case_sensitive=True)

    redis_host: str = 'localhost'
```

When `case_sensitive` is `True`, the environment variable names must match field names (optionally with a prefix),
so in this example `redis_host` could only be modified via `export redis_host`. If you want to name environment variables
all upper-case, you should name attribute all upper-case too. You can still name environment variables anything
you like through `Field(validation_alias=...)`.

Case-sensitivity can also be set via the `_case_sensitive` keyword argument on instantiation.

In case of nested models, the `case_sensitive` setting will be applied to all nested models.

```py
import os

from pydantic import BaseModel, ValidationError

from pydantic_settings import BaseSettings


class RedisSettings(BaseModel):
    host: str
    port: int


class Settings(BaseSettings, case_sensitive=True):
    redis: RedisSettings


os.environ['redis'] = '{"host": "localhost", "port": 6379}'
print(Settings().model_dump())
#> {'redis': {'host': 'localhost', 'port': 6379}}
os.environ['redis'] = '{"HOST": "localhost", "port": 6379}'  # (1)!
try:
    Settings()
except ValidationError as e:
    print(e)
    """
    1 validation error for Settings
    redis.host
      Field required [type=missing, input_value={'HOST': 'localhost', 'port': 6379}, input_type=dict]
        For further information visit https://errors.pydantic.dev/2/v/missing
    """
```

1. Note that the `host` field is not found because the environment variable name is `HOST` (all upper-case).

!!! note
    On Windows, Python's `os` module always treats environment variables as case-insensitive, so the
    `case_sensitive` config setting will have no effect - settings will always be updated ignoring case.

## Parsing environment variable values

By default environment variables are parsed verbatim, including if the value is empty. You can choose to
ignore empty environment variables by setting the `env_ignore_empty` config setting to `True`. This can be
useful if you would prefer to use the default value for a field rather than an empty value from the
environment.

For most simple field types (such as `int`, `float`, `str`, etc.), the environment variable value is parsed
the same way it would be if passed directly to the initialiser (as a string).

Complex types like `list`, `set`, `dict`, and sub-models are populated from the environment by treating the
environment variable's value as a JSON-encoded string.

Another way to populate nested complex variables is to configure your model with the `env_nested_delimiter`
config setting, then use an environment variable with a name pointing to the nested module fields.
What it does is simply explodes your variable into nested models or dicts.
So if you define a variable `FOO__BAR__BAZ=123` it will convert it into `FOO={'BAR': {'BAZ': 123}}`
If you have multiple variables with the same structure they will be merged.

!!! note
    Sub model has to inherit from `pydantic.BaseModel`, Otherwise `pydantic-settings` will initialize sub model,
    collects values for sub model fields separately, and you may get unexpected results.

As an example, given the following environment variables:
```bash
# your environment
export V0=0
export SUB_MODEL='{"v1": "json-1", "v2": "json-2"}'
export SUB_MODEL__V2=nested-2
export SUB_MODEL__V3=3
export SUB_MODEL__DEEP__V4=v4
```

You could load them into the following settings model:

```py
from pydantic import BaseModel

from pydantic_settings import BaseSettings, SettingsConfigDict


class DeepSubModel(BaseModel):  # (1)!
    v4: str


class SubModel(BaseModel):  # (2)!
    v1: str
    v2: bytes
    v3: int
    deep: DeepSubModel


class Settings(BaseSettings):
    model_config = SettingsConfigDict(env_nested_delimiter='__')

    v0: str
    sub_model: SubModel


print(Settings().model_dump())
"""
{
    'v0': '0',
    'sub_model': {'v1': 'json-1', 'v2': b'nested-2', 'v3': 3, 'deep': {'v4': 'v4'}},
}
"""
```

1. Sub model has to inherit from `pydantic.BaseModel`.

2. Sub model has to inherit from `pydantic.BaseModel`.

`env_nested_delimiter` can be configured via the `model_config` as shown above, or via the
`_env_nested_delimiter` keyword argument on instantiation.

By default environment variables are split by `env_nested_delimiter` into arbitrarily deep nested fields. You can limit
the depth of the nested fields with the `env_nested_max_split` config setting. A common use case this is particularly useful
is for two-level deep settings, where the `env_nested_delimiter` (usually a single `_`) may be a substring of model
field names. For example:

```bash
# your environment
export GENERATION_LLM_PROVIDER='anthropic'
export GENERATION_LLM_API_KEY='your-api-key'
export GENERATION_LLM_API_VERSION='2024-03-15'
```

You could load them into the following settings model:

```py
from pydantic import BaseModel

from pydantic_settings import BaseSettings, SettingsConfigDict


class LLMConfig(BaseModel):
    provider: str = 'openai'
    api_key: str
    api_type: str = 'azure'
    api_version: str = '2023-03-15-preview'


class GenerationConfig(BaseSettings):
    model_config = SettingsConfigDict(
        env_nested_delimiter='_', env_nested_max_split=1, env_prefix='GENERATION_'
    )

    llm: LLMConfig
    ...


print(GenerationConfig().model_dump())
"""
{
    'llm': {
        'provider': 'anthropic',
        'api_key': 'your-api-key',
        'api_type': 'azure',
        'api_version': '2024-03-15',
    }
}
"""
```

Without `env_nested_max_split=1` set, `GENERATION_LLM_API_KEY` would be parsed as `llm.api.key` instead of `llm.api_key`
and it would raise a `ValidationError`.

Nested environment variables take precedence over the top-level environment variable JSON
(e.g. in the example above, `SUB_MODEL__V2` trumps `SUB_MODEL`).

You may also populate a complex type by providing your own source class.

```py
import json
import os
from typing import Any

from pydantic.fields import FieldInfo

from pydantic_settings import (
    BaseSettings,
    EnvSettingsSource,
    PydanticBaseSettingsSource,
)


class MyCustomSource(EnvSettingsSource):
    def prepare_field_value(
        self, field_name: str, field: FieldInfo, value: Any, value_is_complex: bool
    ) -> Any:
        if field_name == 'numbers':
            return [int(x) for x in value.split(',')]
        return json.loads(value)


class Settings(BaseSettings):
    numbers: list[int]

    @classmethod
    def settings_customise_sources(
        cls,
        settings_cls: type[BaseSettings],
        init_settings: PydanticBaseSettingsSource,
        env_settings: PydanticBaseSettingsSource,
        dotenv_settings: PydanticBaseSettingsSource,
        file_secret_settings: PydanticBaseSettingsSource,
    ) -> tuple[PydanticBaseSettingsSource, ...]:
        return (MyCustomSource(settings_cls),)


os.environ['numbers'] = '1,2,3'
print(Settings().model_dump())
#> {'numbers': [1, 2, 3]}
```

### Disabling JSON parsing

pydantic-settings by default parses complex types from environment variables as JSON strings. If you want to disable
this behavior for a field and parse the value in your own validator, you can annotate the field with
[`NoDecode`](../api/pydantic_settings.md#pydantic_settings.NoDecode):

```py
import os
from typing import Annotated

from pydantic import field_validator

from pydantic_settings import BaseSettings, NoDecode


class Settings(BaseSettings):
    numbers: Annotated[list[int], NoDecode]  # (1)!

    @field_validator('numbers', mode='before')
    @classmethod
    def decode_numbers(cls, v: str) -> list[int]:
        return [int(x) for x in v.split(',')]


os.environ['numbers'] = '1,2,3'
print(Settings().model_dump())
#> {'numbers': [1, 2, 3]}
```

1. The `NoDecode` annotation disables JSON parsing for the `numbers` field. The `decode_numbers` field validator
   will be called to parse the value.

You can also disable JSON parsing for all fields by setting the `enable_decoding` config setting to `False`:

```py
import os

from pydantic import field_validator

from pydantic_settings import BaseSettings, SettingsConfigDict


class Settings(BaseSettings):
    model_config = SettingsConfigDict(enable_decoding=False)

    numbers: list[int]

    @field_validator('numbers', mode='before')
    @classmethod
    def decode_numbers(cls, v: str) -> list[int]:
        return [int(x) for x in v.split(',')]


os.environ['numbers'] = '1,2,3'
print(Settings().model_dump())
#> {'numbers': [1, 2, 3]}
```

You can force JSON parsing for a field by annotating it with [`ForceDecode`](../api/pydantic_settings.md#pydantic_settings.ForceDecode).
This will bypass the `enable_decoding` config setting:

```py
import os
from typing import Annotated

from pydantic import field_validator

from pydantic_settings import BaseSettings, ForceDecode, SettingsConfigDict


class Settings(BaseSettings):
    model_config = SettingsConfigDict(enable_decoding=False)

    numbers: Annotated[list[int], ForceDecode]
    numbers1: list[int]  # (1)!

    @field_validator('numbers1', mode='before')
    @classmethod
    def decode_numbers1(cls, v: str) -> list[int]:
        return [int(x) for x in v.split(',')]


os.environ['numbers'] = '["1","2","3"]'
os.environ['numbers1'] = '1,2,3'
print(Settings().model_dump())
#> {'numbers': [1, 2, 3], 'numbers1': [1, 2, 3]}
```

1. The `numbers1` field is not annotated with `ForceDecode`, so it will not be parsed as JSON.
   and we have to provide a custom validator to parse the value.

## Nested model default partial updates

By default, Pydantic settings does not allow partial updates to nested model default objects. This behavior can be
overriden by setting the `nested_model_default_partial_update` flag to `True`, which will allow partial updates on
nested model default object fields.

```py
import os

from pydantic import BaseModel

from pydantic_settings import BaseSettings, SettingsConfigDict


class SubModel(BaseModel):
    val: int = 0
    flag: bool = False


class SettingsPartialUpdate(BaseSettings):
    model_config = SettingsConfigDict(
        env_nested_delimiter='__', nested_model_default_partial_update=True
    )

    nested_model: SubModel = SubModel(val=1)


class SettingsNoPartialUpdate(BaseSettings):
    model_config = SettingsConfigDict(
        env_nested_delimiter='__', nested_model_default_partial_update=False
    )

    nested_model: SubModel = SubModel(val=1)


# Apply a partial update to the default object using environment variables
os.environ['NESTED_MODEL__FLAG'] = 'True'

# When partial update is enabled, the existing SubModel instance is updated
# with nested_model.flag=True change
assert SettingsPartialUpdate().model_dump() == {
    'nested_model': {'val': 1, 'flag': True}
}

# When partial update is disabled, a new SubModel instance is instantiated
# with nested_model.flag=True change
assert SettingsNoPartialUpdate().model_dump() == {
    'nested_model': {'val': 0, 'flag': True}
}
```

## Dotenv (.env) support

Dotenv files (generally named `.env`) are a common pattern that make it easy to use environment variables in a
platform-independent manner.

A dotenv file follows the same general principles of all environment variables, and it looks like this:

```bash title=".env"
# ignore comment
ENVIRONMENT="production"
REDIS_ADDRESS=localhost:6379
MEANING_OF_LIFE=42
MY_VAR='Hello world'
```

Once you have your `.env` file filled with variables, *pydantic* supports loading it in two ways:

1. Setting the `env_file` (and `env_file_encoding` if you don't want the default encoding of your OS) on `model_config`
in the `BaseSettings` class:
   ````py hl_lines="4 5"
   from pydantic_settings import BaseSettings, SettingsConfigDict


   class Settings(BaseSettings):
       model_config = SettingsConfigDict(env_file='.env', env_file_encoding='utf-8')
   ````
2. Instantiating the `BaseSettings` derived class with the `_env_file` keyword argument
(and the `_env_file_encoding` if needed):
   ````py hl_lines="8"
   from pydantic_settings import BaseSettings, SettingsConfigDict


   class Settings(BaseSettings):
       model_config = SettingsConfigDict(env_file='.env', env_file_encoding='utf-8')


   settings = Settings(_env_file='prod.env', _env_file_encoding='utf-8')
   ````
In either case, the value of the passed argument can be any valid path or filename, either absolute or relative to the
current working directory. From there, *pydantic* will handle everything for you by loading in your variables and
validating them.

!!! note
    If a filename is specified for `env_file`, Pydantic will only check the current working directory and
    won't check any parent directories for the `.env` file.

Even when using a dotenv file, *pydantic* will still read environment variables as well as the dotenv file,
**environment variables will always take priority over values loaded from a dotenv file**.

Passing a file path via the `_env_file` keyword argument on instantiation (method 2) will override
the value (if any) set on the `model_config` class. If the above snippets were used in conjunction, `prod.env` would be loaded
while `.env` would be ignored.

If you need to load multiple dotenv files, you can pass multiple file paths as a tuple or list. The files will be
loaded in order, with each file overriding the previous one.

```py
from pydantic_settings import BaseSettings, SettingsConfigDict


class Settings(BaseSettings):
    model_config = SettingsConfigDict(
        # `.env.prod` takes priority over `.env`
        env_file=('.env', '.env.prod')
    )
```

You can also use the keyword argument override to tell Pydantic not to load any file at all (even if one is set in
the `model_config` class) by passing `None` as the instantiation keyword argument, e.g. `settings = Settings(_env_file=None)`.

Because python-dotenv is used to parse the file, bash-like semantics such as `export` can be used which
(depending on your OS and environment) may allow your dotenv file to also be used with `source`,
see [python-dotenv's documentation](https://saurabh-kumar.com/python-dotenv/#usages) for more details.

Pydantic settings consider `extra` config in case of dotenv file. It means if you set the `extra=forbid` (*default*)
on `model_config` and your dotenv file contains an entry for a field that is not defined in settings model,
it will raise `ValidationError` in settings construction.

For compatibility with pydantic 1.x BaseSettings you should use `extra=ignore`:
```py
from pydantic_settings import BaseSettings, SettingsConfigDict


class Settings(BaseSettings):
    model_config = SettingsConfigDict(env_file='.env', extra='ignore')
```


!!! note
    Pydantic settings loads all the values from dotenv file and passes it to the model, regardless of the model's `env_prefix`.
    So if you provide extra values in a dotenv file, whether they start with `env_prefix` or not,
    a `ValidationError` will be raised.

## Command Line Support

Pydantic settings provides integrated CLI support, making it easy to quickly define CLI applications using Pydantic
models. There are two primary use cases for Pydantic settings CLI:

1. When using a CLI to override fields in Pydantic models.
2. When using Pydantic models to define CLIs.

By default, the experience is tailored towards use case #1 and builds on the foundations established in [parsing
environment variables](#parsing-environment-variable-values). If your use case primarily falls into #2, you will likely
want to enable most of the defaults outlined at the end of [creating CLI applications](#creating-cli-applications).

### The Basics

To get started, let's revisit the example presented in [parsing environment
variables](#parsing-environment-variable-values) but using a Pydantic settings CLI:

```py
import sys

from pydantic import BaseModel

from pydantic_settings import BaseSettings, SettingsConfigDict


class DeepSubModel(BaseModel):
    v4: str


class SubModel(BaseModel):
    v1: str
    v2: bytes
    v3: int
    deep: DeepSubModel


class Settings(BaseSettings):
    model_config = SettingsConfigDict(cli_parse_args=True)

    v0: str
    sub_model: SubModel


sys.argv = [
    'example.py',
    '--v0=0',
    '--sub_model={"v1": "json-1", "v2": "json-2"}',
    '--sub_model.v2=nested-2',
    '--sub_model.v3=3',
    '--sub_model.deep.v4=v4',
]

print(Settings().model_dump())
"""
{
    'v0': '0',
    'sub_model': {'v1': 'json-1', 'v2': b'nested-2', 'v3': 3, 'deep': {'v4': 'v4'}},
}
"""
```

To enable CLI parsing, we simply set the `cli_parse_args` flag to a valid value, which retains similar connotations as
defined in `argparse`.

Note that a CLI settings source is [**the topmost source**](#field-value-priority) by default unless its [priority value
is customised](#customise-settings-sources):

```py
import os
import sys

from pydantic_settings import (
    BaseSettings,
    CliSettingsSource,
    PydanticBaseSettingsSource,
)


class Settings(BaseSettings):
    my_foo: str

    @classmethod
    def settings_customise_sources(
        cls,
        settings_cls: type[BaseSettings],
        init_settings: PydanticBaseSettingsSource,
        env_settings: PydanticBaseSettingsSource,
        dotenv_settings: PydanticBaseSettingsSource,
        file_secret_settings: PydanticBaseSettingsSource,
    ) -> tuple[PydanticBaseSettingsSource, ...]:
        return env_settings, CliSettingsSource(settings_cls, cli_parse_args=True)


os.environ['MY_FOO'] = 'from environment'

sys.argv = ['example.py', '--my_foo=from cli']

print(Settings().model_dump())
#> {'my_foo': 'from environment'}
```

#### Lists

CLI argument parsing of lists supports intermixing of any of the below three styles:

  * JSON style `--field='[1,2]'`
  * Argparse style `--field 1 --field 2`
  * Lazy style `--field=1,2`

```py
import sys

from pydantic_settings import BaseSettings


class Settings(BaseSettings, cli_parse_args=True):
    my_list: list[int]


sys.argv = ['example.py', '--my_list', '[1,2]']
print(Settings().model_dump())
#> {'my_list': [1, 2]}

sys.argv = ['example.py', '--my_list', '1', '--my_list', '2']
print(Settings().model_dump())
#> {'my_list': [1, 2]}

sys.argv = ['example.py', '--my_list', '1,2']
print(Settings().model_dump())
#> {'my_list': [1, 2]}
```

#### Dictionaries

CLI argument parsing of dictionaries supports intermixing of any of the below two styles:

  * JSON style `--field='{"k1": 1, "k2": 2}'`
  * Environment variable style `--field k1=1 --field k2=2`

These can be used in conjunction with list forms as well, e.g:

  * `--field k1=1,k2=2 --field k3=3 --field '{"k4": 4}'` etc.

```py
import sys

from pydantic_settings import BaseSettings


class Settings(BaseSettings, cli_parse_args=True):
    my_dict: dict[str, int]


sys.argv = ['example.py', '--my_dict', '{"k1":1,"k2":2}']
print(Settings().model_dump())
#> {'my_dict': {'k1': 1, 'k2': 2}}

sys.argv = ['example.py', '--my_dict', 'k1=1', '--my_dict', 'k2=2']
print(Settings().model_dump())
#> {'my_dict': {'k1': 1, 'k2': 2}}
```

#### Literals and Enums

CLI argument parsing of literals and enums are converted into CLI choices.

```py
import sys
from enum import IntEnum
from typing import Literal

from pydantic_settings import BaseSettings


class Fruit(IntEnum):
    pear = 0
    kiwi = 1
    lime = 2


class Settings(BaseSettings, cli_parse_args=True):
    fruit: Fruit
    pet: Literal['dog', 'cat', 'bird']


sys.argv = ['example.py', '--fruit', 'lime', '--pet', 'cat']
print(Settings().model_dump())
#> {'fruit': <Fruit.lime: 2>, 'pet': 'cat'}
```

#### Aliases

Pydantic field aliases are added as CLI argument aliases. Aliases of length one are converted into short options.

```py
import sys

from pydantic import AliasChoices, AliasPath, Field

from pydantic_settings import BaseSettings


class User(BaseSettings, cli_parse_args=True):
    first_name: str = Field(
        validation_alias=AliasChoices('f', 'fname', AliasPath('name', 0))
    )
    last_name: str = Field(
        validation_alias=AliasChoices('l', 'lname', AliasPath('name', 1))
    )


sys.argv = ['example.py', '--fname', 'John', '--lname', 'Doe']
print(User().model_dump())
#> {'first_name': 'John', 'last_name': 'Doe'}

sys.argv = ['example.py', '-f', 'John', '-l', 'Doe']
print(User().model_dump())
#> {'first_name': 'John', 'last_name': 'Doe'}

sys.argv = ['example.py', '--name', 'John,Doe']
print(User().model_dump())
#> {'first_name': 'John', 'last_name': 'Doe'}

sys.argv = ['example.py', '--name', 'John', '--lname', 'Doe']
print(User().model_dump())
#> {'first_name': 'John', 'last_name': 'Doe'}
```

### Subcommands and Positional Arguments

Subcommands and positional arguments are expressed using the `CliSubCommand` and `CliPositionalArg` annotations. The
subcommand annotation can only be applied to required fields (i.e. fields that do not have a default value).
Furthermore, subcommands must be a valid type derived from either a pydantic `BaseModel` or pydantic.dataclasses
`dataclass`.

Parsed subcommands can be retrieved from model instances using the `get_subcommand` utility function. If a subcommand is
not required, set the `is_required` flag to `False` to disable raising an error if no subcommand is found.

!!! note
    CLI settings subcommands are limited to a single subparser per model. In other words, all subcommands for a model
    are grouped under a single subparser; it does not allow for multiple subparsers with each subparser having its own
    set of subcommands. For more information on subparsers, see [argparse
    subcommands](https://docs.python.org/3/library/argparse.html#sub-commands).

!!! note
    `CliSubCommand` and `CliPositionalArg` are always case sensitive.

```py
import sys

from pydantic import BaseModel

from pydantic_settings import (
    BaseSettings,
    CliPositionalArg,
    CliSubCommand,
    SettingsError,
    get_subcommand,
)


class Init(BaseModel):
    directory: CliPositionalArg[str]


class Clone(BaseModel):
    repository: CliPositionalArg[str]
    directory: CliPositionalArg[str]


class Git(BaseSettings, cli_parse_args=True, cli_exit_on_error=False):
    clone: CliSubCommand[Clone]
    init: CliSubCommand[Init]


# Run without subcommands
sys.argv = ['example.py']
cmd = Git()
assert cmd.model_dump() == {'clone': None, 'init': None}

try:
    # Will raise an error since no subcommand was provided
    get_subcommand(cmd).model_dump()
except SettingsError as err:
    assert str(err) == 'Error: CLI subcommand is required {clone, init}'

# Will not raise an error since subcommand is not required
assert get_subcommand(cmd, is_required=False) is None


# Run the clone subcommand
sys.argv = ['example.py', 'clone', 'repo', 'dest']
cmd = Git()
assert cmd.model_dump() == {
    'clone': {'repository': 'repo', 'directory': 'dest'},
    'init': None,
}

# Returns the subcommand model instance (in this case, 'clone')
assert get_subcommand(cmd).model_dump() == {
    'directory': 'dest',
    'repository': 'repo',
}
```

The `CliSubCommand` and `CliPositionalArg` annotations also support union operations and aliases. For unions of Pydantic
models, it is important to remember the [nuances](https://docs.pydantic.dev/latest/concepts/unions/) that can arise
during validation. Specifically, for unions of subcommands that are identical in content, it is recommended to break
them out into separate `CliSubCommand` fields to avoid any complications. Lastly, the derived subcommand names from
unions will be the names of the Pydantic model classes themselves.

When assigning aliases to `CliSubCommand` or `CliPositionalArg` fields, only a single alias can be assigned. For
non-union subcommands, aliasing will change the displayed help text and subcommand name. Conversely, for union
subcommands, aliasing will have no tangible effect from the perspective of the CLI settings source. Lastly, for
positional arguments, aliasing will change the CLI help text displayed for the field.

```py
import sys
from typing import Union

from pydantic import BaseModel, Field

from pydantic_settings import (
    BaseSettings,
    CliPositionalArg,
    CliSubCommand,
    get_subcommand,
)


class Alpha(BaseModel):
    """Apha Help"""

    cmd_alpha: CliPositionalArg[str] = Field(alias='alpha-cmd')


class Beta(BaseModel):
    """Beta Help"""

    opt_beta: str = Field(alias='opt-beta')


class Gamma(BaseModel):
    """Gamma Help"""

    opt_gamma: str = Field(alias='opt-gamma')


class Root(BaseSettings, cli_parse_args=True, cli_exit_on_error=False):
    alpha_or_beta: CliSubCommand[Union[Alpha, Beta]] = Field(alias='alpha-or-beta-cmd')
    gamma: CliSubCommand[Gamma] = Field(alias='gamma-cmd')


sys.argv = ['example.py', 'Alpha', 'hello']
assert get_subcommand(Root()).model_dump() == {'cmd_alpha': 'hello'}

sys.argv = ['example.py', 'Beta', '--opt-beta=hey']
assert get_subcommand(Root()).model_dump() == {'opt_beta': 'hey'}

sys.argv = ['example.py', 'gamma-cmd', '--opt-gamma=hi']
assert get_subcommand(Root()).model_dump() == {'opt_gamma': 'hi'}
```

### Creating CLI Applications

The `CliApp` class provides two utility methods, `CliApp.run` and `CliApp.run_subcommand`, that can be used to run a
Pydantic `BaseSettings`, `BaseModel`, or `pydantic.dataclasses.dataclass` as a CLI application. Primarily, the methods
provide structure for running `cli_cmd` methods associated with models.

`CliApp.run` can be used in directly providing the `cli_args` to be parsed, and will run the model `cli_cmd` method (if
defined) after instantiation:

```py
from pydantic_settings import BaseSettings, CliApp


class Settings(BaseSettings):
    this_foo: str

    def cli_cmd(self) -> None:
        # Print the parsed data
        print(self.model_dump())
        #> {'this_foo': 'is such a foo'}

        # Update the parsed data showing cli_cmd ran
        self.this_foo = 'ran the foo cli cmd'


s = CliApp.run(Settings, cli_args=['--this_foo', 'is such a foo'])
print(s.model_dump())
#> {'this_foo': 'ran the foo cli cmd'}
```

Similarly, the `CliApp.run_subcommand` can be used in recursive fashion to run the `cli_cmd` method of a subcommand:

```py
from pydantic import BaseModel

from pydantic_settings import CliApp, CliPositionalArg, CliSubCommand


class Init(BaseModel):
    directory: CliPositionalArg[str]

    def cli_cmd(self) -> None:
        print(f'git init "{self.directory}"')
        #> git init "dir"
        self.directory = 'ran the git init cli cmd'


class Clone(BaseModel):
    repository: CliPositionalArg[str]
    directory: CliPositionalArg[str]

    def cli_cmd(self) -> None:
        print(f'git clone from "{self.repository}" into "{self.directory}"')
        self.directory = 'ran the clone cli cmd'


class Git(BaseModel):
    clone: CliSubCommand[Clone]
    init: CliSubCommand[Init]

    def cli_cmd(self) -> None:
        CliApp.run_subcommand(self)


cmd = CliApp.run(Git, cli_args=['init', 'dir'])
assert cmd.model_dump() == {
    'clone': None,
    'init': {'directory': 'ran the git init cli cmd'},
}
```

!!! note
    Unlike `CliApp.run`, `CliApp.run_subcommand` requires the subcommand model to have a defined `cli_cmd` method.

For `BaseModel` and `pydantic.dataclasses.dataclass` types, `CliApp.run` will internally use the following
`BaseSettings` configuration defaults:

* `nested_model_default_partial_update=True`
* `case_sensitive=True`
* `cli_hide_none_type=True`
* `cli_avoid_json=True`
* `cli_enforce_required=True`
* `cli_implicit_flags=True`
* `cli_kebab_case=True`

### Asynchronous CLI Commands

Pydantic settings supports running asynchronous CLI commands via `CliApp.run` and `CliApp.run_subcommand`. With this feature, you can define async def methods within your Pydantic models (including subcommands) and have them executed just like their synchronous counterparts. Specifically:

1. Asynchronous methods are supported: You can now mark your cli_cmd or similar CLI entrypoint methods as async def and have CliApp execute them.
2. Subcommands may also be asynchronous: If you have nested CLI subcommands, the final (lowest-level) subcommand methods can likewise be asynchronous.
3. Limit asynchronous methods to final subcommands: Defining parent commands as asynchronous is not recommended, because it can result in additional threads and event loops being created. For best performance and to avoid unnecessary resource usage, only implement your deepest (child) subcommands as async def.

Below is a simple example demonstrating an asynchronous top-level command:

```py
from pydantic_settings import BaseSettings, CliApp


class AsyncSettings(BaseSettings):
    async def cli_cmd(self) -> None:
        print('Hello from an async CLI method!')
        #> Hello from an async CLI method!


# If an event loop is already running, a new thread will be used;
# otherwise, asyncio.run() is used to execute this async method.
assert CliApp.run(AsyncSettings, cli_args=[]).model_dump() == {}
```

#### Asynchronous Subcommands

As mentioned above, you can also define subcommands as async. However, only do so for the leaf (lowest-level) subcommand to avoid spawning new threads and event loops unnecessarily in parent commands:

```py
from pydantic import BaseModel

from pydantic_settings import (
    BaseSettings,
    CliApp,
    CliPositionalArg,
    CliSubCommand,
)


class Clone(BaseModel):
    repository: CliPositionalArg[str]
    directory: CliPositionalArg[str]

    async def cli_cmd(self) -> None:
        # Perform async tasks here, e.g. network or I/O operations
        print(f'Cloning async from "{self.repository}" into "{self.directory}"')
        #> Cloning async from "repo" into "dir"


class Git(BaseSettings):
    clone: CliSubCommand[Clone]

    def cli_cmd(self) -> None:
        # Run the final subcommand (clone/init). It is recommended to define async methods only at the deepest level.
        CliApp.run_subcommand(self)


CliApp.run(Git, cli_args=['clone', 'repo', 'dir']).model_dump() == {
    'repository': 'repo',
    'directory': 'dir',
}
```

When executing a subcommand with an asynchronous cli_cmd, Pydantic settings automatically detects whether the current thread already has an active event loop. If so, the async command is run in a fresh thread to avoid conflicts. Otherwise, it uses asyncio.run() in the current thread. This handling ensures your asynchronous subcommands "just work" without additional manual setup.

### Mutually Exclusive Groups

CLI mutually exclusive groups can be created by inheriting from the `CliMutuallyExclusiveGroup` class.

!!! note
    A `CliMutuallyExclusiveGroup` cannot be used in a union or contain nested models.

```py
from typing import Optional

from pydantic import BaseModel

from pydantic_settings import CliApp, CliMutuallyExclusiveGroup, SettingsError


class Circle(CliMutuallyExclusiveGroup):
    radius: Optional[float] = None
    diameter: Optional[float] = None
    perimeter: Optional[float] = None


class Settings(BaseModel):
    circle: Circle


try:
    CliApp.run(
        Settings,
        cli_args=['--circle.radius=1', '--circle.diameter=2'],
        cli_exit_on_error=False,
    )
except SettingsError as e:
    print(e)
    """
    error parsing CLI: argument --circle.diameter: not allowed with argument --circle.radius
    """
```

### Customizing the CLI Experience

The below flags can be used to customise the CLI experience to your needs.

#### Change the Displayed Program Name

Change the default program name displayed in the help text usage by setting `cli_prog_name`. By default, it will derive
the name of the currently executing program from `sys.argv[0]`, just like argparse.

```py
import sys

from pydantic_settings import BaseSettings


class Settings(BaseSettings, cli_parse_args=True, cli_prog_name='appdantic'):
    pass


try:
    sys.argv = ['example.py', '--help']
    Settings()
except SystemExit as e:
    print(e)
    #> 0
"""
usage: appdantic [-h]

options:
  -h, --help  show this help message and exit
"""
```

#### CLI Boolean Flags

Change whether boolean fields should be explicit or implicit by default using the `cli_implicit_flags` setting. By
default, boolean fields are "explicit", meaning a boolean value must be explicitly provided on the CLI, e.g.
`--flag=True`. Conversely, boolean fields that are "implicit" derive the value from the flag itself, e.g.
`--flag,--no-flag`, which removes the need for an explicit value to be passed.

Additionally, the provided `CliImplicitFlag` and `CliExplicitFlag` annotations can be used for more granular control
when necessary.

```py
from pydantic_settings import BaseSettings, CliExplicitFlag, CliImplicitFlag


class ExplicitSettings(BaseSettings, cli_parse_args=True):
    """Boolean fields are explicit by default."""

    explicit_req: bool
    """
    --explicit_req bool   (required)
    """

    explicit_opt: bool = False
    """
    --explicit_opt bool   (default: False)
    """

    # Booleans are explicit by default, so must override implicit flags with annotation
    implicit_req: CliImplicitFlag[bool]
    """
    --implicit_req, --no-implicit_req (required)
    """

    implicit_opt: CliImplicitFlag[bool] = False
    """
    --implicit_opt, --no-implicit_opt (default: False)
    """


class ImplicitSettings(BaseSettings, cli_parse_args=True, cli_implicit_flags=True):
    """With cli_implicit_flags=True, boolean fields are implicit by default."""

    # Booleans are implicit by default, so must override explicit flags with annotation
    explicit_req: CliExplicitFlag[bool]
    """
    --explicit_req bool   (required)
    """

    explicit_opt: CliExplicitFlag[bool] = False
    """
    --explicit_opt bool   (default: False)
    """

    implicit_req: bool
    """
    --implicit_req, --no-implicit_req (required)
    """

    implicit_opt: bool = False
    """
    --implicit_opt, --no-implicit_opt (default: False)
    """
```

#### Ignore and Retrieve Unknown Arguments

Change whether to ignore unknown CLI arguments and only parse known ones using `cli_ignore_unknown_args`. By default, the CLI
does not ignore any args. Ignored arguments can then be retrieved using the `CliUnknownArgs` annotation.

```py
import sys

from pydantic_settings import BaseSettings, CliUnknownArgs


class Settings(BaseSettings, cli_parse_args=True, cli_ignore_unknown_args=True):
    good_arg: str
    ignored_args: CliUnknownArgs


sys.argv = ['example.py', '--bad-arg=bad', 'ANOTHER_BAD_ARG', '--good_arg=hello world']
print(Settings().model_dump())
#> {'good_arg': 'hello world', 'ignored_args': ['--bad-arg=bad', 'ANOTHER_BAD_ARG']}
```

#### CLI Kebab Case for Arguments

Change whether CLI arguments should use kebab case by enabling `cli_kebab_case`.

```py
import sys

from pydantic import Field

from pydantic_settings import BaseSettings


class Settings(BaseSettings, cli_parse_args=True, cli_kebab_case=True):
    my_option: str = Field(description='will show as kebab case on CLI')


try:
    sys.argv = ['example.py', '--help']
    Settings()
except SystemExit as e:
    print(e)
    #> 0
"""
usage: example.py [-h] [--my-option str]

options:
  -h, --help       show this help message and exit
  --my-option str  will show as kebab case on CLI (required)
"""
```

#### Change Whether CLI Should Exit on Error

Change whether the CLI internal parser will exit on error or raise a `SettingsError` exception by using
`cli_exit_on_error`. By default, the CLI internal parser will exit on error.

```py
import sys

from pydantic_settings import BaseSettings, SettingsError


class Settings(BaseSettings, cli_parse_args=True, cli_exit_on_error=False): ...


try:
    sys.argv = ['example.py', '--bad-arg']
    Settings()
except SettingsError as e:
    print(e)
    #> error parsing CLI: unrecognized arguments: --bad-arg
```

#### Enforce Required Arguments at CLI

Pydantic settings is designed to pull values in from various sources when instantating a model. This means a field that
is required is not strictly required from any single source (e.g. the CLI). Instead, all that matters is that one of the
sources provides the required value.

However, if your use case [aligns more with #2](#command-line-support), using Pydantic models to define CLIs, you will
likely want required fields to be _strictly required at the CLI_. We can enable this behavior by using
`cli_enforce_required`.

!!! note
    A required `CliPositionalArg` field is always strictly required (enforced) at the CLI.

```py
import os
import sys

from pydantic import Field

from pydantic_settings import BaseSettings, SettingsError


class Settings(
    BaseSettings,
    cli_parse_args=True,
    cli_enforce_required=True,
    cli_exit_on_error=False,
):
    my_required_field: str = Field(description='a top level required field')


os.environ['MY_REQUIRED_FIELD'] = 'hello from environment'

try:
    sys.argv = ['example.py']
    Settings()
except SettingsError as e:
    print(e)
    #> error parsing CLI: the following arguments are required: --my_required_field
```

#### Change the None Type Parse String

Change the CLI string value that will be parsed (e.g. "null", "void", "None", etc.) into `None` by setting
`cli_parse_none_str`. By default it will use the `env_parse_none_str` value if set. Otherwise, it will default to "null"
if `cli_avoid_json` is `False`, and "None" if `cli_avoid_json` is `True`.

```py
import sys
from typing import Optional

from pydantic import Field

from pydantic_settings import BaseSettings


class Settings(BaseSettings, cli_parse_args=True, cli_parse_none_str='void'):
    v1: Optional[int] = Field(description='the top level v0 option')


sys.argv = ['example.py', '--v1', 'void']
print(Settings().model_dump())
#> {'v1': None}
```

#### Hide None Type Values

Hide `None` values from the CLI help text by enabling `cli_hide_none_type`.

```py
import sys
from typing import Optional

from pydantic import Field

from pydantic_settings import BaseSettings


class Settings(BaseSettings, cli_parse_args=True, cli_hide_none_type=True):
    v0: Optional[str] = Field(description='the top level v0 option')


try:
    sys.argv = ['example.py', '--help']
    Settings()
except SystemExit as e:
    print(e)
    #> 0
"""
usage: example.py [-h] [--v0 str]

options:
  -h, --help  show this help message and exit
  --v0 str    the top level v0 option (required)
"""
```

#### Avoid Adding JSON CLI Options

Avoid adding complex fields that result in JSON strings at the CLI by enabling `cli_avoid_json`.

```py
import sys

from pydantic import BaseModel, Field

from pydantic_settings import BaseSettings


class SubModel(BaseModel):
    v1: int = Field(description='the sub model v1 option')


class Settings(BaseSettings, cli_parse_args=True, cli_avoid_json=True):
    sub_model: SubModel = Field(
        description='The help summary for SubModel related options'
    )


try:
    sys.argv = ['example.py', '--help']
    Settings()
except SystemExit as e:
    print(e)
    #> 0
"""
usage: example.py [-h] [--sub_model.v1 int]

options:
  -h, --help          show this help message and exit

sub_model options:
  The help summary for SubModel related options

  --sub_model.v1 int  the sub model v1 option (required)
"""
```

#### Use Class Docstring for Group Help Text

By default, when populating the group help text for nested models it will pull from the field descriptions.
Alternatively, we can also configure CLI settings to pull from the class docstring instead.

!!! note
    If the field is a union of nested models the group help text will always be pulled from the field description;
    even if `cli_use_class_docs_for_groups` is set to `True`.

```py
import sys

from pydantic import BaseModel, Field

from pydantic_settings import BaseSettings


class SubModel(BaseModel):
    """The help text from the class docstring."""

    v1: int = Field(description='the sub model v1 option')


class Settings(BaseSettings, cli_parse_args=True, cli_use_class_docs_for_groups=True):
    """My application help text."""

    sub_model: SubModel = Field(description='The help text from the field description')


try:
    sys.argv = ['example.py', '--help']
    Settings()
except SystemExit as e:
    print(e)
    #> 0
"""
usage: example.py [-h] [--sub_model JSON] [--sub_model.v1 int]

My application help text.

options:
  -h, --help          show this help message and exit

sub_model options:
  The help text from the class docstring.

  --sub_model JSON    set sub_model from JSON string
  --sub_model.v1 int  the sub model v1 option (required)
"""
```

#### Change the CLI Flag Prefix Character

Change The CLI flag prefix character used in CLI optional arguments by settings `cli_flag_prefix_char`.

```py
import sys

from pydantic import AliasChoices, Field

from pydantic_settings import BaseSettings


class Settings(BaseSettings, cli_parse_args=True, cli_flag_prefix_char='+'):
    my_arg: str = Field(validation_alias=AliasChoices('m', 'my-arg'))


sys.argv = ['example.py', '++my-arg', 'hi']
print(Settings().model_dump())
#> {'my_arg': 'hi'}

sys.argv = ['example.py', '+m', 'hi']
print(Settings().model_dump())
#> {'my_arg': 'hi'}
```

#### Suppressing Fields from CLI Help Text

To suppress a field from the CLI help text, the `CliSuppress` annotation can be used for field types, or the
`CLI_SUPPRESS` string constant can be used for field descriptions.

```py
import sys

from pydantic import Field

from pydantic_settings import CLI_SUPPRESS, BaseSettings, CliSuppress


class Settings(BaseSettings, cli_parse_args=True):
    """Suppress fields from CLI help text."""

    field_a: CliSuppress[int] = 0
    field_b: str = Field(default=1, description=CLI_SUPPRESS)


try:
    sys.argv = ['example.py', '--help']
    Settings()
except SystemExit as e:
    print(e)
    #> 0
"""
usage: example.py [-h]

Suppress fields from CLI help text.

options:
  -h, --help          show this help message and exit
"""
```

#### CLI Shortcuts for Arguments

Add alternative CLI argument names (shortcuts) for fields using the `cli_shortcuts` option in `SettingsConfigDict`. This allows you to define additional names for CLI arguments, which can be especially useful for providing more user-friendly or shorter aliases for deeply nested or verbose field names.

The `cli_shortcuts` option takes a dictionary mapping the target field name (using dot notation for nested fields) to one or more shortcut names. If multiple fields share the same shortcut, the first matching field will take precedence.

**Flat Example:**

```py
from pydantic import Field

from pydantic_settings import BaseSettings, SettingsConfigDict


class Settings(BaseSettings):
    option: str = Field(default='foo')
    list_option: str = Field(default='fizz')

    model_config = SettingsConfigDict(
        cli_shortcuts={'option': 'option2', 'list_option': ['list_option2']}
    )


# Now you can use the shortcuts on the CLI:
# --option2 sets 'option', --list_option2 sets 'list_option'
```

**Nested Example:**

```py
from pydantic import BaseModel, Field

from pydantic_settings import BaseSettings, SettingsConfigDict


class TwiceNested(BaseModel):
    option: str = Field(default='foo')


class Nested(BaseModel):
    twice_nested_option: TwiceNested = TwiceNested()
    option: str = Field(default='foo')


class Settings(BaseSettings):
    nested: Nested = Nested()
    model_config = SettingsConfigDict(
        cli_shortcuts={
            'nested.option': 'option2',
            'nested.twice_nested_option.option': 'twice_nested_option',
        }
    )


# Now you can use --option2 to set nested.option and --twice_nested_option to set nested.twice_nested_option.option
```

If a shortcut collides (is mapped to multiple fields), it will apply to the first matching field in the model.

### Integrating with Existing Parsers

A CLI settings source can be integrated with existing parsers by overriding the default CLI settings source with a user
defined one that specifies the `root_parser` object.

```py
import sys
from argparse import ArgumentParser

from pydantic_settings import BaseSettings, CliApp, CliSettingsSource

parser = ArgumentParser()
parser.add_argument('--food', choices=['pear', 'kiwi', 'lime'])


class Settings(BaseSettings):
    name: str = 'Bob'


# Set existing `parser` as the `root_parser` object for the user defined settings source
cli_settings = CliSettingsSource(Settings, root_parser=parser)

# Parse and load CLI settings from the command line into the settings source.
sys.argv = ['example.py', '--food', 'kiwi', '--name', 'waldo']
s = CliApp.run(Settings, cli_settings_source=cli_settings)
print(s.model_dump())
#> {'name': 'waldo'}

# Load CLI settings from pre-parsed arguments. i.e., the parsing occurs elsewhere and we
# just need to load the pre-parsed args into the settings source.
parsed_args = parser.parse_args(['--food', 'kiwi', '--name', 'ralph'])
s = CliApp.run(Settings, cli_args=parsed_args, cli_settings_source=cli_settings)
print(s.model_dump())
#> {'name': 'ralph'}
```

A `CliSettingsSource` connects with a `root_parser` object by using parser methods to add `settings_cls` fields as
command line arguments. The `CliSettingsSource` internal parser representation is based on the `argparse` library, and
therefore, requires parser methods that support the same attributes as their `argparse` counterparts. The available
parser methods that can be customised, along with their argparse counterparts (the defaults), are listed below:

* `parse_args_method` - (`argparse.ArgumentParser.parse_args`)
* `add_argument_method` - (`argparse.ArgumentParser.add_argument`)
* `add_argument_group_method` - (`argparse.ArgumentParser.add_argument_group`)
* `add_parser_method` - (`argparse._SubParsersAction.add_parser`)
* `add_subparsers_method` - (`argparse.ArgumentParser.add_subparsers`)
* `formatter_class` - (`argparse.RawDescriptionHelpFormatter`)

For a non-argparse parser the parser methods can be set to `None` if not supported. The CLI settings will only raise an
error when connecting to the root parser if a parser method is necessary but set to `None`.

!!! note
    The `formatter_class` is only applied to subcommands. The `CliSettingsSource` never touches or modifies any of the
    external parser settings to avoid breaking changes. Since subcommands reside on their own internal parser trees, we
    can safely apply the `formatter_class` settings without breaking the external parser logic.

## Secrets

Placing secret values in files is a common pattern to provide sensitive configuration to an application.

A secret file follows the same principal as a dotenv file except it only contains a single value and the file name
is used as the key. A secret file will look like the following:

``` title="/var/run/database_password"
super_secret_database_password
```

Once you have your secret files, *pydantic* supports loading it in two ways:

1. Setting the `secrets_dir` on `model_config` in a `BaseSettings` class to the directory where your secret files are stored.
   ````py hl_lines="4 5 6 7"
   from pydantic_settings import BaseSettings, SettingsConfigDict


   class Settings(BaseSettings):
       model_config = SettingsConfigDict(secrets_dir='/var/run')

       database_password: str
   ````
2. Instantiating the `BaseSettings` derived class with the `_secrets_dir` keyword argument:
   ````
   settings = Settings(_secrets_dir='/var/run')
   ````

In either case, the value of the passed argument can be any valid directory, either absolute or relative to the
current working directory. **Note that a non existent directory will only generate a warning**.
From there, *pydantic* will handle everything for you by loading in your variables and validating them.

Even when using a secrets directory, *pydantic* will still read environment variables from a dotenv file or the environment,
**a dotenv file and environment variables will always take priority over values loaded from the secrets directory**.

Passing a file path via the `_secrets_dir` keyword argument on instantiation (method 2) will override
the value (if any) set on the `model_config` class.

If you need to load settings from multiple secrets directories, you can pass multiple paths as a tuple or list. Just like for `env_file`, values from subsequent paths override previous ones.

````python
from pydantic_settings import BaseSettings, SettingsConfigDict


class Settings(BaseSettings):
    # files in '/run/secrets' take priority over '/var/run'
    model_config = SettingsConfigDict(secrets_dir=('/var/run', '/run/secrets'))

    database_password: str
````

If any of `secrets_dir` is missing, it is ignored, and warning is shown. If any of `secrets_dir` is a file, error is raised.


### Use Case: Docker Secrets

Docker Secrets can be used to provide sensitive configuration to an application running in a Docker container.
To use these secrets in a *pydantic* application the process is simple. More information regarding creating, managing
and using secrets in Docker see the official
[Docker documentation](https://docs.docker.com/engine/reference/commandline/secret/).

First, define your `Settings` class with a `SettingsConfigDict` that specifies the secrets directory.

```py hl_lines="4 5 6 7"
from pydantic_settings import BaseSettings, SettingsConfigDict


class Settings(BaseSettings):
    model_config = SettingsConfigDict(secrets_dir='/run/secrets')

    my_secret_data: str
```

!!! note
    By default [Docker uses `/run/secrets`](https://docs.docker.com/engine/swarm/secrets/#how-docker-manages-secrets)
    as the target mount point. If you want to use a different location, change `Config.secrets_dir` accordingly.

Then, create your secret via the Docker CLI
```bash
printf "This is a secret" | docker secret create my_secret_data -
```

Last, run your application inside a Docker container and supply your newly created secret
```bash
docker service create --name pydantic-with-secrets --secret my_secret_data pydantic-app:latest
```

## AWS Secrets Manager

You must set one parameter:

- `secret_id`: The AWS secret id

You must have the same naming convention in the key value in secret as in the field name. For example, if the key in secret is named `SqlServerPassword`, the field name must be the same. You can use an alias too.

In AWS Secrets Manager, nested models are supported with the `--` separator in the key name. For example, `SqlServer--Password`.

Arrays (e.g. `MySecret--0`, `MySecret--1`) are not supported.

```py
import os

from pydantic import BaseModel

from pydantic_settings import (
    AWSSecretsManagerSettingsSource,
    BaseSettings,
    PydanticBaseSettingsSource,
)


class SubModel(BaseModel):
    a: str


class AWSSecretsManagerSettings(BaseSettings):
    foo: str
    bar: int
    sub: SubModel

    @classmethod
    def settings_customise_sources(
        cls,
        settings_cls: type[BaseSettings],
        init_settings: PydanticBaseSettingsSource,
        env_settings: PydanticBaseSettingsSource,
        dotenv_settings: PydanticBaseSettingsSource,
        file_secret_settings: PydanticBaseSettingsSource,
    ) -> tuple[PydanticBaseSettingsSource, ...]:
        aws_secrets_manager_settings = AWSSecretsManagerSettingsSource(
            settings_cls,
            os.environ['AWS_SECRETS_MANAGER_SECRET_ID'],
        )
        return (
            init_settings,
            env_settings,
            dotenv_settings,
            file_secret_settings,
            aws_secrets_manager_settings,
        )
```

## Azure Key Vault

You must set two parameters:

- `url`: For example, `https://my-resource.vault.azure.net/`.
- `credential`: If you use `DefaultAzureCredential`, in local you can execute `az login` to get your identity credentials. The identity must have a role assignment (the recommended one is `Key Vault Secrets User`), so you can access the secrets.

You must have the same naming convention in the field name as in the Key Vault secret name. For example, if the secret is named `SqlServerPassword`, the field name must be the same. You can use an alias too.

In Key Vault, nested models are supported with the `--` separator. For example, `SqlServer--Password`.

Key Vault arrays (e.g. `MySecret--0`, `MySecret--1`) are not supported.

```py
import os

from azure.identity import DefaultAzureCredential
from pydantic import BaseModel

from pydantic_settings import (
    AzureKeyVaultSettingsSource,
    BaseSettings,
    PydanticBaseSettingsSource,
)


class SubModel(BaseModel):
    a: str


class AzureKeyVaultSettings(BaseSettings):
    foo: str
    bar: int
    sub: SubModel

    @classmethod
    def settings_customise_sources(
        cls,
        settings_cls: type[BaseSettings],
        init_settings: PydanticBaseSettingsSource,
        env_settings: PydanticBaseSettingsSource,
        dotenv_settings: PydanticBaseSettingsSource,
        file_secret_settings: PydanticBaseSettingsSource,
    ) -> tuple[PydanticBaseSettingsSource, ...]:
        az_key_vault_settings = AzureKeyVaultSettingsSource(
            settings_cls,
            os.environ['AZURE_KEY_VAULT_URL'],
            DefaultAzureCredential(),
        )
        return (
            init_settings,
            env_settings,
            dotenv_settings,
            file_secret_settings,
            az_key_vault_settings,
        )
```

### Dash to underscore mapping

The Azure Key Vault source accepts a `dash_to_underscore` option, disabled by default, to support Key Vault kebab-case secret names by mapping them to Python's snake_case field names. When enabled, dashes (`-`) in secret names are mapped to underscores (`_`) in field names during validation.

This mapping applies only to *field names*, not to aliases.

```py
import os

from azure.identity import DefaultAzureCredential
from pydantic import Field

from pydantic_settings import (
    AzureKeyVaultSettingsSource,
    BaseSettings,
    PydanticBaseSettingsSource,
)


class AzureKeyVaultSettings(BaseSettings):
    field_with_underscore: str
    field_with_alias: str = Field(..., alias='Alias-With-Dashes')

    @classmethod
    def settings_customise_sources(
        cls,
        settings_cls: type[BaseSettings],
        init_settings: PydanticBaseSettingsSource,
        env_settings: PydanticBaseSettingsSource,
        dotenv_settings: PydanticBaseSettingsSource,
        file_secret_settings: PydanticBaseSettingsSource,
    ) -> tuple[PydanticBaseSettingsSource, ...]:
        az_key_vault_settings = AzureKeyVaultSettingsSource(
            settings_cls,
            os.environ['AZURE_KEY_VAULT_URL'],
            DefaultAzureCredential(),
            dash_to_underscore=True,
        )
        return (az_key_vault_settings,)
```

This setup will load Azure Key Vault secrets named `field-with-underscore` and `Alias-With-Dashes`, mapping them to the `field_with_underscore` and `field_with_alias` fields, respectively.

!!! tip
    Alternatively, you can configure an [alias_generator](alias.md#using-alias-generators) to map PascalCase secrets.

## Google Cloud Secret Manager

Google Cloud Secret Manager allows you to store, manage, and access sensitive information as secrets in Google Cloud Platform. This integration lets you retrieve secrets directly from GCP Secret Manager for use in your Pydantic settings.

### Installation

The Google Cloud Secret Manager integration requires additional dependencies:

```bash
pip install "pydantic-settings[gcp-secret-manager]"
```

### Basic Usage

To use Google Cloud Secret Manager, you need to:

1. Create a `GoogleSecretManagerSettingsSource`. (See [GCP Authentication](#gcp-authentication) for authentication options.)
2. Add this source to your settings customization pipeline

   ```py
   from pydantic import BaseModel

   from pydantic_settings import (
       BaseSettings,
       GoogleSecretManagerSettingsSource,
       PydanticBaseSettingsSource,
       SettingsConfigDict,
   )


   class Database(BaseModel):
       password: str
       user: str


   class Settings(BaseSettings):
       database: Database

       model_config = SettingsConfigDict(env_nested_delimiter='__')

       @classmethod
       def settings_customise_sources(
           cls,
           settings_cls: type[BaseSettings],
           init_settings: PydanticBaseSettingsSource,
           env_settings: PydanticBaseSettingsSource,
           dotenv_settings: PydanticBaseSettingsSource,
           file_secret_settings: PydanticBaseSettingsSource,
       ) -> tuple[PydanticBaseSettingsSource, ...]:
           # Create the GCP Secret Manager settings source
           gcp_settings = GoogleSecretManagerSettingsSource(
               settings_cls,
               # If not provided, will use google.auth.default()
               # to get credentials from the environemnt
               # credentials=your_credentials,
               # If not provided, will use google.auth.default()
               # to get project_id from the environemnt
               project_id='your-gcp-project-id',
           )

           return (
               init_settings,
               env_settings,
               dotenv_settings,
               file_secret_settings,
               gcp_settings,
           )
   ```

### GCP Authentication

The `GoogleSecretManagerSettingsSource` supports several authentication methods:

1. **Default credentials** - If you don't provide credentials or project ID, it will use [`google.auth.default()`](https://google-auth.readthedocs.io/en/master/reference/google.auth.html#google.auth.default) to obtain them. This works with:

   - Service account credentials from `GOOGLE_APPLICATION_CREDENTIALS` environment variable
   - User credentials from `gcloud auth application-default login`
   - Compute Engine, GKE, Cloud Run, or Cloud Functions default service accounts

2. **Explicit credentials** - You can also provide `credentials` directly. e.g. `sa_credentials = google.oauth2.service_account.Credentials.from_service_account_file('path/to/service-account.json')` and then `GoogleSecretManagerSettingsSource(credentials=sa_credentials)`

### Nested Models

For nested models, Secret Manager supports the `env_nested_delimiter` setting as long as it complies with the [naming rules](https://cloud.google.com/secret-manager/docs/creating-and-accessing-secrets#create-a-secret). In the example above, you would create secrets named `database__password` and `database__user` in Secret Manager.

### Important Notes

1. **Case Sensitivity**: By default, secret names are case-sensitive.
2. **Secret Naming**: Create secrets in Google Secret Manager with names that match your field names (including any prefix). According the [Secret Manager documentation](https://cloud.google.com/secret-manager/docs/creating-and-accessing-secrets#create-a-secret), a secret name can contain uppercase and lowercase letters, numerals, hyphens, and underscores. The maximum allowed length for a name is 255 characters.
3. **Secret Versions**: The GoogleSecretManagerSettingsSource uses the "latest" version of secrets.

For more details on creating and managing secrets in Google Cloud Secret Manager, see the [official Google Cloud documentation](https://cloud.google.com/secret-manager/docs).

## Other settings source

Other settings sources are available for common configuration files:

- `JsonConfigSettingsSource` using `json_file` and `json_file_encoding` arguments
- `PyprojectTomlConfigSettingsSource` using *(optional)* `pyproject_toml_depth` and *(optional)* `pyproject_toml_table_header` arguments
- `TomlConfigSettingsSource` using `toml_file` argument
- `YamlConfigSettingsSource` using `yaml_file` and yaml_file_encoding arguments

You can also provide multiple files by providing a list of path:
```py
toml_file = ['config.default.toml', 'config.custom.toml']
```
To use them, you can use the same mechanism described [here](#customise-settings-sources)


```py
from pydantic import BaseModel

from pydantic_settings import (
    BaseSettings,
    PydanticBaseSettingsSource,
    SettingsConfigDict,
    TomlConfigSettingsSource,
)


class Nested(BaseModel):
    nested_field: str


class Settings(BaseSettings):
    foobar: str
    nested: Nested
    model_config = SettingsConfigDict(toml_file='config.toml')

    @classmethod
    def settings_customise_sources(
        cls,
        settings_cls: type[BaseSettings],
        init_settings: PydanticBaseSettingsSource,
        env_settings: PydanticBaseSettingsSource,
        dotenv_settings: PydanticBaseSettingsSource,
        file_secret_settings: PydanticBaseSettingsSource,
    ) -> tuple[PydanticBaseSettingsSource, ...]:
        return (TomlConfigSettingsSource(settings_cls),)
```

This will be able to read the following "config.toml" file, located in your working directory:

```toml
foobar = "Hello"
[nested]
nested_field = "world!"
```

### pyproject.toml

"pyproject.toml" is a standardized file for providing configuration values in Python projects.
[PEP 518](https://peps.python.org/pep-0518/#tool-table) defines a `[tool]` table that can be used to provide arbitrary tool configuration.
While encouraged to use the `[tool]` table, `PyprojectTomlConfigSettingsSource` can be used to load variables from any location with in "pyproject.toml" file.

This is controlled by providing `SettingsConfigDict(pyproject_toml_table_header=tuple[str, ...])` where the value is a tuple of header parts.
By default, `pyproject_toml_table_header=('tool', 'pydantic-settings')` which will load variables from the `[tool.pydantic-settings]` table.

```python
from pydantic_settings import (
    BaseSettings,
    PydanticBaseSettingsSource,
    PyprojectTomlConfigSettingsSource,
    SettingsConfigDict,
)


class Settings(BaseSettings):
    """Example loading values from the table used by default."""

    field: str

    @classmethod
    def settings_customise_sources(
        cls,
        settings_cls: type[BaseSettings],
        init_settings: PydanticBaseSettingsSource,
        env_settings: PydanticBaseSettingsSource,
        dotenv_settings: PydanticBaseSettingsSource,
        file_secret_settings: PydanticBaseSettingsSource,
    ) -> tuple[PydanticBaseSettingsSource, ...]:
        return (PyprojectTomlConfigSettingsSource(settings_cls),)


class SomeTableSettings(Settings):
    """Example loading values from a user defined table."""

    model_config = SettingsConfigDict(
        pyproject_toml_table_header=('tool', 'some-table')
    )


class RootSettings(Settings):
    """Example loading values from the root of a pyproject.toml file."""

    model_config = SettingsConfigDict(extra='ignore', pyproject_toml_table_header=())
```

This will be able to read the following "pyproject.toml" file, located in your working directory, resulting in `Settings(field='default-table')`, `SomeTableSettings(field='some-table')`, & `RootSettings(field='root')`:

```toml
field = "root"

[tool.pydantic-settings]
field = "default-table"

[tool.some-table]
field = "some-table"
```

By default, `PyprojectTomlConfigSettingsSource` will only look for a "pyproject.toml" in the your current working directory.
However, there are two options to change this behavior.

* `SettingsConfigDict(pyproject_toml_depth=<int>)` can be provided to check `<int>` number of directories **up** in the directory tree for a "pyproject.toml" if one is not found in the current working directory.
  By default, no parent directories are checked.
* An explicit file path can be provided to the source when it is instantiated (e.g. `PyprojectTomlConfigSettingsSource(settings_cls, Path('~/.config').resolve() / 'pyproject.toml')`).
  If a file path is provided this way, it will be treated as absolute (no other locations are checked).

```python
from pathlib import Path

from pydantic_settings import (
    BaseSettings,
    PydanticBaseSettingsSource,
    PyprojectTomlConfigSettingsSource,
    SettingsConfigDict,
)


class DiscoverSettings(BaseSettings):
    """Example of discovering a pyproject.toml in parent directories in not in `Path.cwd()`."""

    model_config = SettingsConfigDict(pyproject_toml_depth=2)

    @classmethod
    def settings_customise_sources(
        cls,
        settings_cls: type[BaseSettings],
        init_settings: PydanticBaseSettingsSource,
        env_settings: PydanticBaseSettingsSource,
        dotenv_settings: PydanticBaseSettingsSource,
        file_secret_settings: PydanticBaseSettingsSource,
    ) -> tuple[PydanticBaseSettingsSource, ...]:
        return (PyprojectTomlConfigSettingsSource(settings_cls),)


class ExplicitFilePathSettings(BaseSettings):
    """Example of explicitly providing the path to the file to load."""

    field: str

    @classmethod
    def settings_customise_sources(
        cls,
        settings_cls: type[BaseSettings],
        init_settings: PydanticBaseSettingsSource,
        env_settings: PydanticBaseSettingsSource,
        dotenv_settings: PydanticBaseSettingsSource,
        file_secret_settings: PydanticBaseSettingsSource,
    ) -> tuple[PydanticBaseSettingsSource, ...]:
        return (
            PyprojectTomlConfigSettingsSource(
                settings_cls, Path('~/.config').resolve() / 'pyproject.toml'
            ),
        )
```

## Field value priority

In the case where a value is specified for the same `Settings` field in multiple ways,
the selected value is determined as follows (in descending order of priority):

1. If `cli_parse_args` is enabled, arguments passed in at the CLI.
2. Arguments passed to the `Settings` class initialiser.
3. Environment variables, e.g. `my_prefix_special_function` as described above.
4. Variables loaded from a dotenv (`.env`) file.
5. Variables loaded from the secrets directory.
6. The default field values for the `Settings` model.

## Customise settings sources

If the default order of priority doesn't match your needs, it's possible to change it by overriding
the `settings_customise_sources` method of your `Settings` .

`settings_customise_sources` takes four callables as arguments and returns any number of callables as a tuple.
In turn these callables are called to build the inputs to the fields of the settings class.

Each callable should take an instance of the settings class as its sole argument and return a `dict`.

### Changing Priority

The order of the returned callables decides the priority of inputs; first item is the highest priority.

```py
from pydantic import PostgresDsn

from pydantic_settings import BaseSettings, PydanticBaseSettingsSource


class Settings(BaseSettings):
    database_dsn: PostgresDsn

    @classmethod
    def settings_customise_sources(
        cls,
        settings_cls: type[BaseSettings],
        init_settings: PydanticBaseSettingsSource,
        env_settings: PydanticBaseSettingsSource,
        dotenv_settings: PydanticBaseSettingsSource,
        file_secret_settings: PydanticBaseSettingsSource,
    ) -> tuple[PydanticBaseSettingsSource, ...]:
        return env_settings, init_settings, file_secret_settings


print(Settings(database_dsn='postgres://postgres@localhost:5432/kwargs_db'))
#> database_dsn=PostgresDsn('postgres://postgres@localhost:5432/kwargs_db')
```

By flipping `env_settings` and `init_settings`, environment variables now have precedence over `__init__` kwargs.

### Adding sources

As explained earlier, *pydantic* ships with multiples built-in settings sources. However, you may occasionally
need to add your own custom sources, `settings_customise_sources` makes this very easy:

```py
import json
from pathlib import Path
from typing import Any

from pydantic.fields import FieldInfo

from pydantic_settings import (
    BaseSettings,
    PydanticBaseSettingsSource,
    SettingsConfigDict,
)


class JsonConfigSettingsSource(PydanticBaseSettingsSource):
    """
    A simple settings source class that loads variables from a JSON file
    at the project's root.

    Here we happen to choose to use the `env_file_encoding` from Config
    when reading `config.json`
    """

    def get_field_value(
        self, field: FieldInfo, field_name: str
    ) -> tuple[Any, str, bool]:
        encoding = self.config.get('env_file_encoding')
        file_content_json = json.loads(
            Path('tests/example_test_config.json').read_text(encoding)
        )
        field_value = file_content_json.get(field_name)
        return field_value, field_name, False

    def prepare_field_value(
        self, field_name: str, field: FieldInfo, value: Any, value_is_complex: bool
    ) -> Any:
        return value

    def __call__(self) -> dict[str, Any]:
        d: dict[str, Any] = {}

        for field_name, field in self.settings_cls.model_fields.items():
            field_value, field_key, value_is_complex = self.get_field_value(
                field, field_name
            )
            field_value = self.prepare_field_value(
                field_name, field, field_value, value_is_complex
            )
            if field_value is not None:
                d[field_key] = field_value

        return d


class Settings(BaseSettings):
    model_config = SettingsConfigDict(env_file_encoding='utf-8')

    foobar: str

    @classmethod
    def settings_customise_sources(
        cls,
        settings_cls: type[BaseSettings],
        init_settings: PydanticBaseSettingsSource,
        env_settings: PydanticBaseSettingsSource,
        dotenv_settings: PydanticBaseSettingsSource,
        file_secret_settings: PydanticBaseSettingsSource,
    ) -> tuple[PydanticBaseSettingsSource, ...]:
        return (
            init_settings,
            JsonConfigSettingsSource(settings_cls),
            env_settings,
            file_secret_settings,
        )


print(Settings())
#> foobar='test'
```

#### Accesing the result of previous sources

Each source of settings can access the output of the previous ones.

```python
from typing import Any

from pydantic.fields import FieldInfo

from pydantic_settings import PydanticBaseSettingsSource


class MyCustomSource(PydanticBaseSettingsSource):
    def get_field_value(
        self, field: FieldInfo, field_name: str
    ) -> tuple[Any, str, bool]: ...

    def __call__(self) -> dict[str, Any]:
        # Retrieve the aggregated settings from previous sources
        current_state = self.current_state
        current_state.get('some_setting')

        # Retrive settings from all sources individually
        # self.settings_sources_data["SettingsSourceName"]: dict[str, Any]
        settings_sources_data = self.settings_sources_data
        settings_sources_data['SomeSettingsSource'].get('some_setting')

        # Your code here...
```

### Removing sources

You might also want to disable a source:

```py
from pydantic import ValidationError

from pydantic_settings import BaseSettings, PydanticBaseSettingsSource


class Settings(BaseSettings):
    my_api_key: str

    @classmethod
    def settings_customise_sources(
        cls,
        settings_cls: type[BaseSettings],
        init_settings: PydanticBaseSettingsSource,
        env_settings: PydanticBaseSettingsSource,
        dotenv_settings: PydanticBaseSettingsSource,
        file_secret_settings: PydanticBaseSettingsSource,
    ) -> tuple[PydanticBaseSettingsSource, ...]:
        # here we choose to ignore arguments from init_settings
        return env_settings, file_secret_settings


try:
    Settings(my_api_key='this is ignored')
except ValidationError as exc_info:
    print(exc_info)
    """
    1 validation error for Settings
    my_api_key
      Field required [type=missing, input_value={}, input_type=dict]
        For further information visit https://errors.pydantic.dev/2/v/missing
    """
```


## In-place reloading

In case you want to reload in-place an existing setting, you can do it by using its `__init__` method :

```py
import os

from pydantic import Field

from pydantic_settings import BaseSettings


class Settings(BaseSettings):
    foo: str = Field('foo')


mutable_settings = Settings()

print(mutable_settings.foo)
#> foo

os.environ['foo'] = 'bar'
print(mutable_settings.foo)
#> foo

mutable_settings.__init__()
print(mutable_settings.foo)
#> bar

os.environ.pop('foo')
mutable_settings.__init__()
print(mutable_settings.foo)
#> foo
```