File: errors.md

package info (click to toggle)
pydantic 2.12.5-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,640 kB
  • sloc: python: 75,984; javascript: 181; makefile: 115; sh: 38
file content (283 lines) | stat: -rw-r--r-- 10,195 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

Pydantic will raise a [`ValidationError`][pydantic_core.ValidationError] whenever it finds an error in the data it's validating.

!!! note
    Validation code should not raise the [`ValidationError`][pydantic_core.ValidationError] itself,
    but rather raise a [`ValueError`][] or a [`AssertionError`][] (or subclass thereof) which will
    be caught and used to populate the final [`ValidationError`][pydantic_core.ValidationError].

    For more details, refer to the [dedicated section](../concepts/validators.md#raising-validation-errors)
    of the validators documentation.

That [`ValidationError`][pydantic_core.ValidationError] will contain information about all the errors and how they happened.

You can access these errors in several ways:

| Method                                                       | Description                                                                                    |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| [`errors()`][pydantic_core.ValidationError.errors]           | Returns a list of [`ErrorDetails`][pydantic_core.ErrorDetails] errors found in the input data. |
| [`error_count()`][pydantic_core.ValidationError.error_count] | Returns the number of errors.                                                                  |
| [`json()`][pydantic_core.ValidationError.json]               | Returns a JSON representation of the list errors.                                              |
| `str(e)`                                                     | Returns a human-readable representation of the errors.                                         |

The [`ErrorDetails`][pydantic_core.ErrorDetails] object is a dictionary. It contains the following:

| Property                                    | Description                                                                    |
|---------------------------------------------|--------------------------------------------------------------------------------|
| [`ctx`][pydantic_core.ErrorDetails.ctx]     | An optional object which contains values required to render the error message. |
| [`input`][pydantic_core.ErrorDetails.input] | The input provided for validation.                                             |
| [`loc`][pydantic_core.ErrorDetails.loc]     | The error's location as a list.                                                |
| [`msg`][pydantic_core.ErrorDetails.msg]     | A human-readable explanation of the error.                                     |
| [`type`][pydantic_core.ErrorDetails.type]   | A computer-readable identifier of the error type.                              |
| [`url`][pydantic_core.ErrorDetails.url]     | The documentation URL giving information about the error.                      |

The first item in the [`loc`][pydantic_core.ErrorDetails.loc] list will be the field where the error occurred, and if the field is a
[sub-model](../concepts/models.md#nested-models), subsequent items will be present to indicate the nested location of the error.

As a demonstration:

```python
from pydantic import BaseModel, Field, ValidationError, field_validator


class Location(BaseModel):
    lat: float = 0.1
    lng: float = 10.1


class Model(BaseModel):
    is_required: float
    gt_int: int = Field(gt=42)
    list_of_ints: list[int]
    a_float: float
    recursive_model: Location

    @field_validator('a_float', mode='after')
    @classmethod
    def validate_float(cls, value: float) -> float:
        if value > 2.0:
            raise ValueError('Invalid float value')
        return value


data = {
    'list_of_ints': ['1', 2, 'bad'],
    'a_float': 3.0,
    'recursive_model': {'lat': 4.2, 'lng': 'New York'},
    'gt_int': 21,
}

try:
    Model(**data)
except ValidationError as e:
    print(e)
    """
    5 validation errors for Model
    is_required
      Field required [type=missing, input_value={'list_of_ints': ['1', 2,...ew York'}, 'gt_int': 21}, input_type=dict]
    gt_int
      Input should be greater than 42 [type=greater_than, input_value=21, input_type=int]
    list_of_ints.2
      Input should be a valid integer, unable to parse string as an integer [type=int_parsing, input_value='bad', input_type=str]
    a_float
      Value error, Invalid float value [type=value_error, input_value=3.0, input_type=float]
    recursive_model.lng
      Input should be a valid number, unable to parse string as a number [type=float_parsing, input_value='New York', input_type=str]
    """

try:
    Model(**data)
except ValidationError as e:
    print(e.errors())
    """
    [
        {
            'type': 'missing',
            'loc': ('is_required',),
            'msg': 'Field required',
            'input': {
                'list_of_ints': ['1', 2, 'bad'],
                'a_float': 3.0,
                'recursive_model': {'lat': 4.2, 'lng': 'New York'},
                'gt_int': 21,
            },
            'url': 'https://errors.pydantic.dev/2/v/missing',
        },
        {
            'type': 'greater_than',
            'loc': ('gt_int',),
            'msg': 'Input should be greater than 42',
            'input': 21,
            'ctx': {'gt': 42},
            'url': 'https://errors.pydantic.dev/2/v/greater_than',
        },
        {
            'type': 'int_parsing',
            'loc': ('list_of_ints', 2),
            'msg': 'Input should be a valid integer, unable to parse string as an integer',
            'input': 'bad',
            'url': 'https://errors.pydantic.dev/2/v/int_parsing',
        },
        {
            'type': 'value_error',
            'loc': ('a_float',),
            'msg': 'Value error, Invalid float value',
            'input': 3.0,
            'ctx': {'error': ValueError('Invalid float value')},
            'url': 'https://errors.pydantic.dev/2/v/value_error',
        },
        {
            'type': 'float_parsing',
            'loc': ('recursive_model', 'lng'),
            'msg': 'Input should be a valid number, unable to parse string as a number',
            'input': 'New York',
            'url': 'https://errors.pydantic.dev/2/v/float_parsing',
        },
    ]
    """
```

## Error messages

Pydantic attempts to provide useful default error messages for validation and usage errors, which can be found here:

* [Validation Errors](validation_errors.md): Errors that happen during data validation.
* [Usage Errors](usage_errors.md): Errors that happen when using Pydantic.

### Customize error messages

You can customize error messages by creating a custom error handler.

```python
from pydantic_core import ErrorDetails

from pydantic import BaseModel, HttpUrl, ValidationError

CUSTOM_MESSAGES = {
    'int_parsing': 'This is not an integer! 🤦',
    'url_scheme': 'Hey, use the right URL scheme! I wanted {expected_schemes}.',
}


def convert_errors(
    e: ValidationError, custom_messages: dict[str, str]
) -> list[ErrorDetails]:
    new_errors: list[ErrorDetails] = []
    for error in e.errors():
        custom_message = custom_messages.get(error['type'])
        if custom_message:
            ctx = error.get('ctx')
            error['msg'] = (
                custom_message.format(**ctx) if ctx else custom_message
            )
        new_errors.append(error)
    return new_errors


class Model(BaseModel):
    a: int
    b: HttpUrl


try:
    Model(a='wrong', b='ftp://example.com')
except ValidationError as e:
    errors = convert_errors(e, CUSTOM_MESSAGES)
    print(errors)
    """
    [
        {
            'type': 'int_parsing',
            'loc': ('a',),
            'msg': 'This is not an integer! 🤦',
            'input': 'wrong',
            'url': 'https://errors.pydantic.dev/2/v/int_parsing',
        },
        {
            'type': 'url_scheme',
            'loc': ('b',),
            'msg': "Hey, use the right URL scheme! I wanted 'http' or 'https'.",
            'input': 'ftp://example.com',
            'ctx': {'expected_schemes': "'http' or 'https'"},
            'url': 'https://errors.pydantic.dev/2/v/url_scheme',
        },
    ]
    """
```

A common use case would be to translate error messages. For example, in the above example,
we could translate the error messages replacing the `CUSTOM_MESSAGES` dictionary with a
dictionary of translations.

Another example is customizing the way that the `'loc'` value of an error is represented.

```python
from typing import Any, Union

from pydantic import BaseModel, ValidationError


def loc_to_dot_sep(loc: tuple[Union[str, int], ...]) -> str:
    path = ''
    for i, x in enumerate(loc):
        if isinstance(x, str):
            if i > 0:
                path += '.'
            path += x
        elif isinstance(x, int):
            path += f'[{x}]'
        else:
            raise TypeError('Unexpected type')
    return path


def convert_errors(e: ValidationError) -> list[dict[str, Any]]:
    new_errors: list[dict[str, Any]] = e.errors()
    for error in new_errors:
        error['loc'] = loc_to_dot_sep(error['loc'])
    return new_errors


class TestNestedModel(BaseModel):
    key: str
    value: str


class TestModel(BaseModel):
    items: list[TestNestedModel]


data = {'items': [{'key': 'foo', 'value': 'bar'}, {'key': 'baz'}]}

try:
    TestModel.model_validate(data)
except ValidationError as e:
    print(e.errors())  # (1)!
    """
    [
        {
            'type': 'missing',
            'loc': ('items', 1, 'value'),
            'msg': 'Field required',
            'input': {'key': 'baz'},
            'url': 'https://errors.pydantic.dev/2/v/missing',
        }
    ]
    """
    pretty_errors = convert_errors(e)
    print(pretty_errors)  # (2)!
    """
    [
        {
            'type': 'missing',
            'loc': 'items[1].value',
            'msg': 'Field required',
            'input': {'key': 'baz'},
            'url': 'https://errors.pydantic.dev/2/v/missing',
        }
    ]
    """
```

1. By default, `e.errors()` produces a list of errors with `loc` values that take the form of tuples.
2. With our custom `loc_to_dot_sep` function, we've modified the form of the `loc` representation.