1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
|
??? api "API Documentation"
[`pydantic.fields.Field`][pydantic.fields.Field]<br>
In this section, we will go through the available mechanisms to customize Pydantic model fields:
[default values](#default-values), [JSON Schema metadata](#customizing-json-schema),
[constraints](#field-constraints), etc.
To do so, the [`Field()`][pydantic.fields.Field] function is used a lot, and behaves the same way as
the standard library [`field()`][dataclasses.field] function for dataclasses – by assigning to the
annotated attribute:
```python
from pydantic import BaseModel, Field
class Model(BaseModel):
name: str = Field(frozen=True)
```
!!! note
Even though `name` is assigned a value, it is still required and has no default value. If you want
to emphasize on the fact that a value must be provided, you can use the [ellipsis][Ellipsis]:
```python {lint="skip" test="skip"}
class Model(BaseModel):
name: str = Field(..., frozen=True)
```
However, its usage is discouraged as it doesn't play well with static type checkers.
## The annotated pattern
To apply constraints or attach [`Field()`][pydantic.fields.Field] functions to a model field, Pydantic
also supports the [`Annotated`][typing.Annotated] typing construct to attach metadata to an annotation:
```python
from typing import Annotated
from pydantic import BaseModel, Field, WithJsonSchema
class Model(BaseModel):
name: Annotated[str, Field(strict=True), WithJsonSchema({'extra': 'data'})]
```
As far as static type checkers are concerned, `name` is still typed as `str`, but Pydantic leverages
the available metadata to add validation logic, type constraints, etc.
Using this pattern has some advantages:
* Using the `f: <type> = Field(...)` form can be confusing and might trick users into thinking `f`
has a default value, while in reality it is still required.
* You can provide an arbitrary amount of metadata elements for a field. As shown in the example above,
the [`Field()`][pydantic.fields.Field] function only supports a limited set of constraints/metadata,
and you may have to use different Pydantic utilities such as [`WithJsonSchema`][pydantic.WithJsonSchema]
in some cases.
* Types can be made reusable (see the documentation on [custom types](./types.md#using-the-annotated-pattern)
using this pattern).
However, note that certain arguments to the [`Field()`][pydantic.fields.Field] function (namely, `default`,
`default_factory`, and `alias`) are taken into account by static type checkers to synthesize a correct
`__init__()` method. The annotated pattern is *not* understood by them, so you should use the normal
assignment form instead.
!!! tip
The annotated pattern can also be used to add metadata to specific parts of the type. For instance,
[validation constraints](#field-constraints) can be added this way:
```python
from typing import Annotated
from pydantic import BaseModel, Field
class Model(BaseModel):
int_list: list[Annotated[int, Field(gt=0)]]
# Valid: [1, 3]
# Invalid: [-1, 2]
```
Be careful not mixing *field* and *type* metadata:
```python {test="skip" lint="skip"}
class Model(BaseModel):
field_bad: Annotated[int, Field(deprecated=True)] | None = None # (1)!
field_ok: Annotated[int | None, Field(deprecated=True)] = None # (2)!
```
1. The [`Field()`][pydantic.fields.Field] function is applied to `int` type, hence the
`deprecated` flag won't have any effect. While this may be confusing given that the name of
the [`Field()`][pydantic.fields.Field] function would imply it should apply to the field,
the API was designed when this function was the only way to provide metadata. You can
alternatively make use of the [`annotated_types`](https://github.com/annotated-types/annotated-types)
library which is now supported by Pydantic.
2. The [`Field()`][pydantic.fields.Field] function is applied to the "top-level" union type,
hence the `deprecated` flag will be applied to the field.
## Inspecting model fields
The fields of a model can be inspected using the [`model_fields`][pydantic.main.BaseModel.model_fields] class attribute
(or the `__pydantic_fields__` attribute for [Pydantic dataclasses](./dataclasses.md)). It is a mapping of field names
to their definition (represented as [`FieldInfo`][pydantic.fields.FieldInfo] instances).
```python
from typing import Annotated
from pydantic import BaseModel, Field, WithJsonSchema
class Model(BaseModel):
a: Annotated[
int, Field(gt=1), WithJsonSchema({'extra': 'data'}), Field(alias='b')
] = 1
field_info = Model.model_fields['a']
print(field_info.annotation)
#> <class 'int'>
print(field_info.alias)
#> b
print(field_info.metadata)
#> [Gt(gt=1), WithJsonSchema(json_schema={'extra': 'data'}, mode=None)]
```
## Default values
Default values for fields can be provided using the normal assignment syntax or by providing a value
to the `default` argument:
```python
from pydantic import BaseModel, Field
class User(BaseModel):
# Both fields aren't required:
name: str = 'John Doe'
age: int = Field(default=20)
```
!!! warning
[In Pydantic V1](../migration.md#required-optional-and-nullable-fields), a type annotated as [`Any`][typing.Any]
or wrapped by [`Optional`][typing.Optional] would be given an implicit default of `None` even if no
default was explicitly specified. This is no longer the case in Pydantic V2.
You can also pass a callable to the `default_factory` argument that will be called to generate a default value:
```python
from uuid import uuid4
from pydantic import BaseModel, Field
class User(BaseModel):
id: str = Field(default_factory=lambda: uuid4().hex)
```
<!-- markdownlint-disable-next-line no-empty-links -->
[](){#default-factory-validated-data}
The default factory can also take a single required argument, in which case the already validated data will be passed as a dictionary.
```python
from pydantic import BaseModel, EmailStr, Field
class User(BaseModel):
email: EmailStr
username: str = Field(default_factory=lambda data: data['email'])
user = User(email='user@example.com')
print(user.username)
#> user@example.com
```
The `data` argument will *only* contain the already validated data, based on the [order of model fields](./models.md#field-ordering)
(the above example would fail if `username` were to be defined before `email`).
## Validate default values
By default, Pydantic will *not* validate default values. The `validate_default` field parameter
(or the [`validate_default`][pydantic.ConfigDict.validate_default] configuration value) can be used
to enable this behavior:
```python
from pydantic import BaseModel, Field, ValidationError
class User(BaseModel):
age: int = Field(default='twelve', validate_default=True)
try:
user = User()
except ValidationError as e:
print(e)
"""
1 validation error for User
age
Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='twelve', input_type=str]
"""
```
### Mutable default values
A common source of bugs in Python is to use a mutable object as a default value for a function or method argument,
as the same instance ends up being reused in each call.
The [`dataclasses`][dataclasses] module actually raises an error in this case, indicating that you should use
a [default factory](https://docs.python.org/3/library/dataclasses.html#default-factory-functions) instead.
While the same thing can be done in Pydantic, it is not required. In the event that the default value is not hashable,
Pydantic will create a deep copy of the default value when creating each instance of the model:
```python
from pydantic import BaseModel
class Model(BaseModel):
item_counts: list[dict[str, int]] = [{}]
m1 = Model()
m1.item_counts[0]['a'] = 1
print(m1.item_counts)
#> [{'a': 1}]
m2 = Model()
print(m2.item_counts)
#> [{}]
```
## Field aliases
!!! tip
Read more about aliases in the [dedicated section](./alias.md).
For validation and serialization, you can define an alias for a field.
There are three ways to define an alias:
* `Field(alias='foo')`
* `Field(validation_alias='foo')`
* `Field(serialization_alias='foo')`
The `alias` parameter is used for both validation *and* serialization. If you want to use
*different* aliases for validation and serialization respectively, you can use the `validation_alias`
and `serialization_alias` parameters, which will apply only in their respective use cases.
Here is an example of using the `alias` parameter:
```python
from pydantic import BaseModel, Field
class User(BaseModel):
name: str = Field(alias='username')
user = User(username='johndoe') # (1)!
print(user)
#> name='johndoe'
print(user.model_dump(by_alias=True)) # (2)!
#> {'username': 'johndoe'}
```
1. The alias `'username'` is used for instance creation and validation.
2. We are using [`model_dump()`][pydantic.main.BaseModel.model_dump] to convert the model into a serializable format.
Note that the `by_alias` keyword argument defaults to `False`, and must be specified explicitly to dump
models using the field (serialization) aliases.
You can also use [`ConfigDict.serialize_by_alias`][pydantic.config.ConfigDict.serialize_by_alias] to
configure this behavior at the model level.
When `by_alias=True`, the alias `'username'` used during serialization.
If you want to use an alias *only* for validation, you can use the `validation_alias` parameter:
```python
from pydantic import BaseModel, Field
class User(BaseModel):
name: str = Field(validation_alias='username')
user = User(username='johndoe') # (1)!
print(user)
#> name='johndoe'
print(user.model_dump(by_alias=True)) # (2)!
#> {'name': 'johndoe'}
```
1. The validation alias `'username'` is used during validation.
2. The field name `'name'` is used during serialization.
If you only want to define an alias for *serialization*, you can use the `serialization_alias` parameter:
```python
from pydantic import BaseModel, Field
class User(BaseModel):
name: str = Field(serialization_alias='username')
user = User(name='johndoe') # (1)!
print(user)
#> name='johndoe'
print(user.model_dump(by_alias=True)) # (2)!
#> {'username': 'johndoe'}
```
1. The field name `'name'` is used for validation.
2. The serialization alias `'username'` is used for serialization.
!!! note "Alias precedence and priority"
In case you use `alias` together with `validation_alias` or `serialization_alias` at the same time,
the `validation_alias` will have priority over `alias` for validation, and `serialization_alias` will have priority
over `alias` for serialization.
If you provide a value for the [`alias_generator`][pydantic.config.ConfigDict.alias_generator] model setting, you can control the order of precedence for field alias and generated aliases via the `alias_priority` field parameter. You can read more about alias precedence [here](../concepts/alias.md#alias-precedence).
??? tip "Static type checking/IDE support"
If you provide a value for the `alias` field parameter, static type checkers will use this alias instead
of the actual field name to synthesize the `__init__` method:
```python
from pydantic import BaseModel, Field
class User(BaseModel):
name: str = Field(alias='username')
user = User(username='johndoe') # (1)!
```
1. Accepted by type checkers.
This means that when using the [`validate_by_name`][pydantic.config.ConfigDict.validate_by_name] model setting (which allows both the field name and alias to be used during model validation), type checkers will error when the actual field name is used:
```python
from pydantic import BaseModel, ConfigDict, Field
class User(BaseModel):
model_config = ConfigDict(validate_by_name=True)
name: str = Field(alias='username')
user = User(name='johndoe') # (1)!
```
1. *Not* accepted by type checkers.
If you still want type checkers to use the field name and not the alias, the [annotated pattern](#the-annotated-pattern)
can be used (which is only understood by Pydantic):
```python
from typing import Annotated
from pydantic import BaseModel, ConfigDict, Field
class User(BaseModel):
model_config = ConfigDict(validate_by_name=True, validate_by_alias=True)
name: Annotated[str, Field(alias='username')]
user = User(name='johndoe') # (1)!
user = User(username='johndoe') # (2)!
```
1. Accepted by type checkers.
2. *Not* accepted by type checkers.
<h3>Validation Alias</h3>
Even though Pydantic treats `alias` and `validation_alias` the same when creating model instances, type checkers
only understand the `alias` field parameter. As a workaround, you can instead specify both an `alias` and
`serialization_alias` (identical to the field name), as the `serialization_alias` will override the `alias` during
serialization:
```python
from pydantic import BaseModel, Field
class MyModel(BaseModel):
my_field: int = Field(validation_alias='myValidationAlias')
```
with:
```python
from pydantic import BaseModel, Field
class MyModel(BaseModel):
my_field: int = Field(
alias='myValidationAlias',
serialization_alias='my_field',
)
m = MyModel(myValidationAlias=1)
print(m.model_dump(by_alias=True))
#> {'my_field': 1}
```
<!-- old anchor added for backwards compatibility -->
<!-- markdownlint-disable-next-line no-empty-links -->
[](){#numeric-constraints}
<!-- markdownlint-disable-next-line no-empty-links -->
[](){#string-constraints}
<!-- markdownlint-disable-next-line no-empty-links -->
[](){#decimal-constraints}
## Field constraints
The [`Field()`][pydantic.Field] function can also be used to add constraints to specific types:
```python
from decimal import Decimal
from pydantic import BaseModel, Field
class Model(BaseModel):
positive: int = Field(gt=0)
short_str: str = Field(max_length=3)
precise_decimal: Decimal = Field(max_digits=5, decimal_places=2)
```
The available constraints for each type (and the way they affect the JSON Schema) are described
in the [standard library types](../api/standard_library_types.md) documentation.
<!-- old anchor added for backwards compatibility -->
<!-- markdownlint-disable-next-line no-empty-links -->
[](){#strict-mode}
## Strict fields
The `strict` parameter of the [`Field()`][pydantic.Field] function specifies whether the field should be validated in
[strict mode](./strict_mode.md).
```python
from pydantic import BaseModel, Field
class User(BaseModel):
name: str = Field(strict=True)
age: int = Field(strict=False) # (1)!
user = User(name='John', age='42') # (2)!
print(user)
#> name='John' age=42
```
1. This is the default value.
2. The `age` field is validated in lax mode. Therefore, it can be assigned a string.
The [standard library types](../api/standard_library_types.md) documentation describes the strict behavior for each type.
<!-- old anchor added for backwards compatibility -->
<!-- markdownlint-disable-next-line no-empty-links -->
[](){#dataclass-constraints}
## Dataclass fields
Some parameters of the [`Field()`][pydantic.Field] function can be used on [dataclasses](./dataclasses.md):
* `init`: Whether the field should be included in the synthesized `__init__()` method of the dataclass.
* `init_var`: Whether the field should be [init-only][dataclasses-init-only-variables] in the dataclass.
* `kw_only`: Whether the field should be a keyword-only argument in the constructor of the dataclass.
Here is an example:
```python
from pydantic import BaseModel, Field
from pydantic.dataclasses import dataclass
@dataclass
class Foo:
bar: str
baz: str = Field(init_var=True)
qux: str = Field(kw_only=True)
class Model(BaseModel):
foo: Foo
model = Model(foo=Foo('bar', baz='baz', qux='qux'))
print(model.model_dump()) # (1)!
#> {'foo': {'bar': 'bar', 'qux': 'qux'}}
```
1. The `baz` field is not included in the serialized output, since it is an init-only field.
## Field Representation
The parameter `repr` can be used to control whether the field should be included in the string
representation of the model.
```python
from pydantic import BaseModel, Field
class User(BaseModel):
name: str = Field(repr=True) # (1)!
age: int = Field(repr=False)
user = User(name='John', age=42)
print(user)
#> name='John'
```
1. This is the default value.
## Discriminator
The parameter `discriminator` can be used to control the field that will be used to discriminate between different
models in a union. It takes either the name of a field or a `Discriminator` instance. The `Discriminator`
approach can be useful when the discriminator fields aren't the same for all the models in the `Union`.
The following example shows how to use `discriminator` with a field name:
```python
from typing import Literal, Union
from pydantic import BaseModel, Field
class Cat(BaseModel):
pet_type: Literal['cat']
age: int
class Dog(BaseModel):
pet_type: Literal['dog']
age: int
class Model(BaseModel):
pet: Union[Cat, Dog] = Field(discriminator='pet_type')
print(Model.model_validate({'pet': {'pet_type': 'cat', 'age': 12}})) # (1)!
#> pet=Cat(pet_type='cat', age=12)
```
1. See more about [Validating data] in the [Models] page.
The following example shows how to use the `discriminator` keyword argument with a `Discriminator` instance:
```python
from typing import Annotated, Literal, Union
from pydantic import BaseModel, Discriminator, Field, Tag
class Cat(BaseModel):
pet_type: Literal['cat']
age: int
class Dog(BaseModel):
pet_kind: Literal['dog']
age: int
def pet_discriminator(v):
if isinstance(v, dict):
return v.get('pet_type', v.get('pet_kind'))
return getattr(v, 'pet_type', getattr(v, 'pet_kind', None))
class Model(BaseModel):
pet: Union[Annotated[Cat, Tag('cat')], Annotated[Dog, Tag('dog')]] = Field(
discriminator=Discriminator(pet_discriminator)
)
print(repr(Model.model_validate({'pet': {'pet_type': 'cat', 'age': 12}})))
#> Model(pet=Cat(pet_type='cat', age=12))
print(repr(Model.model_validate({'pet': {'pet_kind': 'dog', 'age': 12}})))
#> Model(pet=Dog(pet_kind='dog', age=12))
```
You can also take advantage of `Annotated` to define your discriminated unions.
See the [Discriminated Unions] docs for more details.
## Immutability
The parameter `frozen` is used to emulate the frozen dataclass behaviour. It is used to prevent the field from being
assigned a new value after the model is created (immutability).
See the [frozen dataclass documentation] for more details.
```python
from pydantic import BaseModel, Field, ValidationError
class User(BaseModel):
name: str = Field(frozen=True)
age: int
user = User(name='John', age=42)
try:
user.name = 'Jane' # (1)!
except ValidationError as e:
print(e)
"""
1 validation error for User
name
Field is frozen [type=frozen_field, input_value='Jane', input_type=str]
"""
```
1. Since `name` field is frozen, the assignment is not allowed.
<!-- old anchor added for backwards compatibility -->
<!-- markdownlint-disable-next-line no-empty-links -->
[](){#exclude}
## Excluding fields
The `exclude` and `exclude_if` parameters can be used to control which fields should be excluded from the
model when exporting the model.
See the following example:
```python
from pydantic import BaseModel, Field
class User(BaseModel):
name: str
age: int = Field(exclude=True)
user = User(name='John', age=42)
print(user.model_dump()) # (1)!
#> {'name': 'John'}
```
1. The `age` field is not included in the [`model_dump()`][pydantic.BaseModel.model_dump] output, since it is excluded.
See the dedicated [serialization section](./serialization.md#field-inclusion-and-exclusion) for more details.
## Deprecated fields
The `deprecated` parameter can be used to mark a field as being deprecated. Doing so will result in:
* a runtime deprecation warning emitted when accessing the field.
* The [deprecated](https://json-schema.org/draft/2020-12/json-schema-validation#section-9.3) keyword
being set in the generated JSON schema.
This parameter accepts different types, described below.
### `deprecated` as a string
The value will be used as the deprecation message.
```python
from typing import Annotated
from pydantic import BaseModel, Field
class Model(BaseModel):
deprecated_field: Annotated[int, Field(deprecated='This is deprecated')]
print(Model.model_json_schema()['properties']['deprecated_field'])
#> {'deprecated': True, 'title': 'Deprecated Field', 'type': 'integer'}
```
### `deprecated` via the `@warnings.deprecated` decorator
The [`@warnings.deprecated`][warnings.deprecated] decorator (or the
[`typing_extensions` backport][typing_extensions.deprecated] on Python
3.12 and lower) can be used as an instance.
<!-- TODO: tabs should be auto-generated if using Ruff (https://github.com/pydantic/pydantic/issues/10083) -->
=== "Python 3.9 and above"
```python
from typing import Annotated
from typing_extensions import deprecated
from pydantic import BaseModel, Field
class Model(BaseModel):
deprecated_field: Annotated[int, deprecated('This is deprecated')]
# Or explicitly using `Field`:
alt_form: Annotated[int, Field(deprecated=deprecated('This is deprecated'))]
```
=== "Python 3.13 and above"
```python {requires="3.13"}
from typing import Annotated
from warnings import deprecated
from pydantic import BaseModel, Field
class Model(BaseModel):
deprecated_field: Annotated[int, deprecated('This is deprecated')]
# Or explicitly using `Field`:
alt_form: Annotated[int, Field(deprecated=deprecated('This is deprecated'))]
```
!!! note "Support for `category` and `stacklevel`"
The current implementation of this feature does not take into account the `category` and `stacklevel`
arguments to the `deprecated` decorator. This might land in a future version of Pydantic.
### `deprecated` as a boolean
```python
from typing import Annotated
from pydantic import BaseModel, Field
class Model(BaseModel):
deprecated_field: Annotated[int, Field(deprecated=True)]
print(Model.model_json_schema()['properties']['deprecated_field'])
#> {'deprecated': True, 'title': 'Deprecated Field', 'type': 'integer'}
```
!!! warning "Accessing a deprecated field in validators"
When accessing a deprecated field inside a validator, the deprecation warning will be emitted. You can use
[`catch_warnings`][warnings.catch_warnings] to explicitly ignore it:
```python
import warnings
from typing_extensions import Self
from pydantic import BaseModel, Field, model_validator
class Model(BaseModel):
deprecated_field: int = Field(deprecated='This is deprecated')
@model_validator(mode='after')
def validate_model(self) -> Self:
with warnings.catch_warnings():
warnings.simplefilter('ignore', DeprecationWarning)
self.deprecated_field = self.deprecated_field * 2
```
## Customizing JSON Schema
Some field parameters are used exclusively to customize the generated JSON schema. The parameters in question are:
* `title`
* `description`
* `examples`
* `json_schema_extra`
Read more about JSON schema customization / modification with fields in the [Customizing JSON Schema] section of the JSON schema docs.
## The `computed_field` decorator
??? api "API Documentation"
[`computed_field`][pydantic.fields.computed_field]<br>
The [`computed_field`][pydantic.fields.computed_field] decorator can be used to include [`property`][] or
[`cached_property`][functools.cached_property] attributes when serializing a model or dataclass.
The property will also be taken into account in the JSON Schema (in serialization mode).
!!! note
Properties can be useful for fields that are computed from other fields, or for fields that
are expensive to be computed (and thus, are cached if using [`cached_property`][functools.cached_property]).
However, note that Pydantic will *not* perform any additional logic on the wrapped property
(validation, cache invalidation, etc.).
Here's an example of the JSON schema (in serialization mode) generated for a model with a computed field:
```python
from pydantic import BaseModel, computed_field
class Box(BaseModel):
width: float
height: float
depth: float
@computed_field
@property # (1)!
def volume(self) -> float:
return self.width * self.height * self.depth
print(Box.model_json_schema(mode='serialization'))
"""
{
'properties': {
'width': {'title': 'Width', 'type': 'number'},
'height': {'title': 'Height', 'type': 'number'},
'depth': {'title': 'Depth', 'type': 'number'},
'volume': {'readOnly': True, 'title': 'Volume', 'type': 'number'},
},
'required': ['width', 'height', 'depth', 'volume'],
'title': 'Box',
'type': 'object',
}
"""
```
1. If not specified, [`computed_field`][pydantic.fields.computed_field] will implicitly convert the method
to a [`property`][]. However, it is preferable to explicitly use the [`@property`][property] decorator
for type checking purposes.
Here's an example using the `model_dump` method with a computed field:
```python
from pydantic import BaseModel, computed_field
class Box(BaseModel):
width: float
height: float
depth: float
@computed_field
@property
def volume(self) -> float:
return self.width * self.height * self.depth
b = Box(width=1, height=2, depth=3)
print(b.model_dump())
#> {'width': 1.0, 'height': 2.0, 'depth': 3.0, 'volume': 6.0}
```
As with regular fields, computed fields can be marked as being deprecated:
```python
from typing_extensions import deprecated
from pydantic import BaseModel, computed_field
class Box(BaseModel):
width: float
height: float
depth: float
@computed_field
@property
@deprecated("'volume' is deprecated")
def volume(self) -> float:
return self.width * self.height * self.depth
```
[Discriminated Unions]: ../concepts/unions.md#discriminated-unions
[Validating data]: models.md#validating-data
[Models]: models.md
[frozen dataclass documentation]: https://docs.python.org/3/library/dataclasses.html#frozen-instances
[Customizing JSON Schema]: json_schema.md#field-level-customization
|