1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
|
In addition to Pydantic's [built-in validation capabilities](./fields.md#field-constraints),
you can leverage custom validators at the field and model levels to enforce more complex constraints
and ensure the integrity of your data.
!!! tip
Want to quickly jump to the relevant validator section?
<div class="grid cards" markdown>
* Field validators
---
* [field *after* validators](#field-after-validator)
* [field *before* validators](#field-before-validator)
* [field *plain* validators](#field-plain-validator)
* [field *wrap* validators](#field-wrap-validator)
* Model validators
---
* [model *before* validators](#model-before-validator)
* [model *after* validators](#model-after-validator)
* [model *wrap* validators](#model-wrap-validator)
</div>
## Field validators
??? api "API Documentation"
[`pydantic.functional_validators.WrapValidator`][pydantic.functional_validators.WrapValidator]<br>
[`pydantic.functional_validators.PlainValidator`][pydantic.functional_validators.PlainValidator]<br>
[`pydantic.functional_validators.BeforeValidator`][pydantic.functional_validators.BeforeValidator]<br>
[`pydantic.functional_validators.AfterValidator`][pydantic.functional_validators.AfterValidator]<br>
[`pydantic.functional_validators.field_validator`][pydantic.functional_validators.field_validator]<br>
In its simplest form, a field validator is a callable taking the value to be validated as an argument and
**returning the validated value**. The callable can perform checks for specific conditions (see
[raising validation errors](#raising-validation-errors)) and make changes to the validated value (coercion or mutation).
**Four** different types of validators can be used. They can all be defined using the
[annotated pattern](./fields.md#the-annotated-pattern) or using the
[`field_validator()`][pydantic.field_validator] decorator, applied on a [class method][classmethod]:
* ***After* validators**: run after Pydantic's internal validation. They are generally more type safe and thus easier to implement.
{#field-after-validator}
=== "Annotated pattern"
Here is an example of a validator performing a validation check, and returning the value unchanged.
```python
from typing import Annotated
from pydantic import AfterValidator, BaseModel, ValidationError
def is_even(value: int) -> int:
if value % 2 == 1:
raise ValueError(f'{value} is not an even number')
return value # (1)!
class Model(BaseModel):
number: Annotated[int, AfterValidator(is_even)]
try:
Model(number=1)
except ValidationError as err:
print(err)
"""
1 validation error for Model
number
Value error, 1 is not an even number [type=value_error, input_value=1, input_type=int]
"""
```
1. Note that it is important to return the validated value.
=== "Decorator"
Here is an example of a validator performing a validation check, and returning the value unchanged,
this time using the [`field_validator()`][pydantic.field_validator] decorator.
```python
from pydantic import BaseModel, ValidationError, field_validator
class Model(BaseModel):
number: int
@field_validator('number', mode='after') # (1)!
@classmethod
def is_even(cls, value: int) -> int:
if value % 2 == 1:
raise ValueError(f'{value} is not an even number')
return value # (2)!
try:
Model(number=1)
except ValidationError as err:
print(err)
"""
1 validation error for Model
number
Value error, 1 is not an even number [type=value_error, input_value=1, input_type=int]
"""
```
1. `'after'` is the default mode for the decorator, and can be omitted.
2. Note that it is important to return the validated value.
??? example "Example mutating the value"
Here is an example of a validator making changes to the validated value (no exception is raised).
=== "Annotated pattern"
```python
from typing import Annotated
from pydantic import AfterValidator, BaseModel
def double_number(value: int) -> int:
return value * 2
class Model(BaseModel):
number: Annotated[int, AfterValidator(double_number)]
print(Model(number=2))
#> number=4
```
=== "Decorator"
```python
from pydantic import BaseModel, field_validator
class Model(BaseModel):
number: int
@field_validator('number', mode='after') # (1)!
@classmethod
def double_number(cls, value: int) -> int:
return value * 2
print(Model(number=2))
#> number=4
```
1. `'after'` is the default mode for the decorator, and can be omitted.
* ***Before* validators**: run before Pydantic's internal parsing and validation (e.g. coercion of a `str` to an `int`).
These are more flexible than [*after* validators](#field-after-validator), but they also have to deal with the raw input, which
in theory could be any arbitrary object. You should also avoid mutating the value directly if you are raising a
[validation error](#raising-validation-errors) later in your validator function, as the mutated value may be passed to other
validators if using [unions](./unions.md).
{#field-before-validator}
The value returned from this callable is then validated against the provided type annotation by Pydantic.
=== "Annotated pattern"
```python
from typing import Annotated, Any
from pydantic import BaseModel, BeforeValidator, ValidationError
def ensure_list(value: Any) -> Any: # (1)!
if not isinstance(value, list): # (2)!
return [value]
else:
return value
class Model(BaseModel):
numbers: Annotated[list[int], BeforeValidator(ensure_list)]
print(Model(numbers=2))
#> numbers=[2]
try:
Model(numbers='str')
except ValidationError as err:
print(err) # (3)!
"""
1 validation error for Model
numbers.0
Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='str', input_type=str]
"""
```
1. Notice the use of [`Any`][typing.Any] as a type hint for `value`. *Before* validators take the raw input, which
can be anything.
2. Note that you might want to check for other sequence types (such as tuples) that would normally successfully
validate against the `list` type. *Before* validators give you more flexibility, but you have to account for
every possible case.
3. Pydantic still performs validation against the `int` type, no matter if our `ensure_list` validator
did operations on the original input type.
=== "Decorator"
```python
from typing import Any
from pydantic import BaseModel, ValidationError, field_validator
class Model(BaseModel):
numbers: list[int]
@field_validator('numbers', mode='before')
@classmethod
def ensure_list(cls, value: Any) -> Any: # (1)!
if not isinstance(value, list): # (2)!
return [value]
else:
return value
print(Model(numbers=2))
#> numbers=[2]
try:
Model(numbers='str')
except ValidationError as err:
print(err) # (3)!
"""
1 validation error for Model
numbers.0
Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='str', input_type=str]
"""
```
1. Notice the use of [`Any`][typing.Any] as a type hint for `value`. *Before* validators take the raw input, which
can be anything.
2. Note that you might want to check for other sequence types (such as tuples) that would normally successfully
validate against the `list` type. *Before* validators give you more flexibility, but you have to account for
every possible case.
3. Pydantic still performs validation against the `int` type, no matter if our `ensure_list` validator
did operations on the original input type.
* ***Plain* validators**: act similarly to *before* validators but they **terminate validation immediately** after returning,
so no further validators are called and Pydantic does not do any of its internal validation against the field type.
{#field-plain-validator}
=== "Annotated pattern"
```python
from typing import Annotated, Any
from pydantic import BaseModel, PlainValidator
def val_number(value: Any) -> Any:
if isinstance(value, int):
return value * 2
else:
return value
class Model(BaseModel):
number: Annotated[int, PlainValidator(val_number)]
print(Model(number=4))
#> number=8
print(Model(number='invalid')) # (1)!
#> number='invalid'
```
1. Although `'invalid'` shouldn't validate against the `int` type, Pydantic accepts the input.
=== "Decorator"
```python
from typing import Any
from pydantic import BaseModel, field_validator
class Model(BaseModel):
number: int
@field_validator('number', mode='plain')
@classmethod
def val_number(cls, value: Any) -> Any:
if isinstance(value, int):
return value * 2
else:
return value
print(Model(number=4))
#> number=8
print(Model(number='invalid')) # (1)!
#> number='invalid'
```
1. Although `'invalid'` shouldn't validate against the `int` type, Pydantic accepts the input.
* ***Wrap* validators**: are the most flexible of all. You can run code before or after Pydantic and other validators
process the input, or you can terminate validation immediately, either by returning the value early or by raising an
error.
{#field-wrap-validator}
Such validators must be defined with a **mandatory** extra *handler* parameter: a callable taking the value to be validated
as an argument. Internally, this handler will delegate validation of the value to Pydantic. You are free to wrap the call
to the handler in a [`try..except`][handling exceptions] block, or not call it at all.
[handling exceptions]: https://docs.python.org/3/tutorial/errors.html#handling-exceptions
=== "Annotated pattern"
```python {lint="skip"}
from typing import Any
from typing import Annotated
from pydantic import BaseModel, Field, ValidationError, ValidatorFunctionWrapHandler, WrapValidator
def truncate(value: Any, handler: ValidatorFunctionWrapHandler) -> str:
try:
return handler(value)
except ValidationError as err:
if err.errors()[0]['type'] == 'string_too_long':
return handler(value[:5])
else:
raise
class Model(BaseModel):
my_string: Annotated[str, Field(max_length=5), WrapValidator(truncate)]
print(Model(my_string='abcde'))
#> my_string='abcde'
print(Model(my_string='abcdef'))
#> my_string='abcde'
```
=== "Decorator"
```python {lint="skip"}
from typing import Any
from typing import Annotated
from pydantic import BaseModel, Field, ValidationError, ValidatorFunctionWrapHandler, field_validator
class Model(BaseModel):
my_string: Annotated[str, Field(max_length=5)]
@field_validator('my_string', mode='wrap')
@classmethod
def truncate(cls, value: Any, handler: ValidatorFunctionWrapHandler) -> str:
try:
return handler(value)
except ValidationError as err:
if err.errors()[0]['type'] == 'string_too_long':
return handler(value[:5])
else:
raise
print(Model(my_string='abcde'))
#> my_string='abcde'
print(Model(my_string='abcdef'))
#> my_string='abcde'
```
!!! note "Validation of default values"
As mentioned in the [fields documentation](./fields.md#validate-default-values), default values of fields
are *not* validated unless configured to do so, and thus custom validators will not be applied as well.
### Which validator pattern to use
While both approaches can achieve the same thing, each pattern provides different benefits.
#### Using the annotated pattern
One of the key benefits of using the [annotated pattern](./fields.md#the-annotated-pattern) is to make
validators reusable:
```python
from typing import Annotated
from pydantic import AfterValidator, BaseModel
def is_even(value: int) -> int:
if value % 2 == 1:
raise ValueError(f'{value} is not an even number')
return value
EvenNumber = Annotated[int, AfterValidator(is_even)]
class Model1(BaseModel):
my_number: EvenNumber
class Model2(BaseModel):
other_number: Annotated[EvenNumber, AfterValidator(lambda v: v + 2)]
class Model3(BaseModel):
list_of_even_numbers: list[EvenNumber] # (1)!
```
1. As mentioned in the [annotated pattern](./fields.md#the-annotated-pattern) documentation,
we can also make use of validators for specific parts of the annotation (in this case,
validation is applied for list items, but not the whole list).
It is also easier to understand which validators are applied to a type, by just looking at the field annotation.
#### Using the decorator pattern
One of the key benefits of using the [`field_validator()`][pydantic.field_validator] decorator is to apply
the function to multiple fields:
```python
from pydantic import BaseModel, field_validator
class Model(BaseModel):
f1: str
f2: str
@field_validator('f1', 'f2', mode='before')
@classmethod
def capitalize(cls, value: str) -> str:
return value.capitalize()
```
Here are a couple additional notes about the decorator usage:
* If you want the validator to apply to all fields (including the ones defined in subclasses), you can pass
`'*'` as the field name argument.
* By default, the decorator will ensure the provided field name(s) are defined on the model. If you want to
disable this check during class creation, you can do so by passing `False` to the `check_fields` argument.
This is useful when the field validator is defined on a base class, and the field is expected to exist on
subclasses.
## Model validators
??? api "API Documentation"
[`pydantic.functional_validators.model_validator`][pydantic.functional_validators.model_validator]<br>
Validation can also be performed on the entire model's data using the [`model_validator()`][pydantic.model_validator]
decorator.
**Three** different types of model validators can be used:
* ***After* validators**: run after the whole model has been validated. As such, they are defined as
*instance* methods and can be seen as post-initialization hooks. Important note: the validated instance
should be returned.
{#model-after-validator}
```python
from typing_extensions import Self
from pydantic import BaseModel, model_validator
class UserModel(BaseModel):
username: str
password: str
password_repeat: str
@model_validator(mode='after')
def check_passwords_match(self) -> Self:
if self.password != self.password_repeat:
raise ValueError('Passwords do not match')
return self
```
* ***Before* validators**: are run before the model is instantiated. These are more flexible than *after* validators,
but they also have to deal with the raw input, which in theory could be any arbitrary object. You should also avoid
mutating the value directly if you are raising a [validation error](#raising-validation-errors) later in your validator
function, as the mutated value may be passed to other validators if using [unions](./unions.md).
{#model-before-validator}
```python
from typing import Any
from pydantic import BaseModel, model_validator
class UserModel(BaseModel):
username: str
@model_validator(mode='before')
@classmethod
def check_card_number_not_present(cls, data: Any) -> Any: # (1)!
if isinstance(data, dict): # (2)!
if 'card_number' in data:
raise ValueError("'card_number' should not be included")
return data
```
1. Notice the use of [`Any`][typing.Any] as a type hint for `data`. *Before* validators take the raw input, which
can be anything.
2. Most of the time, the input data will be a dictionary (e.g. when calling `UserModel(username='...')`). However,
this is not always the case. For instance, if the [`from_attributes`][pydantic.ConfigDict.from_attributes]
configuration value is set, you might receive an arbitrary class instance for the `data` argument.
* ***Wrap* validators**: are the most flexible of all. You can run code before or after Pydantic and
other validators process the input data, or you can terminate validation immediately, either by returning
the data early or by raising an error.
{#model-wrap-validator}
```python {lint="skip"}
import logging
from typing import Any
from typing_extensions import Self
from pydantic import BaseModel, ModelWrapValidatorHandler, ValidationError, model_validator
class UserModel(BaseModel):
username: str
@model_validator(mode='wrap')
@classmethod
def log_failed_validation(cls, data: Any, handler: ModelWrapValidatorHandler[Self]) -> Self:
try:
return handler(data)
except ValidationError:
logging.error('Model %s failed to validate with data %s', cls, data)
raise
```
!!! note "On inheritance"
A model validator defined in a base class will be called during the validation of a subclass instance.
Overriding a model validator in a subclass will override the base class' validator, and thus only the subclass' version of said validator will be called.
## Raising validation errors
To raise a validation error, three types of exceptions can be used:
* [`ValueError`][]: this is the most common exception raised inside validators.
* [`AssertionError`][]: using the [assert][] statement also works, but be aware that these statements
are skipped when Python is run with the [-O][] optimization flag.
* [`PydanticCustomError`][pydantic_core.PydanticCustomError]: a bit more verbose, but provides extra flexibility:
```python
from pydantic_core import PydanticCustomError
from pydantic import BaseModel, ValidationError, field_validator
class Model(BaseModel):
x: int
@field_validator('x', mode='after')
@classmethod
def validate_x(cls, v: int) -> int:
if v % 42 == 0:
raise PydanticCustomError(
'the_answer_error',
'{number} is the answer!',
{'number': v},
)
return v
try:
Model(x=42 * 2)
except ValidationError as e:
print(e)
"""
1 validation error for Model
x
84 is the answer! [type=the_answer_error, input_value=84, input_type=int]
"""
```
## Validation info
Both the field and model validators callables (in all modes) can optionally take an extra
[`ValidationInfo`][pydantic.ValidationInfo] argument, providing useful extra information, such as:
* [already validated data](#validation-data)
* [user defined context](#validation-context)
* the current [validation mode](./models.md#validating-data): either `'python'`, `'json'` or `'strings'` (see the [`mode`][pydantic.ValidationInfo.mode] property)
* the current field name, if using a [field validator](#field-validators) (see the [`field_name`][pydantic.ValidationInfo.field_name] property).
### Validation data
For field validators, the already validated data can be accessed using the [`data`][pydantic.ValidationInfo.data]
property. Here is an example than can be used as an alternative to the [*after* model validator](#model-after-validator)
example:
```python
from pydantic import BaseModel, ValidationInfo, field_validator
class UserModel(BaseModel):
password: str
password_repeat: str
username: str
@field_validator('password_repeat', mode='after')
@classmethod
def check_passwords_match(cls, value: str, info: ValidationInfo) -> str:
if value != info.data['password']:
raise ValueError('Passwords do not match')
return value
```
!!! warning
As validation is performed in the [order fields are defined](./models.md#field-ordering), you have to
make sure you are not accessing a field that hasn't been validated yet. In the code above, for example,
the `username` validated value is not available yet, as it is defined *after* `password_repeat`.
The [`data`][pydantic.ValidationInfo.data] property is `None` for [model validators](#model-validators).
### Validation context
You can pass a context object to the [validation methods](./models.md#validating-data), which can be accessed
inside the validator functions using the [`context`][pydantic.ValidationInfo.context] property:
```python
from pydantic import BaseModel, ValidationInfo, field_validator
class Model(BaseModel):
text: str
@field_validator('text', mode='after')
@classmethod
def remove_stopwords(cls, v: str, info: ValidationInfo) -> str:
if isinstance(info.context, dict):
stopwords = info.context.get('stopwords', set())
v = ' '.join(w for w in v.split() if w.lower() not in stopwords)
return v
data = {'text': 'This is an example document'}
print(Model.model_validate(data)) # no context
#> text='This is an example document'
print(Model.model_validate(data, context={'stopwords': ['this', 'is', 'an']}))
#> text='example document'
```
Similarly, you can [use a context for serialization](../concepts/serialization.md#serialization-context).
??? note "Providing context when directly instantiating a model"
It is currently not possible to provide a context when directly instantiating a model
(i.e. when calling `Model(...)`). You can work around this through the use of a
[`ContextVar`][contextvars.ContextVar] and a custom `__init__` method:
```python
from __future__ import annotations
from collections.abc import Generator
from contextlib import contextmanager
from contextvars import ContextVar
from typing import Any
from pydantic import BaseModel, ValidationInfo, field_validator
_init_context_var = ContextVar('_init_context_var', default=None)
@contextmanager
def init_context(value: dict[str, Any]) -> Generator[None]:
token = _init_context_var.set(value)
try:
yield
finally:
_init_context_var.reset(token)
class Model(BaseModel):
my_number: int
def __init__(self, /, **data: Any) -> None:
self.__pydantic_validator__.validate_python(
data,
self_instance=self,
context=_init_context_var.get(),
)
@field_validator('my_number')
@classmethod
def multiply_with_context(cls, value: int, info: ValidationInfo) -> int:
if isinstance(info.context, dict):
multiplier = info.context.get('multiplier', 1)
value = value * multiplier
return value
print(Model(my_number=2))
#> my_number=2
with init_context({'multiplier': 3}):
print(Model(my_number=2))
#> my_number=6
print(Model(my_number=2))
#> my_number=2
```
## Ordering of validators
When using the [annotated pattern](#using-the-annotated-pattern), the order in which validators are applied
is defined as follows: [*before*](#field-before-validator) and [*wrap*](#field-wrap-validator) validators
are run from right to left, and [*after*](#field-after-validator) validators are then run from left to right:
```python {lint="skip" test="skip"}
from pydantic import AfterValidator, BaseModel, BeforeValidator, WrapValidator
class Model(BaseModel):
name: Annotated[
str,
AfterValidator(runs_3rd),
AfterValidator(runs_4th),
BeforeValidator(runs_2nd),
WrapValidator(runs_1st),
]
```
Internally, validators defined using [the decorator](#using-the-decorator-pattern) are converted to their annotated
form counterpart and added last after the existing metadata for the field. This means that the same ordering
logic applies.
## Special types
Pydantic provides a few special utilities that can be used to customize validation.
* [`InstanceOf`][pydantic.functional_validators.InstanceOf] can be used to validate that a value is an instance of a given class.
```python
from pydantic import BaseModel, InstanceOf, ValidationError
class Fruit:
def __repr__(self):
return self.__class__.__name__
class Banana(Fruit): ...
class Apple(Fruit): ...
class Basket(BaseModel):
fruits: list[InstanceOf[Fruit]]
print(Basket(fruits=[Banana(), Apple()]))
#> fruits=[Banana, Apple]
try:
Basket(fruits=[Banana(), 'Apple'])
except ValidationError as e:
print(e)
"""
1 validation error for Basket
fruits.1
Input should be an instance of Fruit [type=is_instance_of, input_value='Apple', input_type=str]
"""
```
* [`SkipValidation`][pydantic.functional_validators.SkipValidation] can be used to skip validation on a field.
```python
from pydantic import BaseModel, SkipValidation
class Model(BaseModel):
names: list[SkipValidation[str]]
m = Model(names=['foo', 'bar'])
print(m)
#> names=['foo', 'bar']
m = Model(names=['foo', 123]) # (1)!
print(m)
#> names=['foo', 123]
```
1. Note that the validation of the second item is skipped. If it has the wrong type it will emit a
warning during serialization.
* [`ValidateAs`][pydantic.functional_validators.ValidateAs] can be used to validate an custom type from a
type natively supported by Pydantic. This is particularly useful when using custom types with multiple fields.
```python {lint="skip"}
from typing import Annotated
from pydantic import BaseModel, TypeAdapter, ValidateAs
class MyCls:
def __init__(self, a: int) -> None:
self.a = a
def __repr__(self) -> str:
return f"MyCls(a={self.a})"
class ValModel(BaseModel):
a: int
ta = TypeAdapter(
Annotated[MyCls, ValidateAs(ValModel, lambda v: MyCls(a=v.a))]
)
print(ta.validate_python({'a': 1}))
#> MyCls(a=1)
```
* [`PydanticUseDefault`][pydantic_core.PydanticUseDefault] can be used to notify Pydantic that the default value
should be used.
```python
from typing import Annotated, Any
from pydantic_core import PydanticUseDefault
from pydantic import BaseModel, BeforeValidator
def default_if_none(value: Any) -> Any:
if value is None:
raise PydanticUseDefault()
return value
class Model(BaseModel):
name: Annotated[str, BeforeValidator(default_if_none)] = 'default_name'
print(Model(name=None))
#> name='default_name'
```
## JSON Schema and field validators
When using [*before*](#field-before-validator), [*plain*](#field-plain-validator) or [*wrap*](#field-wrap-validator)
field validators, the accepted input type may be different from the field annotation.
Consider the following example:
```python
from typing import Any
from pydantic import BaseModel, field_validator
class Model(BaseModel):
value: str
@field_validator('value', mode='before')
@classmethod
def cast_ints(cls, value: Any) -> Any:
if isinstance(value, int):
return str(value)
else:
return value
print(Model(value='a'))
#> value='a'
print(Model(value=1))
#> value='1'
```
While the type hint for `value` is `str`, the `cast_ints` validator also allows integers. To specify the correct
input type, the `json_schema_input_type` argument can be provided:
```python
from typing import Any, Union
from pydantic import BaseModel, field_validator
class Model(BaseModel):
value: str
@field_validator(
'value', mode='before', json_schema_input_type=Union[int, str]
)
@classmethod
def cast_ints(cls, value: Any) -> Any:
if isinstance(value, int):
return str(value)
else:
return value
print(Model.model_json_schema()['properties']['value'])
#> {'anyOf': [{'type': 'integer'}, {'type': 'string'}], 'title': 'Value'}
```
As a convenience, Pydantic will use the field type if the argument is not provided (unless you are using
a [*plain*](#field-plain-validator) validator, in which case `json_schema_input_type` defaults to
[`Any`][typing.Any] as the field type is completely discarded).
|