File: working_with_waveforms.rst

package info (click to toggle)
pydicom 2.4.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,700 kB
  • sloc: python: 129,337; makefile: 198; sh: 121
file content (86 lines) | stat: -rw-r--r-- 3,235 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
.. _working_with_waveform_data:
.. title:: Working with Waveform Data

Working with Waveform Data
==========================

.. currentmodule:: pydicom

.. rubric:: How to work with waveform data in pydicom.

Introduction
------------

Some DICOM SOP classes such as :dcm:`Basic Voice Audio Waveform
<part03/sect_A.34.2.html>` and :dcm:`12-Lead ECG<part03/sect_A.34.3.html>`
contain a (5400,0100) *Waveform Sequence* element,
where each item in the sequence is a related group of waveforms (a multiplex).
The requirements of the sequence is given by the :dcm:`Waveform
module <part03/sect_C.10.9.html>` in Part 3, Annex C.10.9 of the DICOM
Standard.

Each multiplex consists of one or more channels synchronised at a
common sampling frequency (in Hz), which is given by the (003A,001A) *Sampling
Frequency*. The waveform data for each multiplex is encoded in the
corresponding (5400,1010) *Waveform Data* element.

>>> from pydicom import dcmread
>>> from pydicom.data import get_testdata_file
>>> fpath = get_testdata_file("waveform_ecg.dcm")
>>> ds = dcmread(fpath)
>>> ds.WaveformSequence
<Sequence, length 2>
>>> multiplex = ds.WaveformSequence[0]
>>> multiplex.NumberOfWaveformChannels
12
>>> multiplex.SamplingFrequency
"1000.0"
>>> multiplex['WaveformData']
(5400, 1010) Waveform Data                       OW: Array of 240000 elements


``Dataset.waveform_array()``
----------------------------

.. warning::

   :attr:`Dataset.waveform_array<pydicom.dataset.Dataset.waveform_array>`
   requires `NumPy <http://numpy.org/>`_.

The *Waveform Data* element contains the raw bytes exactly as found in the
file. To get the waveforms in a more useful form you can use the
:attr:`~pydicom.dataset.Dataset.waveform_array` method to return a
a :class:`numpy.ndarray` with shape (samples, channels) for the multiplex
group at `index` in the *Waveform Sequence*.

  >>> multiplex_1 = ds.waveform_array(0)
  >>> multiplex_1
  array([[ 100.  ,  112.5 ,   12.5 , ...,  -25.  ,  -68.75,  -50.  ],
         [  81.25,  106.25,   25.  , ...,  -25.  ,  -75.  ,  -50.  ],
         [  62.5 ,  100.  ,   37.5 , ...,  -25.  ,  -81.25,  -50.  ],
         ...,
         [  25.  ,  131.25,  106.25, ..., -137.5 , -150.  , -100.  ],
         [  21.25,  137.5 ,  116.25, ..., -137.5 , -150.  , -106.25],
         [  25.  ,  137.5 ,  112.5 , ..., -137.5 , -150.  , -112.5 ]])
  >>> multiplex_1.shape
  (10000, 12)
  >>> multiplex_2 = ds.waveform_array(1)
  >>> multiplex_2.shape
  (1200, 12)

If the *Channel Sensitivity Correction Factor* is available for a given channel
then it will be applied to the raw channel data. If you need the raw data
without any corrections then you can use the
:func:`~pydicom.waveforms.numpy_handler.multiplex_array`
function with the *as_raw* keyword parameter instead:

  >>> from pydicom.waveforms import multiplex_array
  >>> arr = multiplex_array(ds, 0, as_raw=True)
  >>> arr
  array([[  80,   90,   10, ...,  -20,  -55,  -40],
         [  65,   85,   20, ...,  -20,  -60,  -40],
         [  50,   80,   30, ...,  -20,  -65,  -40],
         ...,
         [  20,  105,   85, ..., -110, -120,  -80],
         [  17,  110,   93, ..., -110, -120,  -85],
         [  20,  110,   90, ..., -110, -120,  -90]], dtype=int16)