1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
from _pydev_bundle._pydev_saved_modules import ThreadingEvent, ThreadingLock, threading_current_thread
from _pydevd_bundle.pydevd_daemon_thread import PyDBDaemonThread
from _pydevd_bundle.pydevd_constants import thread_get_ident, IS_CPYTHON, NULL
import ctypes
import time
from _pydev_bundle import pydev_log
import weakref
from _pydevd_bundle.pydevd_utils import is_current_thread_main_thread
from _pydevd_bundle import pydevd_utils
_DEBUG = False # Default should be False as this can be very verbose.
class _TimeoutThread(PyDBDaemonThread):
"""
The idea in this class is that it should be usually stopped waiting
for the next event to be called (paused in a threading.Event.wait).
When a new handle is added it sets the event so that it processes the handles and
then keeps on waiting as needed again.
This is done so that it's a bit more optimized than creating many Timer threads.
"""
def __init__(self, py_db):
PyDBDaemonThread.__init__(self, py_db)
self._event = ThreadingEvent()
self._handles = []
# We could probably do things valid without this lock so that it's possible to add
# handles while processing, but the implementation would also be harder to follow,
# so, for now, we're either processing or adding handles, not both at the same time.
self._lock = ThreadingLock()
def _on_run(self):
wait_time = None
while not self._kill_received:
if _DEBUG:
if wait_time is None:
pydev_log.critical("pydevd_timeout: Wait until a new handle is added.")
else:
pydev_log.critical("pydevd_timeout: Next wait time: %s.", wait_time)
self._event.wait(wait_time)
if self._kill_received:
self._handles = []
return
wait_time = self.process_handles()
def process_handles(self):
"""
:return int:
Returns the time we should be waiting for to process the next event properly.
"""
with self._lock:
if _DEBUG:
pydev_log.critical("pydevd_timeout: Processing handles")
self._event.clear()
handles = self._handles
new_handles = self._handles = []
# Do all the processing based on this time (we want to consider snapshots
# of processing time -- anything not processed now may be processed at the
# next snapshot).
curtime = time.time()
min_handle_timeout = None
for handle in handles:
if curtime < handle.abs_timeout and not handle.disposed:
# It still didn't time out.
if _DEBUG:
pydev_log.critical("pydevd_timeout: Handle NOT processed: %s", handle)
new_handles.append(handle)
if min_handle_timeout is None:
min_handle_timeout = handle.abs_timeout
elif handle.abs_timeout < min_handle_timeout:
min_handle_timeout = handle.abs_timeout
else:
if _DEBUG:
pydev_log.critical("pydevd_timeout: Handle processed: %s", handle)
# Timed out (or disposed), so, let's execute it (should be no-op if disposed).
handle.exec_on_timeout()
if min_handle_timeout is None:
return None
else:
timeout = min_handle_timeout - curtime
if timeout <= 0:
pydev_log.critical("pydevd_timeout: Expected timeout to be > 0. Found: %s", timeout)
return timeout
def do_kill_pydev_thread(self):
PyDBDaemonThread.do_kill_pydev_thread(self)
with self._lock:
self._event.set()
def add_on_timeout_handle(self, handle):
with self._lock:
self._handles.append(handle)
self._event.set()
class _OnTimeoutHandle(object):
def __init__(self, tracker, abs_timeout, on_timeout, kwargs):
self._str = "_OnTimeoutHandle(%s)" % (on_timeout,)
self._tracker = weakref.ref(tracker)
self.abs_timeout = abs_timeout
self.on_timeout = on_timeout
if kwargs is None:
kwargs = {}
self.kwargs = kwargs
self.disposed = False
def exec_on_timeout(self):
# Note: lock should already be obtained when executing this function.
kwargs = self.kwargs
on_timeout = self.on_timeout
if not self.disposed:
self.disposed = True
self.kwargs = None
self.on_timeout = None
try:
if _DEBUG:
pydev_log.critical("pydevd_timeout: Calling on timeout: %s with kwargs: %s", on_timeout, kwargs)
on_timeout(**kwargs)
except Exception:
pydev_log.exception("pydevd_timeout: Exception on callback timeout.")
def __enter__(self):
pass
def __exit__(self, exc_type, exc_val, exc_tb):
tracker = self._tracker()
if tracker is None:
lock = NULL
else:
lock = tracker._lock
with lock:
self.disposed = True
self.kwargs = None
self.on_timeout = None
def __str__(self):
return self._str
__repr__ = __str__
class TimeoutTracker(object):
"""
This is a helper class to track the timeout of something.
"""
def __init__(self, py_db):
self._thread = None
self._lock = ThreadingLock()
self._py_db = weakref.ref(py_db)
def call_on_timeout(self, timeout, on_timeout, kwargs=None):
"""
This can be called regularly to always execute the given function after a given timeout:
call_on_timeout(py_db, 10, on_timeout)
Or as a context manager to stop the method from being called if it finishes before the timeout
elapses:
with call_on_timeout(py_db, 10, on_timeout):
...
Note: the callback will be called from a PyDBDaemonThread.
"""
with self._lock:
if self._thread is None:
if _DEBUG:
pydev_log.critical("pydevd_timeout: Created _TimeoutThread.")
self._thread = _TimeoutThread(self._py_db())
self._thread.start()
curtime = time.time()
handle = _OnTimeoutHandle(self, curtime + timeout, on_timeout, kwargs)
if _DEBUG:
pydev_log.critical("pydevd_timeout: Added handle: %s.", handle)
self._thread.add_on_timeout_handle(handle)
return handle
def create_interrupt_this_thread_callback():
"""
The idea here is returning a callback that when called will generate a KeyboardInterrupt
in the thread that called this function.
If this is the main thread, this means that it'll emulate a Ctrl+C (which may stop I/O
and sleep operations).
For other threads, this will call PyThreadState_SetAsyncExc to raise
a KeyboardInterrupt before the next instruction (so, it won't really interrupt I/O or
sleep operations).
:return callable:
Returns a callback that will interrupt the current thread (this may be called
from an auxiliary thread).
"""
tid = thread_get_ident()
if is_current_thread_main_thread():
main_thread = threading_current_thread()
def raise_on_this_thread():
pydev_log.debug("Callback to interrupt main thread.")
pydevd_utils.interrupt_main_thread(main_thread)
else:
# Note: this works in the sense that it can stop some cpu-intensive slow operation,
# but we can't really interrupt the thread out of some sleep or I/O operation
# (this will only be raised when Python is about to execute the next instruction).
def raise_on_this_thread():
if IS_CPYTHON:
pydev_log.debug("Interrupt thread: %s", tid)
ctypes.pythonapi.PyThreadState_SetAsyncExc(ctypes.c_long(tid), ctypes.py_object(KeyboardInterrupt))
else:
pydev_log.debug("It is only possible to interrupt non-main threads in CPython.")
return raise_on_this_thread
|