File: models.md

package info (click to toggle)
pydantic 2.12.5-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,640 kB
  • sloc: python: 75,984; javascript: 181; makefile: 115; sh: 38
file content (1748 lines) | stat: -rw-r--r-- 58,757 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
??? api "API Documentation"
    [`pydantic.main.BaseModel`][pydantic.main.BaseModel]<br>

One of the primary ways of defining schema in Pydantic is via models. Models are simply classes which inherit from
[`BaseModel`][pydantic.main.BaseModel] and define fields as annotated attributes.

You can think of models as similar to structs in languages like C, or as the requirements of a single endpoint
in an API.

Models share many similarities with Python's [dataclasses][dataclasses], but have been designed with some subtle-yet-important
differences that streamline certain workflows related to validation, serialization, and JSON schema generation.
You can find more discussion of this in the [Dataclasses](dataclasses.md) section of the docs.

Untrusted data can be passed to a model and, after parsing and validation, Pydantic guarantees that the fields
of the resultant model instance will conform to the field types defined on the model.

!!! note "Validation — a *deliberate* misnomer"
    <h3>TL;DR</h3>

    We use the term "validation" to refer to the process of instantiating a model (or other type) that adheres to specified types and
    constraints. This task, which Pydantic is well known for, is most widely recognized as "validation" in colloquial terms,
    even though in other contexts the term "validation" may be more restrictive.

    ---

    <h3>The long version</h3>

    The potential confusion around the term "validation" arises from the fact that, strictly speaking, Pydantic's
    primary focus doesn't align precisely with the dictionary definition of "validation":

    > <h3>validation</h3>
    > _noun_
    > the action of checking or proving the validity or accuracy of something.

    In Pydantic, the term "validation" refers to the process of instantiating a model (or other type) that adheres to specified
    types and constraints. Pydantic guarantees the types and constraints of the output, not the input data.
    This distinction becomes apparent when considering that Pydantic's `ValidationError` is raised
    when data cannot be successfully parsed into a model instance.

    While this distinction may initially seem subtle, it holds practical significance.
    In some cases, "validation" goes beyond just model creation, and can include the copying and coercion of data.
    This can involve copying arguments passed to the constructor in order to perform coercion to a new type
    without mutating the original input data. For a more in-depth understanding of the implications for your usage,
    refer to the [Data Conversion](#data-conversion) and [Attribute Copies](#attribute-copies) sections below.

    In essence, Pydantic's primary goal is to assure that the resulting structure post-processing (termed "validation")
    precisely conforms to the applied type hints. Given the widespread adoption of "validation" as the colloquial term
    for this process, we will consistently use it in our documentation.

    While the terms "parse" and "validation" were previously used interchangeably, moving forward, we aim to exclusively employ "validate",
    with "parse" reserved specifically for discussions related to [JSON parsing](../concepts/json.md).

## Basic model usage

!!! note

    Pydantic relies heavily on the existing Python typing constructs to define models. If you are not familiar with those, the following resources
    can be useful:

    * The [Type System Guides](https://typing.readthedocs.io/en/latest/guides/index.html)
    * The [mypy documentation](https://mypy.readthedocs.io/en/latest/)

```python {group="basic-model"}
from pydantic import BaseModel, ConfigDict


class User(BaseModel):
    id: int
    name: str = 'Jane Doe'

    model_config = ConfigDict(str_max_length=10)  # (1)!
```

1. Pydantic models support a variety of [configuration values](./config.md)
   (see [here][pydantic.ConfigDict] for the available configuration values).

In this example, `User` is a model with two fields:

* `id`, which is an integer (defined using the [`int`][] type) and is required
* `name`, which is a string (defined using the [`str`][] type) and is not required (it has a default value).

The documentation on [types](./types.md) expands on the supported types.

Fields can be customized in a number of ways using the [`Field()`][pydantic.Field] function.
See the [documentation on fields](./fields.md) for more information.

The model can then be instantiated:

```python {group="basic-model"}
user = User(id='123')
```

`user` is an instance of `User`. Initialization of the object will perform all parsing and validation.
If no [`ValidationError`][pydantic_core.ValidationError] exception is raised,
you know the resulting model instance is valid.

Fields of a model can be accessed as normal attributes of the `user` object:

```python {group="basic-model"}
assert user.name == 'Jane Doe'  # (1)!
assert user.id == 123  # (2)!
assert isinstance(user.id, int)
```

1. `name` wasn't set when `user` was initialized, so the default value was used.
   The [`model_fields_set`][pydantic.BaseModel.model_fields_set] attribute can be
   inspected to check the field names explicitly set during instantiation.
2. Note that the string `'123'` was coerced to an integer and its value is `123`.
   More details on Pydantic's coercion logic can be found in the [data conversion](#data-conversion) section.

The model instance can be serialized using the [`model_dump()`][pydantic.BaseModel.model_dump] method:

```python {group="basic-model"}
assert user.model_dump() == {'id': 123, 'name': 'Jane Doe'}
```

Calling [dict][] on the instance will also provide a dictionary, but nested fields will not be
recursively converted into dictionaries. [`model_dump()`][pydantic.BaseModel.model_dump] also
provides numerous arguments to customize the serialization result.

By default, models are mutable and field values can be changed through attribute assignment:

```python {group="basic-model"}
user.id = 321
assert user.id == 321
```

!!! warning
    When defining your models, watch out for naming collisions between your field name and its type annotation.

    For example, the following will not behave as expected and would yield a validation error:

    ```python {test="skip"}
    from typing import Optional

    from pydantic import BaseModel


    class Boo(BaseModel):
        int: Optional[int] = None


    m = Boo(int=123)  # Will fail to validate.
    ```

    Because of how Python evaluates [annotated assignment statements][annassign], the statement is equivalent to `int: None = None`, thus
    leading to a validation error.

### Model methods and properties

The example above only shows the tip of the iceberg of what models can do.
Model classes possess the following methods and attributes:

* [`model_validate()`][pydantic.main.BaseModel.model_validate]: Validates the given object against the Pydantic model. See [Validating data](#validating-data).
* [`model_validate_json()`][pydantic.main.BaseModel.model_validate_json]: Validates the given JSON data against the Pydantic model. See
    [Validating data](#validating-data).
* [`model_construct()`][pydantic.main.BaseModel.model_construct]: Creates models without running validation. See
    [Creating models without validation](#creating-models-without-validation).
* [`model_dump()`][pydantic.main.BaseModel.model_dump]: Returns a dictionary of the model's fields and values. See
    [Serialization](serialization.md#python-mode).
* [`model_dump_json()`][pydantic.main.BaseModel.model_dump_json]: Returns a JSON string representation of [`model_dump()`][pydantic.main.BaseModel.model_dump]. See [Serialization](serialization.md#json-mode).
* [`model_copy()`][pydantic.main.BaseModel.model_copy]: Returns a copy (by default, shallow copy) of the model. See
    [Model copy](#model-copy).
* [`model_json_schema()`][pydantic.main.BaseModel.model_json_schema]: Returns a jsonable dictionary representing the model's JSON Schema. See [JSON Schema](json_schema.md).
* [`model_fields`][pydantic.main.BaseModel.model_fields]: A mapping between field names and their definitions ([`FieldInfo`][pydantic.fields.FieldInfo] instances).
* [`model_computed_fields`][pydantic.main.BaseModel.model_computed_fields]: A mapping between computed field names and their definitions ([`ComputedFieldInfo`][pydantic.fields.ComputedFieldInfo] instances).
* [`model_parametrized_name()`][pydantic.main.BaseModel.model_parametrized_name]: Computes the class name for parametrizations of generic classes.
* [`model_post_init()`][pydantic.main.BaseModel.model_post_init]: Performs additional actions after the model is instantiated and all field validators are applied.
* [`model_rebuild()`][pydantic.main.BaseModel.model_rebuild]: Rebuilds the model schema, which also supports building recursive generic models.
    See [Rebuilding model schema](#rebuilding-model-schema).

Model instances possess the following attributes:

* [`model_extra`][pydantic.main.BaseModel.model_extra]: The extra fields set during validation.
* [`model_fields_set`][pydantic.main.BaseModel.model_fields_set]: The set of fields which were explicitly provided when the model was initialized.

!!! note
    See the API documentation of [`BaseModel`][pydantic.main.BaseModel] for the class definition including a full list of methods and attributes.

!!! tip
    See [Changes to `pydantic.BaseModel`](../migration.md#changes-to-pydanticbasemodel) in the
    [Migration Guide](../migration.md) for details on changes from Pydantic V1.

## Data conversion

Pydantic may cast input data to force it to conform to model field types,
and in some cases this may result in a loss of information.
For example:

```python
from pydantic import BaseModel


class Model(BaseModel):
    a: int
    b: float
    c: str


print(Model(a=3.000, b='2.72', c=b'binary data').model_dump())
#> {'a': 3, 'b': 2.72, 'c': 'binary data'}
```

This is a deliberate decision of Pydantic, and is frequently the most useful approach. See
[this issue](https://github.com/pydantic/pydantic/issues/578) for a longer discussion on the subject.

Nevertheless, Pydantic provides a [strict mode](strict_mode.md), where no data conversion is performed.
Values must be of the same type as the declared field type.

This is also the case for collections. In most cases, you shouldn't make use of abstract container classes
and just use a concrete type, such as [`list`][]:

```python
from pydantic import BaseModel


class Model(BaseModel):
    items: list[int]  # (1)!


print(Model(items=(1, 2, 3)))
#> items=[1, 2, 3]
```

1. In this case, you might be tempted to use the abstract [`Sequence`][collections.abc.Sequence] type
   to allow both lists and tuples. But Pydantic takes care of converting the tuple input to a list, so
   in most cases this isn't necessary.

Besides, using these abstract types can also lead to [poor validation performance](./performance.md#sequence-vs-list-or-tuple-with-mapping-vs-dict), and in general using concrete container types
will avoid unnecessary checks.

<!-- old anchor added for backwards compatibility -->
<!-- markdownlint-disable-next-line no-empty-links -->
[](){#extra-fields}

## Extra data

By default, Pydantic models **won't error when you provide extra data**, and these values will simply be ignored:

```python
from pydantic import BaseModel


class Model(BaseModel):
    x: int


m = Model(x=1, y='a')
assert m.model_dump() == {'x': 1}
```

The [`extra`][pydantic.ConfigDict.extra] configuration value can be used to control this behavior:

```python
from pydantic import BaseModel, ConfigDict


class Model(BaseModel):
    x: int

    model_config = ConfigDict(extra='allow')


m = Model(x=1, y='a')  # (1)!
assert m.model_dump() == {'x': 1, 'y': 'a'}
assert m.__pydantic_extra__ == {'y': 'a'}
```

1. If [`extra`][pydantic.ConfigDict.extra] was set to `'forbid'`, this would fail.

The configuration can take three values:

* `'ignore'`: Providing extra data is ignored (the default).
* `'forbid'`: Providing extra data is not permitted.
* `'allow'`: Providing extra data is allowed and stored in the `__pydantic_extra__` dictionary attribute.
  The `__pydantic_extra__` can explicitly be annotated to provide validation for extra fields.

The validation methods (e.g. [`model_validate()`][pydantic.main.BaseModel.model_validate]) have an optional `extra` argument
that will override the `extra` configuration value of the model for that validation call.

For more details, refer to the [`extra`][pydantic.ConfigDict.extra] API documentation.

Pydantic dataclasses also support extra data (see the [dataclass configuration](./dataclasses.md#dataclass-config) section).

## Nested models

More complex hierarchical data structures can be defined using models themselves as types in annotations.

```python
from typing import Optional

from pydantic import BaseModel


class Foo(BaseModel):
    count: int
    size: Optional[float] = None


class Bar(BaseModel):
    apple: str = 'x'
    banana: str = 'y'


class Spam(BaseModel):
    foo: Foo
    bars: list[Bar]


m = Spam(foo={'count': 4}, bars=[{'apple': 'x1'}, {'apple': 'x2'}])
print(m)
"""
foo=Foo(count=4, size=None) bars=[Bar(apple='x1', banana='y'), Bar(apple='x2', banana='y')]
"""
print(m.model_dump())
"""
{
    'foo': {'count': 4, 'size': None},
    'bars': [{'apple': 'x1', 'banana': 'y'}, {'apple': 'x2', 'banana': 'y'}],
}
"""
```

Self-referencing models are supported. For more details, see  the documentation related to
[forward annotations](forward_annotations.md#self-referencing-or-recursive-models).

## Rebuilding model schema

When you define a model class in your code, Pydantic will analyze the body of the class to collect a variety of information
required to perform validation and serialization, gathered in a core schema. Notably, the model's type annotations are evaluated to
understand the valid types for each field (more information can be found in the [Architecture](../internals/architecture.md) documentation).
However, it might be the case that annotations refer to symbols not defined when the model class is being created.
To circumvent this issue, the [`model_rebuild()`][pydantic.main.BaseModel.model_rebuild] method can be used:

```python
from pydantic import BaseModel, PydanticUserError


class Foo(BaseModel):
    x: 'Bar'  # (1)!


try:
    Foo.model_json_schema()
except PydanticUserError as e:
    print(e)
    """
    `Foo` is not fully defined; you should define `Bar`, then call `Foo.model_rebuild()`.

    For further information visit https://errors.pydantic.dev/2/u/class-not-fully-defined
    """


class Bar(BaseModel):
    pass


Foo.model_rebuild()
print(Foo.model_json_schema())
"""
{
    '$defs': {'Bar': {'properties': {}, 'title': 'Bar', 'type': 'object'}},
    'properties': {'x': {'$ref': '#/$defs/Bar'}},
    'required': ['x'],
    'title': 'Foo',
    'type': 'object',
}
"""
```

1. `Bar` is not yet defined when the `Foo` class is being created. For this reason,
    a [forward annotation](forward_annotations.md) is being used.

Pydantic tries to determine when this is necessary automatically and error if it wasn't done, but you may want to
call [`model_rebuild()`][pydantic.main.BaseModel.model_rebuild] proactively when dealing with recursive models or generics.

In V2, [`model_rebuild()`][pydantic.main.BaseModel.model_rebuild] replaced `update_forward_refs()` from V1. There are some slight differences with the new behavior.
The biggest change is that when calling [`model_rebuild()`][pydantic.main.BaseModel.model_rebuild] on the outermost model, it builds a core schema used for validation of the
whole model (nested models and all), so all types at all levels need to be ready before [`model_rebuild()`][pydantic.main.BaseModel.model_rebuild] is called.

## Validating data

Pydantic can validate data in three different modes: *Python*, *JSON* and *strings*.

The *Python* mode gets used when using:

* The `__init__()` model constructor. Field values must be provided using keyword arguments.
* [`model_validate()`][pydantic.main.BaseModel.model_validate]: data can be provided either as a dictionary,
  or as a model instance (by default, instances are assumed to be valid; see the [`revalidate_instances`][pydantic.ConfigDict.revalidate_instances]
  setting). [Arbitrary objects](#arbitrary-class-instances) can also be provided if explicitly enabled.

The *JSON* and *strings* modes can be used with dedicated methods:

* [`model_validate_json()`][pydantic.main.BaseModel.model_validate_json]: data is validated as a JSON string or `bytes` object.
  If your incoming data is a JSON payload, this is generally considered faster (instead of manually parsing the data as a dictionary).
  Learn more about JSON parsing in the [JSON](../concepts/json.md) documentation.
* [`model_validate_strings()`][pydantic.main.BaseModel.model_validate_strings]: data is validated as a dictionary (can be nested) with
  string keys and values and validates the data in JSON mode so that said strings can be coerced into the correct types.

Compared to using the model constructor, it is possible to control several validation parameters when using the `model_validate_*()` methods
([strictness](./strict_mode.md), [extra data](#extra-data), [validation context](./validators.md#validation-context), etc.).

!!! note
    Depending on the types and model configuration involved, the *Python* and *JSON* modes may have different validation behavior (e.g. with [strictness](./strict_mode.md)).
    If you have data coming from a non-JSON source, but want the same validation behavior and errors you'd get from the *JSON* mode, our recommendation for now is to
    either dump your data to JSON (e.g. using [`json.dumps()`][json.dumps]), or use [`model_validate_strings()`][pydantic.main.BaseModel.model_validate_strings]
    if the data takes the form of a (potentially nested) dictionary with string keys and values. Progress for this feature can be tracked in
    [this issue](https://github.com/pydantic/pydantic/issues/11154).

```python
from datetime import datetime
from typing import Optional

from pydantic import BaseModel, ValidationError


class User(BaseModel):
    id: int
    name: str = 'John Doe'
    signup_ts: Optional[datetime] = None


m = User.model_validate({'id': 123, 'name': 'James'})
print(m)
#> id=123 name='James' signup_ts=None

try:
    m = User.model_validate_json('{"id": 123, "name": 123}')
except ValidationError as e:
    print(e)
    """
    1 validation error for User
    name
      Input should be a valid string [type=string_type, input_value=123, input_type=int]
    """

m = User.model_validate_strings({'id': '123', 'name': 'James'})
print(m)
#> id=123 name='James' signup_ts=None

m = User.model_validate_strings(
    {'id': '123', 'name': 'James', 'signup_ts': '2024-04-01T12:00:00'}
)
print(m)
#> id=123 name='James' signup_ts=datetime.datetime(2024, 4, 1, 12, 0)

try:
    m = User.model_validate_strings(
        {'id': '123', 'name': 'James', 'signup_ts': '2024-04-01'}, strict=True
    )
except ValidationError as e:
    print(e)
    """
    1 validation error for User
    signup_ts
      Input should be a valid datetime, invalid datetime separator, expected `T`, `t`, `_` or space [type=datetime_parsing, input_value='2024-04-01', input_type=str]
    """
```

### Creating models without validation

Pydantic also provides the [`model_construct()`][pydantic.main.BaseModel.model_construct] method, which allows models to be created **without validation**.
This can be useful in at least a few cases:

* when working with complex data that is already known to be valid (for performance reasons)
* when one or more of the validator functions are non-idempotent
* when one or more of the validator functions have side effects that you don't want to be triggered.

!!! warning
    [`model_construct()`][pydantic.main.BaseModel.model_construct] does not do any validation, meaning it can create
    models which are invalid. **You should only ever use the [`model_construct()`][pydantic.main.BaseModel.model_construct]
    method with data which has already been validated, or that you definitely trust.**

!!! note
    In Pydantic V2, the performance gap between validation (either with direct instantiation or the `model_validate*` methods)
    and [`model_construct()`][pydantic.main.BaseModel.model_construct] has been narrowed
    considerably. For simple models, going with validation may even be faster. If you are using [`model_construct()`][pydantic.main.BaseModel.model_construct]
    for performance reasons, you may want to profile your use case before assuming it is actually faster.

Note that for [root models](#rootmodel-and-custom-root-types), the root value can be passed to
[`model_construct()`][pydantic.main.BaseModel.model_construct] positionally, instead of using a keyword argument.

Here are some additional notes on the behavior of [`model_construct()`][pydantic.main.BaseModel.model_construct]:

* When we say "no validation is performed" — this includes converting dictionaries to model instances. So if you have a field
  referring to a model type, you will need to convert the inner dictionary to a model yourself.
* If you do not pass keyword arguments for fields with defaults, the default values will still be used.
* For models with private attributes, the `__pydantic_private__` dictionary will be populated the same as it would be when
  creating the model with validation.
* No `__init__` method from the model or any of its parent classes will be called, even when a custom `__init__` method is defined.

!!! note "On [extra data](#extra-data) behavior with [`model_construct()`][pydantic.main.BaseModel.model_construct]"

    * For models with [`extra`][pydantic.ConfigDict.extra] set to `'allow'`, data not corresponding to fields will be correctly stored in
    the `__pydantic_extra__` dictionary and saved to the model's `__dict__` attribute.
    * For models with [`extra`][pydantic.ConfigDict.extra] set to `'ignore'`, data not corresponding to fields will be ignored — that is,
    not stored in `__pydantic_extra__` or `__dict__` on the instance.
    * Unlike when instantiating the model with validation, a call to [`model_construct()`][pydantic.main.BaseModel.model_construct] with [`extra`][pydantic.ConfigDict.extra] set to `'forbid'` doesn't raise an error in the presence of data not corresponding to fields. Rather, said input data is simply ignored.

### Defining a custom `__init__()`

Pydantic provides a default `__init__()` implementation for Pydantic models, that is called *only* when using the model constructor
(and not with the `model_validate_*()` methods). This implementation delegates validation to `pydantic-core`.

However, it is possible to define a custom `__init__()` on your models. In this case, it will be called unconditionally from all the
[validation methods](#validating-data), without performing validation (and so you should call `super().__init__(**kwargs)` in your implementation).

Defining a custom `__init__()` is not recommended, as all the validation parameters ([strictness](./strict_mode.md),
[extra data behavior](#extra-data), [validation context](./validators.md#validation-context)) will be lost. If you need to perform
actions after the model was initialized, you can make use of *after* [field](./validators.md#field-after-validator) or
[model](./validators.md#model-after-validator) validators, or define a [`model_post_init()`][pydantic.main.BaseModel.model_post_init] implementation:

```python
import logging
from typing import Any

from pydantic import BaseModel


class MyModel(BaseModel):
    id: int

    def model_post_init(self, context: Any) -> None:
        logging.info("Model initialized with id %d", self.id)
```

## Error handling

Pydantic will raise a [`ValidationError`][pydantic_core.ValidationError] exception whenever it finds an error in the data it's validating.

A single exception will be raised regardless of the number of errors found, and that validation error
will contain information about all of the errors and how they happened.

See [Error Handling](../errors/errors.md) for details on standard and custom errors.

As a demonstration:

```python
from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    list_of_ints: list[int]
    a_float: float


data = {
    'list_of_ints': ['1', 2, 'bad'],
    'a_float': 'not a float',
}

try:
    Model(**data)
except ValidationError as e:
    print(e)
    """
    2 validation errors for Model
    list_of_ints.2
      Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='bad', input_type=str]
    a_float
      Input should be a valid number, unable to parse string as a number [type=float_parsing, input_value='not a float', input_type=str]
    """
```

## Arbitrary class instances

(Formerly known as "ORM Mode"/`from_orm()`).

When using the [`model_validate()`][pydantic.main.BaseModel.model_validate] method, Pydantic can also validate arbitrary objects,
by getting attributes on the object corresponding the field names. One common application of this functionality is integration with
object-relational mappings (ORMs).

This feature need to be manually enabled, either by setting the [`from_attributes`][pydantic.config.ConfigDict.from_attributes]
configuration value, or by using the `from_attributes` parameter on [`model_validate()`][pydantic.main.BaseModel.model_validate].

The example here uses [SQLAlchemy](https://www.sqlalchemy.org/), but the same approach should work for any ORM.

```python
from typing import Annotated

from sqlalchemy import ARRAY, String
from sqlalchemy.orm import DeclarativeBase, Mapped, mapped_column

from pydantic import BaseModel, ConfigDict, StringConstraints


class Base(DeclarativeBase):
    pass


class CompanyOrm(Base):
    __tablename__ = 'companies'

    id: Mapped[int] = mapped_column(primary_key=True, nullable=False)
    public_key: Mapped[str] = mapped_column(
        String(20), index=True, nullable=False, unique=True
    )
    domains: Mapped[list[str]] = mapped_column(ARRAY(String(255)))


class CompanyModel(BaseModel):
    model_config = ConfigDict(from_attributes=True)

    id: int
    public_key: Annotated[str, StringConstraints(max_length=20)]
    domains: list[Annotated[str, StringConstraints(max_length=255)]]


co_orm = CompanyOrm(
    id=123,
    public_key='foobar',
    domains=['example.com', 'foobar.com'],
)
print(co_orm)
#> <__main__.CompanyOrm object at 0x0123456789ab>
co_model = CompanyModel.model_validate(co_orm)
print(co_model)
#> id=123 public_key='foobar' domains=['example.com', 'foobar.com']
```

### Nested attributes

When using attributes to validate models, model instances will be created from both top-level attributes and
deeper-nested attributes as appropriate.

Here is an example demonstrating the principle:

```python
from pydantic import BaseModel, ConfigDict


class PetCls:
    def __init__(self, *, name: str) -> None:
        self.name = name


class PersonCls:
    def __init__(self, *, name: str, pets: list[PetCls]) -> None:
        self.name = name
        self.pets = pets


class Pet(BaseModel):
    model_config = ConfigDict(from_attributes=True)

    name: str


class Person(BaseModel):
    model_config = ConfigDict(from_attributes=True)

    name: str
    pets: list[Pet]


bones = PetCls(name='Bones')
orion = PetCls(name='Orion')
anna = PersonCls(name='Anna', pets=[bones, orion])
anna_model = Person.model_validate(anna)
print(anna_model)
#> name='Anna' pets=[Pet(name='Bones'), Pet(name='Orion')]
```

## Model copy

??? api "API Documentation"
    [`pydantic.main.BaseModel.model_copy`][pydantic.main.BaseModel.model_copy]<br>

The [`model_copy()`][pydantic.BaseModel.model_copy] method allows models to be duplicated (with optional updates),
which is particularly useful when working with frozen models.

```python
from pydantic import BaseModel


class BarModel(BaseModel):
    whatever: int


class FooBarModel(BaseModel):
    banana: float
    foo: str
    bar: BarModel


m = FooBarModel(banana=3.14, foo='hello', bar={'whatever': 123})

print(m.model_copy(update={'banana': 0}))
#> banana=0 foo='hello' bar=BarModel(whatever=123)

# normal copy gives the same object reference for bar:
print(id(m.bar) == id(m.model_copy().bar))
#> True
# deep copy gives a new object reference for `bar`:
print(id(m.bar) == id(m.model_copy(deep=True).bar))
#> False
```

## Generic models

Pydantic supports the creation of generic models to make it easier to reuse a common model structure. Both the new
[type parameter syntax][type-params] (introduced by [PEP 695](https://peps.python.org/pep-0695/) in Python 3.12)
and the old syntax are supported (refer to
[the Python documentation](https://docs.python.org/3/library/typing.html#building-generic-types-and-type-aliases)
for more details).

Here is an example using a generic Pydantic model to create an easily-reused HTTP response payload wrapper:

<!-- TODO: tabs should be auto-generated if using Ruff (https://github.com/pydantic/pydantic/issues/10083) -->

=== "Python 3.9 and above"

    ```python {upgrade="skip"}
    from typing import Generic, TypeVar

    from pydantic import BaseModel, ValidationError

    DataT = TypeVar('DataT')  # (1)!


    class DataModel(BaseModel):
        number: int


    class Response(BaseModel, Generic[DataT]):  # (2)!
        data: DataT  # (3)!


    print(Response[int](data=1))
    #> data=1
    print(Response[str](data='value'))
    #> data='value'
    print(Response[str](data='value').model_dump())
    #> {'data': 'value'}

    data = DataModel(number=1)
    print(Response[DataModel](data=data).model_dump())
    #> {'data': {'number': 1}}
    try:
        Response[int](data='value')
    except ValidationError as e:
        print(e)
        """
        1 validation error for Response[int]
        data
          Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='value', input_type=str]
        """
    ```

    1. Declare one or more [type variables][typing.TypeVar] to use to parameterize your model.
    2. Declare a Pydantic model that inherits from [`BaseModel`][pydantic.BaseModel] and [`typing.Generic`][]
       (in this specific order), and add the list of type variables you declared previously as parameters to the
       [`Generic`][typing.Generic] parent.
    3. Use the type variables as annotations where you will want to replace them with other types.

=== "Python 3.12 and above (new syntax)"

    ```python {requires="3.12" upgrade="skip" lint="skip"}
    from pydantic import BaseModel, ValidationError


    class DataModel(BaseModel):
        number: int


    class Response[DataT](BaseModel):  # (1)!
        data: DataT  # (2)!


    print(Response[int](data=1))
    #> data=1
    print(Response[str](data='value'))
    #> data='value'
    print(Response[str](data='value').model_dump())
    #> {'data': 'value'}

    data = DataModel(number=1)
    print(Response[DataModel](data=data).model_dump())
    #> {'data': {'number': 1}}
    try:
        Response[int](data='value')
    except ValidationError as e:
        print(e)
        """
        1 validation error for Response[int]
        data
          Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='value', input_type=str]
        """
    ```

    1. Declare a Pydantic model and add the list of type variables as type parameters.
    2. Use the type variables as annotations where you will want to replace them with other types.

!!! warning
    When parametrizing a model with a concrete type, Pydantic **does not** validate that the provided type
    is [assignable to the type variable][spec-typevars-bound] if it has an upper bound.

    [spec-typevars-bound]: https://typing.readthedocs.io/en/latest/spec/generics.html#type-variables-with-an-upper-bound

Any [configuration](./config.md), [validation](./validators.md) or [serialization](./serialization.md) logic
set on the generic model will also be applied to the parametrized classes, in the same way as when inheriting from
a model class. Any custom methods or attributes will also be inherited.

Generic models also integrate properly with type checkers, so you get all the type checking
you would expect if you were to declare a distinct type for each parametrization.

!!! note
    Internally, Pydantic creates subclasses of the generic model at runtime when the generic model class is parametrized.
    These classes are cached, so there should be minimal overhead introduced by the use of generics models.

To inherit from a generic model and preserve the fact that it is generic, the subclass must also inherit from
[`Generic`][typing.Generic]:

```python
from typing import Generic, TypeVar

from pydantic import BaseModel

TypeX = TypeVar('TypeX')


class BaseClass(BaseModel, Generic[TypeX]):
    X: TypeX


class ChildClass(BaseClass[TypeX], Generic[TypeX]):
    pass


# Parametrize `TypeX` with `int`:
print(ChildClass[int](X=1))
#> X=1
```

You can also create a generic subclass of a model that partially or fully replaces the type variables in the
superclass:

```python
from typing import Generic, TypeVar

from pydantic import BaseModel

TypeX = TypeVar('TypeX')
TypeY = TypeVar('TypeY')
TypeZ = TypeVar('TypeZ')


class BaseClass(BaseModel, Generic[TypeX, TypeY]):
    x: TypeX
    y: TypeY


class ChildClass(BaseClass[int, TypeY], Generic[TypeY, TypeZ]):
    z: TypeZ


# Parametrize `TypeY` with `str`:
print(ChildClass[str, int](x='1', y='y', z='3'))
#> x=1 y='y' z=3
```

If the name of the concrete subclasses is important, you can also override the default name generation
by overriding the [`model_parametrized_name()`][pydantic.main.BaseModel.model_parametrized_name] method:

```python
from typing import Any, Generic, TypeVar

from pydantic import BaseModel

DataT = TypeVar('DataT')


class Response(BaseModel, Generic[DataT]):
    data: DataT

    @classmethod
    def model_parametrized_name(cls, params: tuple[type[Any], ...]) -> str:
        return f'{params[0].__name__.title()}Response'


print(repr(Response[int](data=1)))
#> IntResponse(data=1)
print(repr(Response[str](data='a')))
#> StrResponse(data='a')
```

You can use parametrized generic models as types in other models:

```python
from typing import Generic, TypeVar

from pydantic import BaseModel

T = TypeVar('T')


class ResponseModel(BaseModel, Generic[T]):
    content: T


class Product(BaseModel):
    name: str
    price: float


class Order(BaseModel):
    id: int
    product: ResponseModel[Product]


product = Product(name='Apple', price=0.5)
response = ResponseModel[Product](content=product)
order = Order(id=1, product=response)
print(repr(order))
"""
Order(id=1, product=ResponseModel[Product](content=Product(name='Apple', price=0.5)))
"""
```

Using the same type variable in nested models allows you to enforce typing relationships at different points in your model:

```python
from typing import Generic, TypeVar

from pydantic import BaseModel, ValidationError

T = TypeVar('T')


class InnerT(BaseModel, Generic[T]):
    inner: T


class OuterT(BaseModel, Generic[T]):
    outer: T
    nested: InnerT[T]


nested = InnerT[int](inner=1)
print(OuterT[int](outer=1, nested=nested))
#> outer=1 nested=InnerT[int](inner=1)
try:
    print(OuterT[int](outer='a', nested=InnerT(inner='a')))  # (1)!
except ValidationError as e:
    print(e)
    """
    2 validation errors for OuterT[int]
    outer
      Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='a', input_type=str]
    nested.inner
      Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='a', input_type=str]
    """
```

1. The `OuterT` model is parametrized with `int`, but the data associated with the the `T` annotations during validation is of type `str`, leading to validation errors.

!!! warning
    While it may not raise an error, we strongly advise against using parametrized generics in [`isinstance()`](https://docs.python.org/3/library/functions.html#isinstance) checks.

    For example, you should not do `isinstance(my_model, MyGenericModel[int])`. However, it is fine to do `isinstance(my_model, MyGenericModel)` (note that, for standard generics, it would raise an error to do a subclass check with a parameterized generic class).

    If you need to perform [`isinstance()`](https://docs.python.org/3/library/functions.html#isinstance) checks against parametrized generics, you can do this by subclassing the parametrized generic class:

    ```python {test="skip" lint="skip"}
    class MyIntModel(MyGenericModel[int]): ...

    isinstance(my_model, MyIntModel)
    ```

??? note "Implementation Details"
    When using nested generic models, Pydantic sometimes performs revalidation in an attempt to produce the most intuitive validation result.
    Specifically, if you have a field of type `GenericModel[SomeType]` and you validate data like `GenericModel[SomeCompatibleType]` against this field,
    we will inspect the data, recognize that the input data is sort of a "loose" subclass of `GenericModel`, and revalidate the contained `SomeCompatibleType` data.

    This adds some validation overhead, but makes things more intuitive for cases like that shown below.

    ```python
    from typing import Any, Generic, TypeVar

    from pydantic import BaseModel

    T = TypeVar('T')


    class GenericModel(BaseModel, Generic[T]):
        a: T


    class Model(BaseModel):
        inner: GenericModel[Any]


    print(repr(Model.model_validate(Model(inner=GenericModel[int](a=1)))))
    #> Model(inner=GenericModel[Any](a=1))
    ```

    Note, validation will still fail if you, for example are validating against `GenericModel[int]` and pass in an instance `GenericModel[str](a='not an int')`.

    It's also worth noting that this pattern will re-trigger any custom validation as well, like additional model validators and the like.
    Validators will be called once on the first pass, validating directly against `GenericModel[Any]`. That validation fails, as `GenericModel[int]` is not a subclass of `GenericModel[Any]`. This relates to the warning above about the complications of using parametrized generics in `isinstance()` and `issubclass()` checks.
    Then, the validators will be called again on the second pass, during more lax force-revalidation phase, which succeeds.
    To better understand this consequence, see below:

    ```python {test="skip"}
    from typing import Any, Generic, Self, TypeVar

    from pydantic import BaseModel, model_validator

    T = TypeVar('T')


    class GenericModel(BaseModel, Generic[T]):
        a: T

        @model_validator(mode='after')
        def validate_after(self: Self) -> Self:
            print('after validator running custom validation...')
            return self


    class Model(BaseModel):
        inner: GenericModel[Any]


    m = Model.model_validate(Model(inner=GenericModel[int](a=1)))
    #> after validator running custom validation...
    #> after validator running custom validation...
    print(repr(m))
    #> Model(inner=GenericModel[Any](a=1))
    ```

### Validation of unparametrized type variables

When leaving type variables unparametrized, Pydantic treats generic models similarly to how it treats built-in generic
types like [`list`][] and [`dict`][]:

* If the type variable is [bound](https://typing.readthedocs.io/en/latest/reference/generics.html#type-variables-with-upper-bounds)
  or [constrained](https://typing.readthedocs.io/en/latest/reference/generics.html#type-variables-with-constraints) to a specific type,
  it will be used.
* If the type variable has a default type (as specified by [PEP 696](https://peps.python.org/pep-0696/)), it will be used.
* For unbound or unconstrained type variables, Pydantic will fallback to [`Any`][typing.Any].

```python
from typing import Generic

from typing_extensions import TypeVar

from pydantic import BaseModel, ValidationError

T = TypeVar('T')
U = TypeVar('U', bound=int)
V = TypeVar('V', default=str)


class Model(BaseModel, Generic[T, U, V]):
    t: T
    u: U
    v: V


print(Model(t='t', u=1, v='v'))
#> t='t' u=1 v='v'

try:
    Model(t='t', u='u', v=1)
except ValidationError as exc:
    print(exc)
    """
    2 validation errors for Model
    u
      Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='u', input_type=str]
    v
      Input should be a valid string [type=string_type, input_value=1, input_type=int]
    """
```

!!! warning

    In some cases, validation against an unparametrized generic model can lead to data loss. Specifically, if a subtype of the type variable upper bound, constraints, or default is being used and the model isn't explicitly parametrized, the resulting type **will not be** the one being provided:

    ```python
    from typing import Generic, TypeVar

    from pydantic import BaseModel

    ItemT = TypeVar('ItemT', bound='ItemBase')


    class ItemBase(BaseModel): ...


    class IntItem(ItemBase):
        value: int


    class ItemHolder(BaseModel, Generic[ItemT]):
        item: ItemT


    loaded_data = {'item': {'value': 1}}


    print(ItemHolder(**loaded_data))  # (1)!
    #> item=ItemBase()

    print(ItemHolder[IntItem](**loaded_data))  # (2)!
    #> item=IntItem(value=1)
    ```

    1. When the generic isn't parametrized, the input data is validated against the `ItemT` upper bound.
       Given that `ItemBase` has no fields, the `item` field information is lost.
    2. In this case, the type variable is explicitly parametrized, so the input data is validated against the `IntItem` class.

### Serialization of unparametrized type variables

The behavior of serialization differs when using type variables with [upper bounds](https://typing.readthedocs.io/en/latest/reference/generics.html#type-variables-with-upper-bounds), [constraints](https://typing.readthedocs.io/en/latest/reference/generics.html#type-variables-with-constraints), or a default value:

If a Pydantic model is used in a type variable upper bound and the type variable is never parametrized, then Pydantic will use the upper bound for validation but treat the value as [`Any`][typing.Any] in terms of serialization:

```python
from typing import Generic, TypeVar

from pydantic import BaseModel


class ErrorDetails(BaseModel):
    foo: str


ErrorDataT = TypeVar('ErrorDataT', bound=ErrorDetails)


class Error(BaseModel, Generic[ErrorDataT]):
    message: str
    details: ErrorDataT


class MyErrorDetails(ErrorDetails):
    bar: str


# serialized as Any
error = Error(
    message='We just had an error',
    details=MyErrorDetails(foo='var', bar='var2'),
)
assert error.model_dump() == {
    'message': 'We just had an error',
    'details': {
        'foo': 'var',
        'bar': 'var2',
    },
}

# serialized using the concrete parametrization
# note that `'bar': 'var2'` is missing
error = Error[ErrorDetails](
    message='We just had an error',
    details=ErrorDetails(foo='var'),
)
assert error.model_dump() == {
    'message': 'We just had an error',
    'details': {
        'foo': 'var',
    },
}
```

Here's another example of the above behavior, enumerating all permutations regarding bound specification and generic type parametrization:

```python
from typing import Generic, TypeVar

from pydantic import BaseModel

TBound = TypeVar('TBound', bound=BaseModel)
TNoBound = TypeVar('TNoBound')


class IntValue(BaseModel):
    value: int


class ItemBound(BaseModel, Generic[TBound]):
    item: TBound


class ItemNoBound(BaseModel, Generic[TNoBound]):
    item: TNoBound


item_bound_inferred = ItemBound(item=IntValue(value=3))
item_bound_explicit = ItemBound[IntValue](item=IntValue(value=3))
item_no_bound_inferred = ItemNoBound(item=IntValue(value=3))
item_no_bound_explicit = ItemNoBound[IntValue](item=IntValue(value=3))

# calling `print(x.model_dump())` on any of the above instances results in the following:
#> {'item': {'value': 3}}
```

However, if [constraints](https://typing.readthedocs.io/en/latest/reference/generics.html#type-variables-with-constraints)
or a default value (as per [PEP 696](https://peps.python.org/pep-0696/)) is being used, then the default type or constraints
will be used for both validation and serialization if the type variable is not parametrized. You can override this behavior
using [`SerializeAsAny`](./serialization.md#serializeasany-annotation):

```python
from typing import Generic

from typing_extensions import TypeVar

from pydantic import BaseModel, SerializeAsAny


class ErrorDetails(BaseModel):
    foo: str


ErrorDataT = TypeVar('ErrorDataT', default=ErrorDetails)


class Error(BaseModel, Generic[ErrorDataT]):
    message: str
    details: ErrorDataT


class MyErrorDetails(ErrorDetails):
    bar: str


# serialized using the default's serializer
error = Error(
    message='We just had an error',
    details=MyErrorDetails(foo='var', bar='var2'),
)
assert error.model_dump() == {
    'message': 'We just had an error',
    'details': {
        'foo': 'var',
    },
}
# If `ErrorDataT` was using an upper bound, `bar` would be present in `details`.


class SerializeAsAnyError(BaseModel, Generic[ErrorDataT]):
    message: str
    details: SerializeAsAny[ErrorDataT]


# serialized as Any
error = SerializeAsAnyError(
    message='We just had an error',
    details=MyErrorDetails(foo='var', bar='baz'),
)
assert error.model_dump() == {
    'message': 'We just had an error',
    'details': {
        'foo': 'var',
        'bar': 'baz',
    },
}
```

## Dynamic model creation

??? api "API Documentation"
    [`pydantic.main.create_model`][pydantic.main.create_model]<br>

There are some occasions where it is desirable to create a model using runtime information to specify the fields.
Pydantic provides the [`create_model()`][pydantic.create_model] function to allow models to be created dynamically:

```python
from pydantic import BaseModel, create_model

DynamicFoobarModel = create_model('DynamicFoobarModel', foo=str, bar=(int, 123))

# Equivalent to:


class StaticFoobarModel(BaseModel):
    foo: str
    bar: int = 123
```

Field definitions are specified as keyword arguments, and should either be:

* A single element, representing the type annotation of the field.
* A two-tuple, the first element being the type and the second element the assigned value
  (either a default or the [`Field()`][pydantic.Field] function).

Here is a more advanced example:

```python
from typing import Annotated

from pydantic import BaseModel, Field, PrivateAttr, create_model

DynamicModel = create_model(
    'DynamicModel',
    foo=(str, Field(alias='FOO')),
    bar=Annotated[str, Field(description='Bar field')],
    _private=(int, PrivateAttr(default=1)),
)


class StaticModel(BaseModel):
    foo: str = Field(alias='FOO')
    bar: Annotated[str, Field(description='Bar field')]
    _private: int = PrivateAttr(default=1)
```

The special keyword arguments `__config__` and `__base__` can be used to customize the new model.
This includes extending a base model with extra fields.

```python
from pydantic import BaseModel, create_model


class FooModel(BaseModel):
    foo: str
    bar: int = 123


BarModel = create_model(
    'BarModel',
    apple=(str, 'russet'),
    banana=(str, 'yellow'),
    __base__=FooModel,
)
print(BarModel)
#> <class '__main__.BarModel'>
print(BarModel.model_fields.keys())
#> dict_keys(['foo', 'bar', 'apple', 'banana'])
```

You can also add validators by passing a dictionary to the `__validators__` argument.

```python {rewrite_assert="false"}
from pydantic import ValidationError, create_model, field_validator


def alphanum(cls, v):
    assert v.isalnum(), 'must be alphanumeric'
    return v


validators = {
    'username_validator': field_validator('username')(alphanum)  # (1)!
}

UserModel = create_model(
    'UserModel', username=(str, ...), __validators__=validators
)

user = UserModel(username='scolvin')
print(user)
#> username='scolvin'

try:
    UserModel(username='scolvi%n')
except ValidationError as e:
    print(e)
    """
    1 validation error for UserModel
    username
      Assertion failed, must be alphanumeric [type=assertion_error, input_value='scolvi%n', input_type=str]
    """
```

1. Make sure that the validators names do not clash with any of the field names as
   internally, Pydantic gathers all members into a namespace and mimics the normal
   creation of a class using the [`types` module utilities](https://docs.python.org/3/library/types.html#dynamic-type-creation).

!!! note
    To pickle a dynamically created model:

    * the model must be defined globally
    * the `__module__` argument must be provided

!!! warning
    This function may execute arbitrary code contained in field annotations, if string references need to be evaluated.

    See [Security implications of introspecting annotations](https://docs.python.org/3/library/annotationlib.html#annotationlib-security) for more information.

See also: the [dynamic model example](../examples/dynamic_models.md), providing guidelines to derive an optional model from another one.

## `RootModel` and custom root types

??? api "API Documentation"
    [`pydantic.root_model.RootModel`][pydantic.root_model.RootModel]<br>

Pydantic models can be defined with a "custom root type" by subclassing [`pydantic.RootModel`][pydantic.RootModel].

The root type can be any type supported by Pydantic, and is specified by the generic parameter to `RootModel`.
The root value can be passed to the model `__init__` or [`model_validate`][pydantic.main.BaseModel.model_validate]
via the first and only argument.

Here's an example of how this works:

```python
from pydantic import RootModel

Pets = RootModel[list[str]]
PetsByName = RootModel[dict[str, str]]


print(Pets(['dog', 'cat']))
#> root=['dog', 'cat']
print(Pets(['dog', 'cat']).model_dump_json())
#> ["dog","cat"]
print(Pets.model_validate(['dog', 'cat']))
#> root=['dog', 'cat']
print(Pets.model_json_schema())
"""
{'items': {'type': 'string'}, 'title': 'RootModel[list[str]]', 'type': 'array'}
"""

print(PetsByName({'Otis': 'dog', 'Milo': 'cat'}))
#> root={'Otis': 'dog', 'Milo': 'cat'}
print(PetsByName({'Otis': 'dog', 'Milo': 'cat'}).model_dump_json())
#> {"Otis":"dog","Milo":"cat"}
print(PetsByName.model_validate({'Otis': 'dog', 'Milo': 'cat'}))
#> root={'Otis': 'dog', 'Milo': 'cat'}
```

If you want to access items in the `root` field directly or to iterate over the items, you can implement
custom `__iter__` and `__getitem__` functions, as shown in the following example.

```python
from pydantic import RootModel


class Pets(RootModel):
    root: list[str]

    def __iter__(self):
        return iter(self.root)

    def __getitem__(self, item):
        return self.root[item]


pets = Pets.model_validate(['dog', 'cat'])
print(pets[0])
#> dog
print([pet for pet in pets])
#> ['dog', 'cat']
```

You can also create subclasses of the parametrized root model directly:

```python
from pydantic import RootModel


class Pets(RootModel[list[str]]):
    def describe(self) -> str:
        return f'Pets: {", ".join(self.root)}'


my_pets = Pets.model_validate(['dog', 'cat'])

print(my_pets.describe())
#> Pets: dog, cat
```

## Faux immutability

Models can be configured to be immutable via `model_config['frozen'] = True`. When this is set, attempting to change the
values of instance attributes will raise errors. See the [API reference][pydantic.config.ConfigDict.frozen] for more details.

!!! note
    This behavior was achieved in Pydantic V1 via the config setting `allow_mutation = False`.
    This config flag is deprecated in Pydantic V2, and has been replaced with `frozen`.

!!! warning
    In Python, immutability is not enforced. Developers have the ability to modify objects
    that are conventionally considered "immutable" if they choose to do so.

```python
from pydantic import BaseModel, ConfigDict, ValidationError


class FooBarModel(BaseModel):
    model_config = ConfigDict(frozen=True)

    a: str
    b: dict


foobar = FooBarModel(a='hello', b={'apple': 'pear'})

try:
    foobar.a = 'different'
except ValidationError as e:
    print(e)
    """
    1 validation error for FooBarModel
    a
      Instance is frozen [type=frozen_instance, input_value='different', input_type=str]
    """

print(foobar.a)
#> hello
print(foobar.b)
#> {'apple': 'pear'}
foobar.b['apple'] = 'grape'
print(foobar.b)
#> {'apple': 'grape'}
```

Trying to change `a` caused an error, and `a` remains unchanged. However, the dict `b` is mutable, and the
immutability of `foobar` doesn't stop `b` from being changed.

## Abstract base classes

Pydantic models can be used alongside Python's
[Abstract Base Classes](https://docs.python.org/3/library/abc.html) (ABCs).

```python
import abc

from pydantic import BaseModel


class FooBarModel(BaseModel, abc.ABC):
    a: str
    b: int

    @abc.abstractmethod
    def my_abstract_method(self):
        pass
```

## Field ordering

Field order affects models in the following ways:

* field order is preserved in the model [JSON Schema](json_schema.md)
* field order is preserved in [validation errors](#error-handling)
* field order is preserved when [serializing data](serialization.md#serializing-data)

```python
from pydantic import BaseModel, ValidationError


class Model(BaseModel):
    a: int
    b: int = 2
    c: int = 1
    d: int = 0
    e: float


print(Model.model_fields.keys())
#> dict_keys(['a', 'b', 'c', 'd', 'e'])
m = Model(e=2, a=1)
print(m.model_dump())
#> {'a': 1, 'b': 2, 'c': 1, 'd': 0, 'e': 2.0}
try:
    Model(a='x', b='x', c='x', d='x', e='x')
except ValidationError as err:
    error_locations = [e['loc'] for e in err.errors()]

print(error_locations)
#> [('a',), ('b',), ('c',), ('d',), ('e',)]
```

## Automatically excluded attributes

### Class variables

Attributes annotated with [`ClassVar`][typing.ClassVar] are properly treated by Pydantic as class variables, and will not
become fields on model instances:

```python
from typing import ClassVar

from pydantic import BaseModel


class Model(BaseModel):
    x: ClassVar[int] = 1

    y: int = 2


m = Model()
print(m)
#> y=2
print(Model.x)
#> 1
```

### Private model attributes

??? api "API Documentation"
    [`pydantic.fields.PrivateAttr`][pydantic.fields.PrivateAttr]<br>

Attributes whose name has a leading underscore are not treated as fields by Pydantic, and are not included in the
model schema. Instead, these are converted into a "private attribute" which is not validated or even set during
calls to `__init__`, `model_validate`, etc.

Here is an example of usage:

```python
from datetime import datetime
from random import randint
from typing import Any

from pydantic import BaseModel, PrivateAttr


class TimeAwareModel(BaseModel):
    _processed_at: datetime = PrivateAttr(default_factory=datetime.now)
    _secret_value: str

    def model_post_init(self, context: Any) -> None:
        # this could also be done with `default_factory`:
        self._secret_value = randint(1, 5)


m = TimeAwareModel()
print(m._processed_at)
#> 2032-01-02 03:04:05.000006
print(m._secret_value)
#> 3
```

Private attribute names must start with underscore to prevent conflicts with model fields. However, dunder names
(such as `__attr__`) are not supported, and will be completely ignored from the model definition.

## Model signature

All Pydantic models will have their signature generated based on their fields:

```python
import inspect

from pydantic import BaseModel, Field


class FooModel(BaseModel):
    id: int
    name: str = None
    description: str = 'Foo'
    apple: int = Field(alias='pear')


print(inspect.signature(FooModel))
#> (*, id: int, name: str = None, description: str = 'Foo', pear: int) -> None
```

An accurate signature is useful for introspection purposes and libraries like `FastAPI` or `hypothesis`.

The generated signature will also respect custom `__init__` functions:

```python
import inspect

from pydantic import BaseModel


class MyModel(BaseModel):
    id: int
    info: str = 'Foo'

    def __init__(self, id: int = 1, *, bar: str, **data) -> None:
        """My custom init!"""
        super().__init__(id=id, bar=bar, **data)


print(inspect.signature(MyModel))
#> (id: int = 1, *, bar: str, info: str = 'Foo') -> None
```

To be included in the signature, a field's alias or name must be a valid Python identifier.
Pydantic will prioritize a field's alias over its name when generating the signature, but may use the field name if the
alias is not a valid Python identifier.

If a field's alias and name are *both* not valid identifiers (which may be possible through exotic use of `create_model`),
a `**data` argument will be added. In addition, the `**data` argument will always be present in the signature if
`model_config['extra'] == 'allow'`.

## Structural pattern matching

Pydantic supports structural pattern matching for models, as introduced by [PEP 636](https://peps.python.org/pep-0636/) in Python 3.10.

```python {requires="3.10" lint="skip"}
from pydantic import BaseModel


class Pet(BaseModel):
    name: str
    species: str


a = Pet(name='Bones', species='dog')

match a:
    # match `species` to 'dog', declare and initialize `dog_name`
    case Pet(species='dog', name=dog_name):
        print(f'{dog_name} is a dog')
#> Bones is a dog
    # default case
    case _:
        print('No dog matched')
```

!!! note
    A match-case statement may seem as if it creates a new model, but don't be fooled;
    it is just syntactic sugar for getting an attribute and either comparing it or declaring and initializing it.

## Attribute copies

In many cases, arguments passed to the constructor will be copied in order to perform validation and, where necessary,
coercion.

In this example, note that the ID of the list changes after the class is constructed because it has been
copied during validation:

```python
from pydantic import BaseModel


class C1:
    arr = []

    def __init__(self, in_arr):
        self.arr = in_arr


class C2(BaseModel):
    arr: list[int]


arr_orig = [1, 9, 10, 3]


c1 = C1(arr_orig)
c2 = C2(arr=arr_orig)
print(f'{id(c1.arr) == id(c2.arr)=}')
#> id(c1.arr) == id(c2.arr)=False
```

!!! note
    There are some situations where Pydantic does not copy attributes, such as when passing models &mdash; we use the
    model as is. You can override this behaviour by setting
    [`model_config['revalidate_instances'] = 'always'`](../api/config.md#pydantic.config.ConfigDict).