1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
[](https://github.com/pydicom/pydicom/actions?query=workflow%3Aunit-tests)
[](https://github.com/pydicom/pydicom/actions?query=workflow%3Atype-hints)
[](https://circleci.com/gh/pydicom/pydicom/tree/master)
[](https://codecov.io/gh/pydicom/pydicom)
[](https://img.shields.io/pypi/pyversions/pydicom.svg)
[](https://badge.fury.io/py/pydicom)
[](https://doi.org/10.5281/zenodo.6394735)
# *pydicom*
*pydicom* is a pure Python package for working with [DICOM](https://www.dicomstandard.org/) files.
It lets you read, modify and write DICOM data in an easy "pythonic" way. As a pure Python package,
*pydicom* can run anywhere Python runs without any other requirements, although if you're working
with *Pixel Data* then we recommend you also install [NumPy](http://www.numpy.org).
Note that *pydicom* is a general-purpose DICOM framework concerned with
reading and writing DICOM datasets. In order to keep the
project manageable, it does not handle the specifics of individual SOP classes
or other aspects of DICOM. Other libraries both inside and outside the
[pydicom organization](https://github.com/pydicom) are based on *pydicom*
and provide support for other aspects of DICOM, and for more
specific applications.
Examples are [pynetdicom](https://github.com/pydicom/pynetdicom), which
is a Python library for DICOM networking, and [deid](https://github.com/pydicom/deid),
which supports the anonymization of DICOM files.
## Installation
Using [pip](https://pip.pypa.io/en/stable/):
```
pip install pydicom
```
Using [conda](https://docs.conda.io/en/latest/):
```
conda install -c conda-forge pydicom
```
For more information, including installation instructions for the development version, see the [installation guide](https://pydicom.github.io/pydicom/stable/tutorials/installation.html).
## Documentation
The *pydicom* [user guide](https://pydicom.github.io/pydicom/stable/old/pydicom_user_guide.html), [tutorials](https://pydicom.github.io/pydicom/stable/tutorials/index.html), [examples](https://pydicom.github.io/pydicom/stable/auto_examples/index.html) and [API reference](https://pydicom.github.io/pydicom/stable/reference/index.html) documentation is available for both the [current release](https://pydicom.github.io/pydicom/stable) and the [development version](https://pydicom.github.io/pydicom/dev) on GitHub Pages.
## *Pixel Data*
Compressed and uncompressed *Pixel Data* is always available to
be read, changed and written as [bytes](https://docs.python.org/3/library/stdtypes.html#bytes-objects):
```python
>>> from pydicom import dcmread
>>> from pydicom.data import get_testdata_file
>>> path = get_testdata_file("CT_small.dcm")
>>> ds = dcmread(path)
>>> type(ds.PixelData)
<class 'bytes'>
>>> len(ds.PixelData)
32768
>>> ds.PixelData[:2]
b'\xaf\x00'
```
If [NumPy](http://www.numpy.org) is installed, *Pixel Data* can be converted to an [ndarray](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html) using the [Dataset.pixel_array](https://pydicom.github.io/pydicom/stable/reference/generated/pydicom.dataset.Dataset.html#pydicom.dataset.Dataset.pixel_array) property:
```python
>>> arr = ds.pixel_array
>>> arr.shape
(128, 128)
>>> arr
array([[175, 180, 166, ..., 203, 207, 216],
[186, 183, 157, ..., 181, 190, 239],
[184, 180, 171, ..., 152, 164, 235],
...,
[906, 910, 923, ..., 922, 929, 927],
[914, 954, 938, ..., 942, 925, 905],
[959, 955, 916, ..., 911, 904, 909]], dtype=int16)
```
### Compressed *Pixel Data*
#### JPEG, JPEG-LS and JPEG 2000
Converting JPEG compressed *Pixel Data* to an ``ndarray`` requires installing one or more additional Python libraries. For information on which libraries are required, see the [pixel data handler documentation](https://pydicom.github.io/pydicom/stable/old/image_data_handlers.html#guide-compressed).
Compressing data into one of the JPEG formats is not currently supported.
#### RLE
Encoding and decoding RLE *Pixel Data* only requires NumPy, however it can
be quite slow. You may want to consider [installing one or more additional
Python libraries](https://pydicom.github.io/pydicom/stable/old/image_data_compression.html) to speed up the process.
## Examples
More [examples](https://pydicom.github.io/pydicom/stable/auto_examples/index.html) are available in the documentation.
**Change a patient's ID**
```python
from pydicom import dcmread
ds = dcmread("/path/to/file.dcm")
# Edit the (0010,0020) 'Patient ID' element
ds.PatientID = "12345678"
ds.save_as("/path/to/file_updated.dcm")
```
**Display the Pixel Data**
With [NumPy](http://www.numpy.org) and [matplotlib](https://matplotlib.org/)
```python
import matplotlib.pyplot as plt
from pydicom import dcmread
from pydicom.data import get_testdata_file
# The path to a pydicom test dataset
path = get_testdata_file("CT_small.dcm")
ds = dcmread(path)
# `arr` is a numpy.ndarray
arr = ds.pixel_array
plt.imshow(arr, cmap="gray")
plt.show()
```
## Contributing
We are all volunteers working on *pydicom* in our free time. As our
resources are limited, we very much value your contributions, be it bug fixes, new
core features, or documentation improvements. For more information, please
read our [contribution guide](https://github.com/pydicom/pydicom/blob/master/CONTRIBUTING.md).
If you have examples or extensions of *pydicom* that don't belong with the
core software, but that you deem useful to others, you can add them to our
contribution repository:
[contrib-pydicom](https://www.github.com/pydicom/contrib-pydicom).
|