File: usage_errors.md

package info (click to toggle)
pydantic 2.12.5-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 7,640 kB
  • sloc: python: 75,984; javascript: 181; makefile: 115; sh: 38
file content (1388 lines) | stat: -rw-r--r-- 35,070 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
Pydantic attempts to provide useful errors. The following sections provide details on common errors developers may
encounter when working with Pydantic, along with suggestions for addressing the error condition.

## Class not fully defined {#class-not-fully-defined}

This error is raised when a type referenced in an annotation of a pydantic-validated type
(such as a subclass of `BaseModel`, or a pydantic `dataclass`) is not defined:

```python
from typing import ForwardRef

from pydantic import BaseModel, PydanticUserError

UndefinedType = ForwardRef('UndefinedType')


class Foobar(BaseModel):
    a: UndefinedType


try:
    Foobar(a=1)
except PydanticUserError as exc_info:
    assert exc_info.code == 'class-not-fully-defined'
```

Or when the type has been defined after usage:

```python
from typing import Optional

from pydantic import BaseModel, PydanticUserError


class Foo(BaseModel):
    a: Optional['Bar'] = None


try:
    # this doesn't work, see raised error
    foo = Foo(a={'b': {'a': None}})
except PydanticUserError as exc_info:
    assert exc_info.code == 'class-not-fully-defined'


class Bar(BaseModel):
    b: 'Foo'


# this works, though
foo = Foo(a={'b': {'a': None}})
```

For BaseModel subclasses, it can be fixed by defining the type and then calling `.model_rebuild()`:

```python
from typing import Optional

from pydantic import BaseModel


class Foo(BaseModel):
    a: Optional['Bar'] = None


class Bar(BaseModel):
    b: 'Foo'


Foo.model_rebuild()

foo = Foo(a={'b': {'a': None}})
```

In other cases, the error message should indicate how to rebuild the class with the appropriate type defined.

## Custom JSON Schema {#custom-json-schema}

The `__modify_schema__` method is no longer supported in V2. You should use the `__get_pydantic_json_schema__` method instead.

The `__modify_schema__` used to receive a single argument representing the JSON schema. See the example below:

```python {title="Old way"}
from pydantic import BaseModel, PydanticUserError

try:

    class Model(BaseModel):
        @classmethod
        def __modify_schema__(cls, field_schema):
            field_schema.update(examples=['example'])

except PydanticUserError as exc_info:
    assert exc_info.code == 'custom-json-schema'
```

The new method `__get_pydantic_json_schema__` receives two arguments: the first is a dictionary denoted as `CoreSchema`,
and the second a callable `handler` that receives a `CoreSchema` as parameter, and returns a JSON schema. See the example
below:

```python {title="New way"}
from typing import Any

from pydantic_core import CoreSchema

from pydantic import BaseModel, GetJsonSchemaHandler


class Model(BaseModel):
    @classmethod
    def __get_pydantic_json_schema__(
        cls, core_schema: CoreSchema, handler: GetJsonSchemaHandler
    ) -> dict[str, Any]:
        json_schema = super().__get_pydantic_json_schema__(core_schema, handler)
        json_schema = handler.resolve_ref_schema(json_schema)
        json_schema.update(examples=['example'])
        return json_schema


print(Model.model_json_schema())
"""
{'examples': ['example'], 'properties': {}, 'title': 'Model', 'type': 'object'}
"""
```

## Decorator on missing field {#decorator-missing-field}

This error is raised when you define a decorator with a field that is not valid.

```python
from typing import Any

from pydantic import BaseModel, PydanticUserError, field_validator

try:

    class Model(BaseModel):
        a: str

        @field_validator('b')
        def check_b(cls, v: Any):
            return v

except PydanticUserError as exc_info:
    assert exc_info.code == 'decorator-missing-field'
```

You can use `check_fields=False` if you're inheriting from the model and intended this.

```python
from typing import Any

from pydantic import BaseModel, create_model, field_validator


class Model(BaseModel):
    @field_validator('a', check_fields=False)
    def check_a(cls, v: Any):
        return v


model = create_model('FooModel', a=(str, 'cake'), __base__=Model)
```

## Discriminator no field {#discriminator-no-field}

This error is raised when a model in discriminated unions doesn't define a discriminator field.

```python
from typing import Literal, Union

from pydantic import BaseModel, Field, PydanticUserError


class Cat(BaseModel):
    c: str


class Dog(BaseModel):
    pet_type: Literal['dog']
    d: str


try:

    class Model(BaseModel):
        pet: Union[Cat, Dog] = Field(discriminator='pet_type')
        number: int

except PydanticUserError as exc_info:
    assert exc_info.code == 'discriminator-no-field'
```

## Discriminator alias type {#discriminator-alias-type}

This error is raised when you define a non-string alias on a discriminator field.

```python
from typing import Literal, Union

from pydantic import AliasChoices, BaseModel, Field, PydanticUserError


class Cat(BaseModel):
    pet_type: Literal['cat'] = Field(
        validation_alias=AliasChoices('Pet', 'PET')
    )
    c: str


class Dog(BaseModel):
    pet_type: Literal['dog']
    d: str


try:

    class Model(BaseModel):
        pet: Union[Cat, Dog] = Field(discriminator='pet_type')
        number: int

except PydanticUserError as exc_info:
    assert exc_info.code == 'discriminator-alias-type'
```

## Discriminator needs literal {#discriminator-needs-literal}

This error is raised when you define a non-`Literal` type on a discriminator field.

```python
from typing import Literal, Union

from pydantic import BaseModel, Field, PydanticUserError


class Cat(BaseModel):
    pet_type: int
    c: str


class Dog(BaseModel):
    pet_type: Literal['dog']
    d: str


try:

    class Model(BaseModel):
        pet: Union[Cat, Dog] = Field(discriminator='pet_type')
        number: int

except PydanticUserError as exc_info:
    assert exc_info.code == 'discriminator-needs-literal'
```

## Discriminator alias {#discriminator-alias}

This error is raised when you define different aliases on discriminator fields.

```python
from typing import Literal, Union

from pydantic import BaseModel, Field, PydanticUserError


class Cat(BaseModel):
    pet_type: Literal['cat'] = Field(validation_alias='PET')
    c: str


class Dog(BaseModel):
    pet_type: Literal['dog'] = Field(validation_alias='Pet')
    d: str


try:

    class Model(BaseModel):
        pet: Union[Cat, Dog] = Field(discriminator='pet_type')
        number: int

except PydanticUserError as exc_info:
    assert exc_info.code == 'discriminator-alias'
```

## Invalid discriminator validator {#discriminator-validator}

This error is raised when you use a before, wrap, or plain validator on a discriminator field.

This is disallowed because the discriminator field is used to determine the type of the model to use for validation,
so you can't use a validator that might change its value.

```python
from typing import Literal, Union

from pydantic import BaseModel, Field, PydanticUserError, field_validator


class Cat(BaseModel):
    pet_type: Literal['cat']

    @field_validator('pet_type', mode='before')
    @classmethod
    def validate_pet_type(cls, v):
        if v == 'kitten':
            return 'cat'
        return v


class Dog(BaseModel):
    pet_type: Literal['dog']


try:

    class Model(BaseModel):
        pet: Union[Cat, Dog] = Field(discriminator='pet_type')
        number: int

except PydanticUserError as exc_info:
    assert exc_info.code == 'discriminator-validator'
```

This can be worked around by using a standard `Union`, dropping the discriminator:

```python
from typing import Literal, Union

from pydantic import BaseModel, field_validator


class Cat(BaseModel):
    pet_type: Literal['cat']

    @field_validator('pet_type', mode='before')
    @classmethod
    def validate_pet_type(cls, v):
        if v == 'kitten':
            return 'cat'
        return v


class Dog(BaseModel):
    pet_type: Literal['dog']


class Model(BaseModel):
    pet: Union[Cat, Dog]


assert Model(pet={'pet_type': 'kitten'}).pet.pet_type == 'cat'
```

## Callable discriminator case with no tag {#callable-discriminator-no-tag}

This error is raised when a `Union` that uses a callable `Discriminator` doesn't have `Tag` annotations for all cases.

```python
from typing import Annotated, Union

from pydantic import BaseModel, Discriminator, PydanticUserError, Tag


def model_x_discriminator(v):
    if isinstance(v, str):
        return 'str'
    if isinstance(v, (dict, BaseModel)):
        return 'model'


# tag missing for both union choices
try:

    class DiscriminatedModel(BaseModel):
        x: Annotated[
            Union[str, 'DiscriminatedModel'],
            Discriminator(model_x_discriminator),
        ]

except PydanticUserError as exc_info:
    assert exc_info.code == 'callable-discriminator-no-tag'

# tag missing for `'DiscriminatedModel'` union choice
try:

    class DiscriminatedModel(BaseModel):
        x: Annotated[
            Union[Annotated[str, Tag('str')], 'DiscriminatedModel'],
            Discriminator(model_x_discriminator),
        ]

except PydanticUserError as exc_info:
    assert exc_info.code == 'callable-discriminator-no-tag'

# tag missing for `str` union choice
try:

    class DiscriminatedModel(BaseModel):
        x: Annotated[
            Union[str, Annotated['DiscriminatedModel', Tag('model')]],
            Discriminator(model_x_discriminator),
        ]

except PydanticUserError as exc_info:
    assert exc_info.code == 'callable-discriminator-no-tag'
```

## `TypedDict` version {#typed-dict-version}

This error is raised when you use [typing.TypedDict][]
instead of `typing_extensions.TypedDict` on Python < 3.12.

## Model parent field overridden {#model-field-overridden}

This error is raised when a field defined on a base class was overridden by a non-annotated attribute.

```python
from pydantic import BaseModel, PydanticUserError


class Foo(BaseModel):
    a: float


try:

    class Bar(Foo):
        x: float = 12.3
        a = 123.0

except PydanticUserError as exc_info:
    assert exc_info.code == 'model-field-overridden'
```

## Model field missing annotation {#model-field-missing-annotation}

This error is raised when a field doesn't have an annotation.

```python
from pydantic import BaseModel, Field, PydanticUserError

try:

    class Model(BaseModel):
        a = Field('foobar')
        b = None

except PydanticUserError as exc_info:
    assert exc_info.code == 'model-field-missing-annotation'
```

If the field is not meant to be a field, you may be able to resolve the error
by annotating it as a `ClassVar`:

```python
from typing import ClassVar

from pydantic import BaseModel


class Model(BaseModel):
    a: ClassVar[str]
```

Or updating `model_config['ignored_types']`:

```python
from pydantic import BaseModel, ConfigDict


class IgnoredType:
    pass


class MyModel(BaseModel):
    model_config = ConfigDict(ignored_types=(IgnoredType,))

    _a = IgnoredType()
    _b: int = IgnoredType()
    _c: IgnoredType
    _d: IgnoredType = IgnoredType()
```

## `Config` and `model_config` both defined {#config-both}

This error is raised when `class Config` and `model_config` are used together.

```python
from pydantic import BaseModel, ConfigDict, PydanticUserError

try:

    class Model(BaseModel):
        model_config = ConfigDict(from_attributes=True)

        a: str

        class Config:
            from_attributes = True

except PydanticUserError as exc_info:
    assert exc_info.code == 'config-both'
```

## Keyword arguments removed {#removed-kwargs}

This error is raised when the keyword arguments are not available in Pydantic V2.

For example, `regex` is removed from Pydantic V2:

```python
from pydantic import BaseModel, Field, PydanticUserError

try:

    class Model(BaseModel):
        x: str = Field(regex='test')

except PydanticUserError as exc_info:
    assert exc_info.code == 'removed-kwargs'
```

## Circular reference schema {#circular-reference-schema}

This error is raised when a circular reference is found that would otherwise result in an infinite recursion.

For example, this is a valid type alias:

```python {test="skip" lint="skip" upgrade="skip"}
type A = list[A] | None
```

while these are not:

```python {test="skip" lint="skip" upgrade="skip"}
type A = A

type B = C
type C = B
```

## JSON schema invalid type {#invalid-for-json-schema}

This error is raised when Pydantic fails to generate a JSON schema for some `CoreSchema`.

```python
from pydantic import BaseModel, ImportString, PydanticUserError


class Model(BaseModel):
    a: ImportString


try:
    Model.model_json_schema()
except PydanticUserError as exc_info:
    assert exc_info.code == 'invalid-for-json-schema'
```

## JSON schema already used {#json-schema-already-used}

This error is raised when the JSON schema generator has already been used to generate a JSON schema.
You must create a new instance to generate a new JSON schema.

## BaseModel instantiated {#base-model-instantiated}

This error is raised when you instantiate `BaseModel` directly. Pydantic models should inherit from `BaseModel`.

```python
from pydantic import BaseModel, PydanticUserError

try:
    BaseModel()
except PydanticUserError as exc_info:
    assert exc_info.code == 'base-model-instantiated'
```

## Undefined annotation {#undefined-annotation}

This error is raised when handling undefined annotations during `CoreSchema` generation.

```python
from pydantic import BaseModel, PydanticUndefinedAnnotation


class Model(BaseModel):
    a: 'B'  # noqa F821


try:
    Model.model_rebuild()
except PydanticUndefinedAnnotation as exc_info:
    assert exc_info.code == 'undefined-annotation'
```

## Schema for unknown type {#schema-for-unknown-type}

This error is raised when Pydantic fails to generate a `CoreSchema` for some type.

```python
from pydantic import BaseModel, PydanticUserError

try:

    class Model(BaseModel):
        x: 43 = 123

except PydanticUserError as exc_info:
    assert exc_info.code == 'schema-for-unknown-type'
```

## Import error {#import-error}

This error is raised when you try to import an object that was available in Pydantic V1, but has been removed in
Pydantic V2.

See the [Migration Guide](../migration.md) for more information.

## `create_model` field definitions {#create-model-field-definitions}

This error is raised when you provide invalid field definitions in [`create_model()`][pydantic.create_model].

```python
from pydantic import PydanticUserError, create_model

try:
    create_model('FooModel', foo=(str, 'default value', 'more'))
except PydanticUserError as exc_info:
    assert exc_info.code == 'create-model-field-definitions'
```

The fields definition syntax can be found in the [dynamic model creation](../concepts/models.md#dynamic-model-creation) documentation.

## Validator with no fields {#validator-no-fields}

This error is raised when you use validator bare (with no fields).

```python
from pydantic import BaseModel, PydanticUserError, field_validator

try:

    class Model(BaseModel):
        a: str

        @field_validator
        def checker(cls, v):
            return v

except PydanticUserError as exc_info:
    assert exc_info.code == 'validator-no-fields'
```

Validators should be used with fields and keyword arguments.

```python
from pydantic import BaseModel, field_validator


class Model(BaseModel):
    a: str

    @field_validator('a')
    def checker(cls, v):
        return v
```

## Invalid validator fields {#validator-invalid-fields}

This error is raised when you use a validator with non-string fields.

```python
from pydantic import BaseModel, PydanticUserError, field_validator

try:

    class Model(BaseModel):
        a: str
        b: str

        @field_validator(['a', 'b'])
        def check_fields(cls, v):
            return v

except PydanticUserError as exc_info:
    assert exc_info.code == 'validator-invalid-fields'
```

Fields should be passed as separate string arguments:

```python
from pydantic import BaseModel, field_validator


class Model(BaseModel):
    a: str
    b: str

    @field_validator('a', 'b')
    def check_fields(cls, v):
        return v
```

## Validator on instance method {#validator-instance-method}

This error is raised when you apply a validator on an instance method.

```python
from pydantic import BaseModel, PydanticUserError, field_validator

try:

    class Model(BaseModel):
        a: int = 1

        @field_validator('a')
        def check_a(self, value):
            return value

except PydanticUserError as exc_info:
    assert exc_info.code == 'validator-instance-method'
```

## `json_schema_input_type` used with the wrong mode {#validator-input-type}

This error is raised when you explicitly specify a value for the `json_schema_input_type`
argument and `mode` isn't set to either `'before'`, `'plain'` or `'wrap'`.

```python
from pydantic import BaseModel, PydanticUserError, field_validator

try:

    class Model(BaseModel):
        a: int = 1

        @field_validator('a', mode='after', json_schema_input_type=int)
        @classmethod
        def check_a(self, value):
            return value

except PydanticUserError as exc_info:
    assert exc_info.code == 'validator-input-type'
```

Documenting the JSON Schema input type is only possible for validators where the given
value can be anything. That is why it isn't available for `after` validators, where
the value is first validated against the type annotation.

## Root validator, `pre`, `skip_on_failure` {#root-validator-pre-skip}

If you use `@root_validator` with `pre=False` (the default) you MUST specify `skip_on_failure=True`.
The `skip_on_failure=False` option is no longer available.

If you were not trying to set `skip_on_failure=False`, you can safely set `skip_on_failure=True`.
If you do, this root validator will no longer be called if validation fails for any of the fields.

Please see the [Migration Guide](../migration.md) for more details.

## `model_serializer` instance methods {#model-serializer-instance-method}

`@model_serializer` must be applied to instance methods.

This error is raised when you apply `model_serializer` on an instance method without `self`:

```python
from pydantic import BaseModel, PydanticUserError, model_serializer

try:

    class MyModel(BaseModel):
        a: int

        @model_serializer
        def _serialize(slf, x, y, z):
            return slf

except PydanticUserError as exc_info:
    assert exc_info.code == 'model-serializer-instance-method'
```

Or on a class method:

```python
from pydantic import BaseModel, PydanticUserError, model_serializer

try:

    class MyModel(BaseModel):
        a: int

        @model_serializer
        @classmethod
        def _serialize(self, x, y, z):
            return self

except PydanticUserError as exc_info:
    assert exc_info.code == 'model-serializer-instance-method'
```

## `validator`, `field`, `config`, and `info` {#validator-field-config-info}

The `field` and `config` parameters are not available in Pydantic V2.
Please use the `info` parameter instead.

You can access the configuration via `info.config`,
but it is a dictionary instead of an object like it was in Pydantic V1.

The `field` argument is no longer available.

## Pydantic V1 validator signature {#validator-v1-signature}

This error is raised when you use an unsupported signature for Pydantic V1-style validator.

```python
import warnings

from pydantic import BaseModel, PydanticUserError, validator

warnings.filterwarnings('ignore', category=DeprecationWarning)

try:

    class Model(BaseModel):
        a: int

        @validator('a')
        def check_a(cls, value, foo):
            return value

except PydanticUserError as exc_info:
    assert exc_info.code == 'validator-v1-signature'
```

## Unrecognized `field_validator` signature {#validator-signature}

This error is raised when a `field_validator` or `model_validator` function has the wrong signature.

```python
from pydantic import BaseModel, PydanticUserError, field_validator

try:

    class Model(BaseModel):
        a: str

        @field_validator('a')
        @classmethod
        def check_a(cls):
            return 'a'

except PydanticUserError as exc_info:
    assert exc_info.code == 'validator-signature'
```

## Unrecognized `field_serializer` signature {#field-serializer-signature}

This error is raised when the `field_serializer` function has the wrong signature.

```python
from pydantic import BaseModel, PydanticUserError, field_serializer

try:

    class Model(BaseModel):
        x: int

        @field_serializer('x')
        def no_args():
            return 'x'

except PydanticUserError as exc_info:
    assert exc_info.code == 'field-serializer-signature'
```

Valid field serializer signatures are:

```python {test="skip" lint="skip" upgrade="skip"}
from pydantic import FieldSerializationInfo, SerializerFunctionWrapHandler, field_serializer

# an instance method with the default mode or `mode='plain'`
@field_serializer('x')  # or @field_serializer('x', mode='plain')
def ser_x(self, value: Any, info: FieldSerializationInfo): ...

# a static method or function with the default mode or `mode='plain'`
@field_serializer('x')  # or @field_serializer('x', mode='plain')
@staticmethod
def ser_x(value: Any, info: FieldSerializationInfo): ...

# equivalent to
def ser_x(value: Any, info: FieldSerializationInfo): ...
serializer('x')(ser_x)

# an instance method with `mode='wrap'`
@field_serializer('x', mode='wrap')
def ser_x(self, value: Any, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo): ...

# a static method or function with `mode='wrap'`
@field_serializer('x', mode='wrap')
@staticmethod
def ser_x(value: Any, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo): ...

# equivalent to
def ser_x(value: Any, nxt: SerializerFunctionWrapHandler, info: FieldSerializationInfo): ...
serializer('x')(ser_x)

# For all of these, you can also choose to omit the `info` argument, for example:
@field_serializer('x')
def ser_x(self, value: Any): ...

@field_serializer('x', mode='wrap')
def ser_x(self, value: Any, handler: SerializerFunctionWrapHandler): ...
```

## Unrecognized `model_serializer` signature {#model-serializer-signature}

This error is raised when the `model_serializer` function has the wrong signature.

```python
from pydantic import BaseModel, PydanticUserError, model_serializer

try:

    class MyModel(BaseModel):
        a: int

        @model_serializer
        def _serialize(self, x, y, z):
            return self

except PydanticUserError as exc_info:
    assert exc_info.code == 'model-serializer-signature'
```

Valid model serializer signatures are:

```python {test="skip" lint="skip" upgrade="skip"}
from pydantic import SerializerFunctionWrapHandler, SerializationInfo, model_serializer

# an instance method with the default mode or `mode='plain'`
@model_serializer  # or model_serializer(mode='plain')
def mod_ser(self, info: SerializationInfo): ...

# an instance method with `mode='wrap'`
@model_serializer(mode='wrap')
def mod_ser(self, handler: SerializerFunctionWrapHandler, info: SerializationInfo):

# For all of these, you can also choose to omit the `info` argument, for example:
@model_serializer(mode='plain')
def mod_ser(self): ...

@model_serializer(mode='wrap')
def mod_ser(self, handler: SerializerFunctionWrapHandler): ...
```

## Multiple field serializers {#multiple-field-serializers}

This error is raised when multiple `model_serializer` functions are defined for a field.

```python
from pydantic import BaseModel, PydanticUserError, field_serializer

try:

    class MyModel(BaseModel):
        x: int
        y: int

        @field_serializer('x', 'y')
        def serializer1(v):
            return f'{v:,}'

        @field_serializer('x')
        def serializer2(v):
            return v

except PydanticUserError as exc_info:
    assert exc_info.code == 'multiple-field-serializers'
```

## Invalid annotated type {#invalid-annotated-type}

This error is raised when an annotation cannot annotate a type.

```python
from typing import Annotated

from pydantic import BaseModel, FutureDate, PydanticUserError

try:

    class Model(BaseModel):
        foo: Annotated[str, FutureDate()]

except PydanticUserError as exc_info:
    assert exc_info.code == 'invalid-annotated-type'
```

## `config` is unused with `TypeAdapter` {#type-adapter-config-unused}

You will get this error if you try to pass `config` to `TypeAdapter` when the type is a type that
has its own config that cannot be overridden (currently this is only `BaseModel`, `TypedDict` and `dataclass`):

```python
from typing_extensions import TypedDict

from pydantic import ConfigDict, PydanticUserError, TypeAdapter


class MyTypedDict(TypedDict):
    x: int


try:
    TypeAdapter(MyTypedDict, config=ConfigDict(strict=True))
except PydanticUserError as exc_info:
    assert exc_info.code == 'type-adapter-config-unused'
```

Instead you'll need to subclass the type and override or set the config on it:

```python
from typing_extensions import TypedDict

from pydantic import ConfigDict, TypeAdapter


class MyTypedDict(TypedDict):
    x: int

    # or `model_config = ...` for BaseModel
    __pydantic_config__ = ConfigDict(strict=True)


TypeAdapter(MyTypedDict)  # ok
```

## Cannot specify `model_config['extra']` with `RootModel` {#root-model-extra}

Because `RootModel` is not capable of storing or even accepting extra fields during initialization, we raise an error
if you try to specify a value for the config setting `'extra'` when creating a subclass of `RootModel`:

```python
from pydantic import PydanticUserError, RootModel

try:

    class MyRootModel(RootModel):
        model_config = {'extra': 'allow'}
        root: int

except PydanticUserError as exc_info:
    assert exc_info.code == 'root-model-extra'
```

## Cannot evaluate type annotation {#unevaluable-type-annotation}

Because type annotations are evaluated *after* assignments, you might get unexpected results when using a type annotation name
that clashes with one of your fields. We raise an error in the following case:

```python {test="skip"}
from datetime import date

from pydantic import BaseModel, Field


class Model(BaseModel):
    date: date = Field(description='A date')
```

As a workaround, you can either use an alias or change your import:

```python {lint="skip"}
import datetime
# Or `from datetime import date as _date`

from pydantic import BaseModel, Field


class Model(BaseModel):
    date: datetime.date = Field(description='A date')
```

## Incompatible `dataclass` `init` and `extra` settings {#dataclass-init-false-extra-allow}

Pydantic does not allow the specification of the `extra='allow'` setting on a dataclass
while any of the fields have `init=False` set.

Thus, you may not do something like the following:

```python {test="skip"}
from pydantic import ConfigDict, Field
from pydantic.dataclasses import dataclass


@dataclass(config=ConfigDict(extra='allow'))
class A:
    a: int = Field(init=False, default=1)
```

The above snippet results in the following error during schema building for the `A` dataclass:

```output
pydantic.errors.PydanticUserError: Field a has `init=False` and dataclass has config setting `extra="allow"`.
This combination is not allowed.
```

## Incompatible `init` and `init_var` settings on `dataclass` field {#clashing-init-and-init-var}

The `init=False` and `init_var=True` settings are mutually exclusive. Doing so results in the `PydanticUserError` shown in the example below.

```python {test="skip"}
from pydantic import Field
from pydantic.dataclasses import dataclass


@dataclass
class Foo:
    bar: str = Field(init=False, init_var=True)


"""
pydantic.errors.PydanticUserError: Dataclass field bar has init=False and init_var=True, but these are mutually exclusive.
"""
```

## `model_config` is used as a model field {#model-config-invalid-field-name}

This error is raised when `model_config` is used as the name of a field.

```python
from pydantic import BaseModel, PydanticUserError

try:

    class Model(BaseModel):
        model_config: str

except PydanticUserError as exc_info:
    assert exc_info.code == 'model-config-invalid-field-name'
```

## [`with_config`][pydantic.config.with_config] is used on a `BaseModel` subclass {#with-config-on-model}

This error is raised when the [`with_config`][pydantic.config.with_config] decorator is used on a class which is already a Pydantic model (use the `model_config` attribute instead).

```python
from pydantic import BaseModel, PydanticUserError, with_config

try:

    @with_config({'allow_inf_nan': True})
    class Model(BaseModel):
        bar: str

except PydanticUserError as exc_info:
    assert exc_info.code == 'with-config-on-model'
```

## `dataclass` is used on a `BaseModel` subclass {#dataclass-on-model}

This error is raised when the Pydantic `dataclass` decorator is used on a class which is already
a Pydantic model.

```python
from pydantic import BaseModel, PydanticUserError
from pydantic.dataclasses import dataclass

try:

    @dataclass
    class Model(BaseModel):
        bar: str

except PydanticUserError as exc_info:
    assert exc_info.code == 'dataclass-on-model'
```

## Unsupported type for `validate_call` {#validate-call-type}

`validate_call` has some limitations on the callables it can validate. This error is raised when you try to use it with an unsupported callable.
Currently the supported callables are functions (including lambdas, but not built-ins) and methods and instances of [`partial`][functools.partial].
In the case of [`partial`][functools.partial], the function being partially applied must be one of the supported callables.

### `@classmethod`, `@staticmethod`, and `@property`

These decorators must be put before `validate_call`.

```python
from pydantic import PydanticUserError, validate_call

# error
try:

    class A:
        @validate_call
        @classmethod
        def f1(cls): ...

except PydanticUserError as exc_info:
    assert exc_info.code == 'validate-call-type'


# correct
@classmethod
@validate_call
def f2(cls): ...
```

### Classes

While classes are callables themselves, `validate_call` can't be applied on them, as it needs to know about which method to use (`__init__` or `__new__`) to fetch type annotations. If you want to validate the constructor of a class, you should put `validate_call` on top of the appropriate method instead.

```python
from pydantic import PydanticUserError, validate_call

# error
try:

    @validate_call
    class A1: ...

except PydanticUserError as exc_info:
    assert exc_info.code == 'validate-call-type'


# correct
class A2:
    @validate_call
    def __init__(self): ...

    @validate_call
    def __new__(cls): ...
```

### Callable instances

Although instances can be callable by implementing a `__call__` method, currently the instances of these types cannot be validated with `validate_call`.
This may change in the future, but for now, you should use `validate_call` explicitly on `__call__` instead.

```python
from pydantic import PydanticUserError, validate_call

# error
try:

    class A1:
        def __call__(self): ...

    validate_call(A1())

except PydanticUserError as exc_info:
    assert exc_info.code == 'validate-call-type'


# correct
class A2:
    @validate_call
    def __call__(self): ...
```

### Invalid signature

This is generally less common, but a possible reason is that you are trying to validate a method that doesn't have at least one argument (usually `self`).

```python
from pydantic import PydanticUserError, validate_call

try:

    class A:
        def f(): ...

    validate_call(A().f)
except PydanticUserError as exc_info:
    assert exc_info.code == 'validate-call-type'
```

## [`Unpack`][typing.Unpack] used without a [`TypedDict`][typing.TypedDict] {#unpack-typed-dict}

This error is raised when [`Unpack`][typing.Unpack] is used with something other than
a [`TypedDict`][typing.TypedDict] class object to type hint variadic keyword parameters.

For reference, see the [related specification section] and [PEP 692].

```python
from typing_extensions import Unpack

from pydantic import PydanticUserError, validate_call

try:

    @validate_call
    def func(**kwargs: Unpack[int]):
        pass

except PydanticUserError as exc_info:
    assert exc_info.code == 'unpack-typed-dict'
```

## Overlapping unpacked [`TypedDict`][typing.TypedDict] fields and arguments {#overlapping-unpack-typed-dict}

This error is raised when the typed dictionary used to type hint variadic keywords parameters has field names
overlapping with other parameters (unless [positional only][positional-only_parameter]).

For reference, see the [related specification section] and [PEP 692].

```python
from typing_extensions import TypedDict, Unpack

from pydantic import PydanticUserError, validate_call


class TD(TypedDict):
    a: int


try:

    @validate_call
    def func(a: int, **kwargs: Unpack[TD]):
        pass

except PydanticUserError as exc_info:
    assert exc_info.code == 'overlapping-unpack-typed-dict'
```

[related specification section]: https://typing.readthedocs.io/en/latest/spec/callables.html#unpack-for-keyword-arguments
[PEP 692]: https://peps.python.org/pep-0692/

## Invalid `Self` type {#invalid-self-type}

Currently, [`Self`][typing.Self] can only be used to annotate a field of a class (specifically, subclasses of [`BaseModel`][pydantic.BaseModel], [`NamedTuple`][typing.NamedTuple], [`TypedDict`][typing.TypedDict], or dataclasses). Attempting to use [`Self`][typing.Self] in any other ways will raise this error.

```python
from typing_extensions import Self

from pydantic import PydanticUserError, validate_call

try:

    @validate_call
    def func(self: Self):
        pass

except PydanticUserError as exc_info:
    assert exc_info.code == 'invalid-self-type'
```

The following example of [`validate_call()`][pydantic.validate_call] will also raise this error, even though it is correct from a type-checking perspective. This may be supported in the future.

```python
from typing_extensions import Self

from pydantic import BaseModel, PydanticUserError, validate_call

try:

    class A(BaseModel):
        @validate_call
        def func(self, arg: Self):
            pass

except PydanticUserError as exc_info:
    assert exc_info.code == 'invalid-self-type'
```

## `validate_by_alias` and `validate_by_name` both set to `False` {#validate-by-alias-and-name-false}

This error is raised when you set `validate_by_alias` and `validate_by_name` to `False` in the configuration.

This is not allowed because it would make it impossible to populate attributes.

```python
from pydantic import BaseModel, ConfigDict, Field, PydanticUserError

try:

    class Model(BaseModel):
        a: int = Field(alias='A')

        model_config = ConfigDict(
            validate_by_alias=False, validate_by_name=False
        )

except PydanticUserError as exc_info:
    assert exc_info.code == 'validate-by-alias-and-name-false'
```