File: types.md

package info (click to toggle)
pydantic 2.12.5-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,640 kB
  • sloc: python: 75,984; javascript: 181; makefile: 115; sh: 38
file content (972 lines) | stat: -rw-r--r-- 30,716 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
Pydantic uses types to define how validation and serialization should be performed.
[Built-in and standard library types](../api/standard_library_types.md) (such as [`int`][],
[`str`][], [`date`][datetime.date]) can be used as is. [Strictness](./strict_mode.md)
can be controlled and constraints can be applied on them.

On top of these, Pydantic provides extra types, either [directly in the library](../api/types.md)
(e.g. [`SecretStr`][pydantic.types.SecretStr]) or in the [`pydantic-extra-types`](https://github.com/pydantic/pydantic-extra-types)
external library. These are implemented using the patterns described in the [custom types](#custom-types) section.
Strictness and constraints *can't* be applied on them.

The [built-in and standard library types](../api/standard_library_types.md) documentation goes over
the supported types: the allowed values, the possible validation constraints, and whether [strictness](./strict_mode.md)
can be configured.

See also the [conversion table](../concepts/conversion_table.md) for a summary of the allowed values for each type.

This page will go over defining your own custom types.

## Custom Types

There are several ways to define your custom types.

### Using the annotated pattern

The [annotated pattern](./fields.md#the-annotated-pattern) can be used to make types reusable across your code base.
For example, to create a type representing a positive integer:

```python
from typing import Annotated

from pydantic import Field, TypeAdapter, ValidationError

PositiveInt = Annotated[int, Field(gt=0)]  # (1)!

ta = TypeAdapter(PositiveInt)

print(ta.validate_python(1))
#> 1

try:
    ta.validate_python(-1)
except ValidationError as exc:
    print(exc)
    """
    1 validation error for constrained-int
      Input should be greater than 0 [type=greater_than, input_value=-1, input_type=int]
    """
```

1. Note that you can also use constraints from the [annotated-types](https://github.com/annotated-types/annotated-types)
  library to make this Pydantic-agnostic:

    ```python {test="skip" lint="skip"}
    from annotated_types import Gt

    PositiveInt = Annotated[int, Gt(0)]
    ```

#### Adding validation and serialization

You can add or override validation, serialization, and JSON schemas to an arbitrary type using the markers that
Pydantic exports:

```python
from typing import Annotated

from pydantic import (
    AfterValidator,
    PlainSerializer,
    TypeAdapter,
    WithJsonSchema,
)

TruncatedFloat = Annotated[
    float,
    AfterValidator(lambda x: round(x, 1)),
    PlainSerializer(lambda x: f'{x:.1e}', return_type=str),
    WithJsonSchema({'type': 'string'}, mode='serialization'),
]


ta = TypeAdapter(TruncatedFloat)

input = 1.02345
assert input != 1.0

assert ta.validate_python(input) == 1.0

assert ta.dump_json(input) == b'"1.0e+00"'

assert ta.json_schema(mode='validation') == {'type': 'number'}
assert ta.json_schema(mode='serialization') == {'type': 'string'}
```

#### Generics

[Type variables][typing.TypeVar] can be used within the [`Annotated`][typing.Annotated] type:

```python
from typing import Annotated, TypeVar

from annotated_types import Gt, Len

from pydantic import TypeAdapter, ValidationError

T = TypeVar('T')


ShortList = Annotated[list[T], Len(max_length=4)]


ta = TypeAdapter(ShortList[int])

v = ta.validate_python([1, 2, 3, 4])
assert v == [1, 2, 3, 4]

try:
    ta.validate_python([1, 2, 3, 4, 5])
except ValidationError as exc:
    print(exc)
    """
    1 validation error for list[int]
      List should have at most 4 items after validation, not 5 [type=too_long, input_value=[1, 2, 3, 4, 5], input_type=list]
    """


PositiveList = list[Annotated[T, Gt(0)]]

ta = TypeAdapter(PositiveList[float])

v = ta.validate_python([1.0])
assert type(v[0]) is float


try:
    ta.validate_python([-1.0])
except ValidationError as exc:
    print(exc)
    """
    1 validation error for list[constrained-float]
    0
      Input should be greater than 0 [type=greater_than, input_value=-1.0, input_type=float]
    """
```

### Named type aliases

The above examples make use of *implicit* type aliases, assigned to a variable. At runtime, Pydantic
has no way of knowing the name of the variable it was assigned to, and this can be problematic for
two reasons:

* The [JSON Schema](./json_schema.md) of the alias won't be converted into a
  [definition](https://json-schema.org/understanding-json-schema/structuring#defs).
  This is mostly useful when you are using the alias more than once in a model definition.
* In most cases, [recursive type aliases](#named-recursive-types) won't work.

By leveraging the new [`type` statement](https://typing.readthedocs.io/en/latest/spec/aliases.html#type-statement)
(introduced in [PEP 695](https://peps.python.org/pep-0695/)), you can define aliases as follows:

=== "Python 3.9 and above"

    ```python
    from typing import Annotated

    from annotated_types import Gt
    from typing_extensions import TypeAliasType

    from pydantic import BaseModel

    PositiveIntList = TypeAliasType('PositiveIntList', list[Annotated[int, Gt(0)]])


    class Model(BaseModel):
        x: PositiveIntList
        y: PositiveIntList


    print(Model.model_json_schema())  # (1)!
    """
    {
        '$defs': {
            'PositiveIntList': {
                'items': {'exclusiveMinimum': 0, 'type': 'integer'},
                'type': 'array',
            }
        },
        'properties': {
            'x': {'$ref': '#/$defs/PositiveIntList'},
            'y': {'$ref': '#/$defs/PositiveIntList'},
        },
        'required': ['x', 'y'],
        'title': 'Model',
        'type': 'object',
    }
    """
    ```

    1. If `PositiveIntList` were to be defined as an implicit type alias, its definition
       would have been duplicated in both `'x'` and `'y'`.

=== "Python 3.12 and above (new syntax)"

    ```python {requires="3.12" upgrade="skip" lint="skip"}
    from typing import Annotated

    from annotated_types import Gt

    from pydantic import BaseModel

    type PositiveIntList = list[Annotated[int, Gt(0)]]


    class Model(BaseModel):
        x: PositiveIntList
        y: PositiveIntList


    print(Model.model_json_schema())  # (1)!
    """
    {
        '$defs': {
            'PositiveIntList': {
                'items': {'exclusiveMinimum': 0, 'type': 'integer'},
                'type': 'array',
            }
        },
        'properties': {
            'x': {'$ref': '#/$defs/PositiveIntList'},
            'y': {'$ref': '#/$defs/PositiveIntList'},
        },
        'required': ['x', 'y'],
        'title': 'Model',
        'type': 'object',
    }
    """
    ```

    1. If `PositiveIntList` were to be defined as an implicit type alias, its definition
       would have been duplicated in both `'x'` and `'y'`.

<!-- markdownlint-disable-next-line no-empty-links -->
[](){#metadata-type-alias-warning}

!!! warning "When to use named type aliases"

    While (named) PEP 695 and implicit type aliases are meant to be equivalent for static type checkers,
    Pydantic will *not* understand field-specific metadata inside named aliases. That is, metadata such as
    `alias`, `default`, `deprecated`, *cannot* be used:

    === "Python 3.9 and above"

        ```python {test="skip"}
        from typing import Annotated

        from typing_extensions import TypeAliasType

        from pydantic import BaseModel, Field

        MyAlias = TypeAliasType('MyAlias', Annotated[int, Field(default=1)])


        class Model(BaseModel):
            x: MyAlias  # This is not allowed
        ```

    === "Python 3.12 and above (new syntax)"

        ```python {requires="3.12" upgrade="skip" lint="skip" test="skip"}
        from typing import Annotated

        from pydantic import BaseModel, Field

        type MyAlias = Annotated[int, Field(default=1)]


        class Model(BaseModel):
            x: MyAlias  # This is not allowed
        ```

    Only metadata that can be applied to the annotated type itself is allowed
    (e.g. [validation constraints](./fields.md#field-constraints) and JSON metadata).
    Trying to support field-specific metadata would require eagerly inspecting the
    type alias's [`__value__`][typing.TypeAliasType.__value__], and as such Pydantic
    wouldn't be able to have the alias stored as a JSON Schema definition.

!!! note
    As with implicit type aliases, [type variables][typing.TypeVar] can also be used inside the generic alias:

    === "Python 3.9 and above"

        ```python
        from typing import Annotated, TypeVar

        from annotated_types import Len
        from typing_extensions import TypeAliasType

        T = TypeVar('T')

        ShortList = TypeAliasType(
            'ShortList', Annotated[list[T], Len(max_length=4)], type_params=(T,)
        )
        ```

    === "Python 3.12 and above (new syntax)"

        ```python {requires="3.12" upgrade="skip" lint="skip"}
        from typing import Annotated, TypeVar

        from annotated_types import Len

        type ShortList[T] = Annotated[list[T], Len(max_length=4)]
        ```

#### Named recursive types

Named type aliases should be used whenever you need to define recursive type aliases (1).
{ .annotate }

1. For several reasons, Pydantic isn't able to support implicit recursive aliases. For
   instance, it won't be able to resolve [forward annotations](./forward_annotations.md)
   across modules.

For instance, here is an example definition of a JSON type:

=== "Python 3.9 and above"

    ```python
    from typing import Union

    from typing_extensions import TypeAliasType

    from pydantic import TypeAdapter

    Json = TypeAliasType(
        'Json',
        'Union[dict[str, Json], list[Json], str, int, float, bool, None]',  # (1)!
    )

    ta = TypeAdapter(Json)
    print(ta.json_schema())
    """
    {
        '$defs': {
            'Json': {
                'anyOf': [
                    {
                        'additionalProperties': {'$ref': '#/$defs/Json'},
                        'type': 'object',
                    },
                    {'items': {'$ref': '#/$defs/Json'}, 'type': 'array'},
                    {'type': 'string'},
                    {'type': 'integer'},
                    {'type': 'number'},
                    {'type': 'boolean'},
                    {'type': 'null'},
                ]
            }
        },
        '$ref': '#/$defs/Json',
    }
    """
    ```

    1. Wrapping the annotation in quotes is necessary as it is eagerly evaluated
       (and `Json` has yet to be defined).

=== "Python 3.12 and above (new syntax)"

    ```python {requires="3.12" upgrade="skip" lint="skip"}
    from pydantic import TypeAdapter

    type Json = dict[str, Json] | list[Json] | str | int | float | bool | None  # (1)!

    ta = TypeAdapter(Json)
    print(ta.json_schema())
    """
    {
        '$defs': {
            'Json': {
                'anyOf': [
                    {
                        'additionalProperties': {'$ref': '#/$defs/Json'},
                        'type': 'object',
                    },
                    {'items': {'$ref': '#/$defs/Json'}, 'type': 'array'},
                    {'type': 'string'},
                    {'type': 'integer'},
                    {'type': 'number'},
                    {'type': 'boolean'},
                    {'type': 'null'},
                ]
            }
        },
        '$ref': '#/$defs/Json',
    }
    """
    ```

    1. The value of a named type alias is lazily evaluated, so there's no need to use forward annotations.

!!! tip
    Pydantic defines a [`JsonValue`][pydantic.types.JsonValue] type as a convenience.

### Customizing validation with `__get_pydantic_core_schema__` <a name="customizing_validation_with_get_pydantic_core_schema"></a>

To do more extensive customization of how Pydantic handles custom classes, and in particular when you have access to the
class or can subclass it, you can implement a special `__get_pydantic_core_schema__` to tell Pydantic how to generate the
`pydantic-core` schema.

While `pydantic` uses `pydantic-core` internally to handle validation and serialization, it is a new API for Pydantic V2,
thus it is one of the areas most likely to be tweaked in the future and you should try to stick to the built-in
constructs like those provided by `annotated-types`, `pydantic.Field`, or `BeforeValidator` and so on.

You can implement `__get_pydantic_core_schema__` both on a custom type and on metadata intended to be put in `Annotated`.
In both cases the API is middleware-like and similar to that of "wrap" validators: you get a `source_type` (which isn't
necessarily the same as the class, in particular for generics) and a `handler` that you can call with a type to either
call the next metadata in `Annotated` or call into Pydantic's internal schema generation.

The simplest no-op implementation calls the handler with the type you are given, then returns that as the result. You can
also choose to modify the type before calling the handler, modify the core schema returned by the handler, or not call the
handler at all.

#### As a method on a custom type

The following is an example of a type that uses `__get_pydantic_core_schema__` to customize how it gets validated.
This is equivalent to implementing `__get_validators__` in Pydantic V1.

```python
from typing import Any

from pydantic_core import CoreSchema, core_schema

from pydantic import GetCoreSchemaHandler, TypeAdapter


class Username(str):
    @classmethod
    def __get_pydantic_core_schema__(
        cls, source_type: Any, handler: GetCoreSchemaHandler
    ) -> CoreSchema:
        return core_schema.no_info_after_validator_function(cls, handler(str))


ta = TypeAdapter(Username)
res = ta.validate_python('abc')
assert isinstance(res, Username)
assert res == 'abc'
```

See [JSON Schema](../concepts/json_schema.md) for more details on how to customize JSON schemas for custom types.

#### As an annotation

Often you'll want to parametrize your custom type by more than just generic type parameters (which you can do via the type system and will be discussed later). Or you may not actually care (or want to) make an instance of your subclass; you actually want the original type, just with some extra validation done.

For example, if you were to implement `pydantic.AfterValidator` (see [Adding validation and serialization](#adding-validation-and-serialization)) yourself, you'd do something similar to the following:

```python
from dataclasses import dataclass
from typing import Annotated, Any, Callable

from pydantic_core import CoreSchema, core_schema

from pydantic import BaseModel, GetCoreSchemaHandler


@dataclass(frozen=True)  # (1)!
class MyAfterValidator:
    func: Callable[[Any], Any]

    def __get_pydantic_core_schema__(
        self, source_type: Any, handler: GetCoreSchemaHandler
    ) -> CoreSchema:
        return core_schema.no_info_after_validator_function(
            self.func, handler(source_type)
        )


Username = Annotated[str, MyAfterValidator(str.lower)]


class Model(BaseModel):
    name: Username


assert Model(name='ABC').name == 'abc'  # (2)!
```

1. The `frozen=True` specification makes `MyAfterValidator` hashable. Without this, a union such as `Username | None` will raise an error.
2. Notice that type checkers will not complain about assigning `'ABC'` to `Username` like they did in the previous example because they do not consider `Username` to be a distinct type from `str`.

#### Handling third-party types

Another use case for the pattern in the previous section is to handle third party types.

```python
from typing import Annotated, Any

from pydantic_core import core_schema

from pydantic import (
    BaseModel,
    GetCoreSchemaHandler,
    GetJsonSchemaHandler,
    ValidationError,
)
from pydantic.json_schema import JsonSchemaValue


class ThirdPartyType:
    """
    This is meant to represent a type from a third-party library that wasn't designed with Pydantic
    integration in mind, and so doesn't have a `pydantic_core.CoreSchema` or anything.
    """

    x: int

    def __init__(self):
        self.x = 0


class _ThirdPartyTypePydanticAnnotation:
    @classmethod
    def __get_pydantic_core_schema__(
        cls,
        _source_type: Any,
        _handler: GetCoreSchemaHandler,
    ) -> core_schema.CoreSchema:
        """
        We return a pydantic_core.CoreSchema that behaves in the following ways:

        * ints will be parsed as `ThirdPartyType` instances with the int as the x attribute
        * `ThirdPartyType` instances will be parsed as `ThirdPartyType` instances without any changes
        * Nothing else will pass validation
        * Serialization will always return just an int
        """

        def validate_from_int(value: int) -> ThirdPartyType:
            result = ThirdPartyType()
            result.x = value
            return result

        from_int_schema = core_schema.chain_schema(
            [
                core_schema.int_schema(),
                core_schema.no_info_plain_validator_function(validate_from_int),
            ]
        )

        return core_schema.json_or_python_schema(
            json_schema=from_int_schema,
            python_schema=core_schema.union_schema(
                [
                    # check if it's an instance first before doing any further work
                    core_schema.is_instance_schema(ThirdPartyType),
                    from_int_schema,
                ]
            ),
            serialization=core_schema.plain_serializer_function_ser_schema(
                lambda instance: instance.x
            ),
        )

    @classmethod
    def __get_pydantic_json_schema__(
        cls, _core_schema: core_schema.CoreSchema, handler: GetJsonSchemaHandler
    ) -> JsonSchemaValue:
        # Use the same schema that would be used for `int`
        return handler(core_schema.int_schema())


# We now create an `Annotated` wrapper that we'll use as the annotation for fields on `BaseModel`s, etc.
PydanticThirdPartyType = Annotated[
    ThirdPartyType, _ThirdPartyTypePydanticAnnotation
]


# Create a model class that uses this annotation as a field
class Model(BaseModel):
    third_party_type: PydanticThirdPartyType


# Demonstrate that this field is handled correctly, that ints are parsed into `ThirdPartyType`, and that
# these instances are also "dumped" directly into ints as expected.
m_int = Model(third_party_type=1)
assert isinstance(m_int.third_party_type, ThirdPartyType)
assert m_int.third_party_type.x == 1
assert m_int.model_dump() == {'third_party_type': 1}

# Do the same thing where an instance of ThirdPartyType is passed in
instance = ThirdPartyType()
assert instance.x == 0
instance.x = 10

m_instance = Model(third_party_type=instance)
assert isinstance(m_instance.third_party_type, ThirdPartyType)
assert m_instance.third_party_type.x == 10
assert m_instance.model_dump() == {'third_party_type': 10}

# Demonstrate that validation errors are raised as expected for invalid inputs
try:
    Model(third_party_type='a')
except ValidationError as e:
    print(e)
    """
    2 validation errors for Model
    third_party_type.is-instance[ThirdPartyType]
      Input should be an instance of ThirdPartyType [type=is_instance_of, input_value='a', input_type=str]
    third_party_type.chain[int,function-plain[validate_from_int()]]
      Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='a', input_type=str]
    """


assert Model.model_json_schema() == {
    'properties': {
        'third_party_type': {'title': 'Third Party Type', 'type': 'integer'}
    },
    'required': ['third_party_type'],
    'title': 'Model',
    'type': 'object',
}
```

You can use this approach to e.g. define behavior for Pandas or Numpy types.

#### Using `GetPydanticSchema` to reduce boilerplate

??? api "API Documentation"
    [`pydantic.types.GetPydanticSchema`][pydantic.types.GetPydanticSchema]<br>

You may notice that the above examples where we create a marker class require a good amount of boilerplate.
For many simple cases you can greatly minimize this by using `pydantic.GetPydanticSchema`:

```python
from typing import Annotated

from pydantic_core import core_schema

from pydantic import BaseModel, GetPydanticSchema


class Model(BaseModel):
    y: Annotated[
        str,
        GetPydanticSchema(
            lambda tp, handler: core_schema.no_info_after_validator_function(
                lambda x: x * 2, handler(tp)
            )
        ),
    ]


assert Model(y='ab').y == 'abab'
```

#### Summary

Let's recap:

1. Pydantic provides high level hooks to customize types via `Annotated` like `AfterValidator` and `Field`. Use these when possible.
2. Under the hood these use `pydantic-core` to customize validation, and you can hook into that directly using `GetPydanticSchema` or a marker class with `__get_pydantic_core_schema__`.
3. If you really want a custom type you can implement `__get_pydantic_core_schema__` on the type itself.

### Handling custom generic classes

!!! warning
    This is an advanced technique that you might not need in the beginning. In most of
    the cases you will probably be fine with standard Pydantic models.

You can use
[Generic Classes](https://docs.python.org/3/library/typing.html#typing.Generic) as
field types and perform custom validation based on the "type parameters" (or sub-types)
with `__get_pydantic_core_schema__`.

If the Generic class that you are using as a sub-type has a classmethod
`__get_pydantic_core_schema__`, you don't need to use
[`arbitrary_types_allowed`][pydantic.config.ConfigDict.arbitrary_types_allowed] for it to work.

Because the `source_type` parameter is not the same as the `cls` parameter, you can use `typing.get_args` (or `typing_extensions.get_args`) to extract the generic parameters.
Then you can use the `handler` to generate a schema for them by calling `handler.generate_schema`.
Note that we do not do something like `handler(get_args(source_type)[0])` because we want to generate an unrelated
schema for that generic parameter, not one that is influenced by the current context of `Annotated` metadata and such.
This is less important for custom types, but crucial for annotated metadata that modifies schema building.

```python
from dataclasses import dataclass
from typing import Any, Generic, TypeVar

from pydantic_core import CoreSchema, core_schema
from typing_extensions import get_args, get_origin

from pydantic import (
    BaseModel,
    GetCoreSchemaHandler,
    ValidationError,
    ValidatorFunctionWrapHandler,
)

ItemType = TypeVar('ItemType')


# This is not a pydantic model, it's an arbitrary generic class
@dataclass
class Owner(Generic[ItemType]):
    name: str
    item: ItemType

    @classmethod
    def __get_pydantic_core_schema__(
        cls, source_type: Any, handler: GetCoreSchemaHandler
    ) -> CoreSchema:
        origin = get_origin(source_type)
        if origin is None:  # used as `x: Owner` without params
            origin = source_type
            item_tp = Any
        else:
            item_tp = get_args(source_type)[0]
        # both calling handler(...) and handler.generate_schema(...)
        # would work, but prefer the latter for conceptual and consistency reasons
        item_schema = handler.generate_schema(item_tp)

        def val_item(
            v: Owner[Any], handler: ValidatorFunctionWrapHandler
        ) -> Owner[Any]:
            v.item = handler(v.item)
            return v

        python_schema = core_schema.chain_schema(
            # `chain_schema` means do the following steps in order:
            [
                # Ensure the value is an instance of Owner
                core_schema.is_instance_schema(cls),
                # Use the item_schema to validate `items`
                core_schema.no_info_wrap_validator_function(
                    val_item, item_schema
                ),
            ]
        )

        return core_schema.json_or_python_schema(
            # for JSON accept an object with name and item keys
            json_schema=core_schema.chain_schema(
                [
                    core_schema.typed_dict_schema(
                        {
                            'name': core_schema.typed_dict_field(
                                core_schema.str_schema()
                            ),
                            'item': core_schema.typed_dict_field(item_schema),
                        }
                    ),
                    # after validating the json data convert it to python
                    core_schema.no_info_before_validator_function(
                        lambda data: Owner(
                            name=data['name'], item=data['item']
                        ),
                        # note that we reuse the same schema here as below
                        python_schema,
                    ),
                ]
            ),
            python_schema=python_schema,
        )


class Car(BaseModel):
    color: str


class House(BaseModel):
    rooms: int


class Model(BaseModel):
    car_owner: Owner[Car]
    home_owner: Owner[House]


model = Model(
    car_owner=Owner(name='John', item=Car(color='black')),
    home_owner=Owner(name='James', item=House(rooms=3)),
)
print(model)
"""
car_owner=Owner(name='John', item=Car(color='black')) home_owner=Owner(name='James', item=House(rooms=3))
"""

try:
    # If the values of the sub-types are invalid, we get an error
    Model(
        car_owner=Owner(name='John', item=House(rooms=3)),
        home_owner=Owner(name='James', item=Car(color='black')),
    )
except ValidationError as e:
    print(e)
    """
    2 validation errors for Model
    wine
      Input should be a valid number, unable to parse string as a number [type=float_parsing, input_value='Kinda good', input_type=str]
    cheese
      Input should be a valid boolean, unable to interpret input [type=bool_parsing, input_value='yeah', input_type=str]
    """

# Similarly with JSON
model = Model.model_validate_json(
    '{"car_owner":{"name":"John","item":{"color":"black"}},"home_owner":{"name":"James","item":{"rooms":3}}}'
)
print(model)
"""
car_owner=Owner(name='John', item=Car(color='black')) home_owner=Owner(name='James', item=House(rooms=3))
"""

try:
    Model.model_validate_json(
        '{"car_owner":{"name":"John","item":{"rooms":3}},"home_owner":{"name":"James","item":{"color":"black"}}}'
    )
except ValidationError as e:
    print(e)
    """
    2 validation errors for Model
    car_owner.item.color
      Field required [type=missing, input_value={'rooms': 3}, input_type=dict]
    home_owner.item.rooms
      Field required [type=missing, input_value={'color': 'black'}, input_type=dict]
    """
```

#### Generic containers

The same idea can be applied to create generic container types, like a custom `Sequence` type:

```python
from collections.abc import Sequence
from typing import Any, TypeVar

from pydantic_core import ValidationError, core_schema
from typing_extensions import get_args

from pydantic import BaseModel, GetCoreSchemaHandler

T = TypeVar('T')


class MySequence(Sequence[T]):
    def __init__(self, v: Sequence[T]):
        self.v = v

    def __getitem__(self, i):
        return self.v[i]

    def __len__(self):
        return len(self.v)

    @classmethod
    def __get_pydantic_core_schema__(
        cls, source: Any, handler: GetCoreSchemaHandler
    ) -> core_schema.CoreSchema:
        instance_schema = core_schema.is_instance_schema(cls)

        args = get_args(source)
        if args:
            # replace the type and rely on Pydantic to generate the right schema
            # for `Sequence`
            sequence_t_schema = handler.generate_schema(Sequence[args[0]])
        else:
            sequence_t_schema = handler.generate_schema(Sequence)

        non_instance_schema = core_schema.no_info_after_validator_function(
            MySequence, sequence_t_schema
        )
        return core_schema.union_schema([instance_schema, non_instance_schema])


class M(BaseModel):
    model_config = dict(validate_default=True)

    s1: MySequence = [3]


m = M()
print(m)
#> s1=<__main__.MySequence object at 0x0123456789ab>
print(m.s1.v)
#> [3]


class M(BaseModel):
    s1: MySequence[int]


M(s1=[1])
try:
    M(s1=['a'])
except ValidationError as exc:
    print(exc)
    """
    2 validation errors for M
    s1.is-instance[MySequence]
      Input should be an instance of MySequence [type=is_instance_of, input_value=['a'], input_type=list]
    s1.function-after[MySequence(), json-or-python[json=list[int],python=chain[is-instance[Sequence],function-wrap[sequence_validator()]]]].0
      Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='a', input_type=str]
    """
```

### Access to field name

!!!note
    This was not possible with Pydantic V2 to V2.3, it was [re-added](https://github.com/pydantic/pydantic/pull/7542) in Pydantic V2.4.

As of Pydantic V2.4, you can access the field name via the `handler.field_name` within `__get_pydantic_core_schema__`
and thereby set the field name which will be available from `info.field_name`.

```python
from typing import Any

from pydantic_core import core_schema

from pydantic import BaseModel, GetCoreSchemaHandler, ValidationInfo


class CustomType:
    """Custom type that stores the field it was used in."""

    def __init__(self, value: int, field_name: str):
        self.value = value
        self.field_name = field_name

    def __repr__(self):
        return f'CustomType<{self.value} {self.field_name!r}>'

    @classmethod
    def validate(cls, value: int, info: ValidationInfo):
        return cls(value, info.field_name)

    @classmethod
    def __get_pydantic_core_schema__(
        cls, source_type: Any, handler: GetCoreSchemaHandler
    ) -> core_schema.CoreSchema:
        return core_schema.with_info_after_validator_function(
            cls.validate, handler(int)
        )


class MyModel(BaseModel):
    my_field: CustomType


m = MyModel(my_field=1)
print(m.my_field)
#> CustomType<1 'my_field'>
```

You can also access `field_name` from the markers used with `Annotated`, like [`AfterValidator`][pydantic.functional_validators.AfterValidator].

```python
from typing import Annotated

from pydantic import AfterValidator, BaseModel, ValidationInfo


def my_validators(value: int, info: ValidationInfo):
    return f'<{value} {info.field_name!r}>'


class MyModel(BaseModel):
    my_field: Annotated[int, AfterValidator(my_validators)]


m = MyModel(my_field=1)
print(m.my_field)
#> <1 'my_field'>
```