File: pyecm.py

package info (click to toggle)
pyecm 2.0.5-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid, trixie
  • size: 144 kB
  • sloc: python: 1,203; makefile: 4
file content (1483 lines) | stat: -rwxr-xr-x 41,557 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
#!/usr/bin/python3

'''
You should install psyco and gmpy if you want maximal speed.

Filename: pyecm
Authors: Eric Larson <elarson3@uoregon.edu>, Martin Kelly <martin@martingkelly.com>, Matt Ford <zeotherm@gmail.com>
License: GNU GPL (see <http://www.gnu.org/licenses/gpl.html> for more information.
Description: Factors a number using the Elliptic Curve Method, a fast algorithm for numbers < 50 digits.

We are using curves in Suyama's parametrization, but points are in affine coordinates, and the curve is in Wierstrass form.
The idea is to do many curves in parallel to take advantage of batch inversion algorithms. This gives asymptotically 7 modular multiplications per bit.

WARNING: pyecm is NOT a general-purpose number theory or elliptic curve library. Many of the functions have confusing calling syntax, and some will rather unforgivingly crash or return bad output if the input is not formatted exactly correctly. That said, there are a couple of functions that you CAN safely import into another program. These are: factors, isprime. However, be sure to read the documentation for each function that you use.
'''

import math
import sys
import random

try:
   import psyco
   psyco.full()
   PSYCO_EXISTS = True
except ImportError:
   PSYCO_EXISTS = False

try: # Try to use gmpy
   from gmpy2 import isqrt as sqrt
   from gmpy2 import iroot as root
   from gmpy2 import gcd, invert, mpz, next_prime
   import gmpy2
   GMPY_EXISTS = True
except ImportError:
   try:
      from gmpy import gcd, invert, mpz, next_prime, sqrt, root
      GMPY_EXISTS = True
   except ImportError:
      GMPY_EXISTS = False

if not GMPY_EXISTS:
   PRIMES = (5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 167)
   GMPY_EXISTS = False

   def gcd(a, b):
      '''Computes the Greatest Common Divisor of a and b using the standard quadratic time improvement to the Euclidean Algorithm.

Returns the GCD of a and b.'''

      if b == 0:
         return a
      elif a == 0:
         return b

      count = 0

      if a < 0:
         a = -a
      if b < 0:
         b = -b

      while not ((a & 1) | (b & 1)):
         count += 1
         a >>= 1
         b >>= 1

      while not a & 1:
         a >>= 1

      while not b & 1:
         b >>= 1

      if b > a:
         b,a = a,b

      while b != 0 and a != b:
         a -= b
         while not (a & 1):
            a >>= 1

         if b > a:
            b, a = a, b

      return a << count

   def invert(a, b):
      '''Computes the inverse of a modulo b. b must be odd.

Returns the inverse of a (mod b).'''
      if a == 0 or b == 0:
         return 0

      truth = False
      if a < 0:
         truth = True
         a = -a

      b_orig = b
      alpha = 1
      beta = 0

      while not a & 1:
         if alpha & 1:
            alpha += b_orig
         alpha >>= 1
         a >>= 1

      if b > a:
         a, b = b, a
         alpha, beta = beta, alpha

      while b != 0 and a != b:
         a -= b
         alpha -= beta

         while not a & 1:
            if alpha & 1:
               alpha += b_orig
            alpha >>= 1
            a >>= 1

         if b > a:
            a,b = b,a
            alpha, beta = beta, alpha

      if a == b:
         a -= b
         alpha -= beta
         a, b = b, a
         alpha, beta = beta, alpha

      if a != 1:
         return 0

      if truth:
         alpha = b_orig - alpha

      return alpha

   def next_prime(n):
      '''Finds the next prime after n.

Returns the next prime after n.'''
      n += 1
      if n <= 167:
         if n <= 23:
            if n <= 3:
               return 3 - (n <= 2)
            n += (n & 1) ^ 1
            return n + (((4 - (n % 3)) >> 1) & 2)

         n += (n & 1) ^ 1
         inc = n % 3
         n += ((4 - inc) >> 1) & 2
         inc = 6 - ((inc + ((2 - inc) & 2)) << 1)

         while 0 in (n % 5, n % 7, n % 11):
            n += inc
            inc = 6 - inc
         return n

      n += (n & 1) ^ 1
      inc = n % 3
      n += ((4 - inc) >> 1) & 2
      inc = 6 - ((inc + ((2 - inc) & 2)) << 1)
      should_break = False

      while 1:
         for prime in PRIMES:
            if not n % prime:
               should_break = True
               break

         if should_break:
            should_break = False
            n += inc
            inc = 6 - inc
            continue

         p = 1
         for i in range(int(math.log(n) / LOG_2), 0, -1):
            p <<= (n >> i) & 1
            p = (p * p) % n

         if p == 1:
            return n

         n += inc
         inc = 6 - inc

   def mpz(n):
      '''A dummy function to ensure compatibility with those that do not have gmpy.

Returns n.'''
      return n

   def root(n, k):
      '''Finds the floor of the kth root of n. This is a duplicate of gmpy's root function.

Returns a tuple. The first item is the floor of the kth root of n. The second is 1 if the root is exact (as in, sqrt(16)) and 0 if it is not.'''
      low = 0
      high = n + 1
      while high > low + 1:
         mid = (low + high) >> 1
         mr = mid**k
         if mr == n:
            return (mid, 1)
         if mr < n:
            low = mid
         if mr > n:
            high = mid
      return (low, 0)

   def sqrt(n):
      return root(n, 2)[0]

# We're done importing. Now for some constants.
if GMPY_EXISTS:
   INV_C = 1.4
else:
   if PSYCO_EXISTS:
      INV_C = 7.3
   else:
      INV_C = 13.0
LOG_2 = math.log(2)
LOG_4 = math.log(4)
LOG_3_MINUS_LOG_LOG_2 = math.log(3) - math.log(LOG_2)
LOG_4_OVER_9 = LOG_4 / 9
_3_OVER_LOG_2 = 3 / LOG_2
_5_LOG_10 = 5 * math.log(10)
_7_OVER_LOG_2 = 7 / LOG_2
BIG = 2.0**512
BILLION = 10**9 # Something big that fits into an int.
MULT = math.log(3) / LOG_2
ONE = mpz(1)
SMALL = 2.0**(-30)
SMALLEST_COUNTEREXAMPLE_FASTPRIME = 2047
T = (type(mpz(1)), type(1), type(1))
DUMMY = 'dummy' # Dummy value throughout the program
VERSION = '2.0.5 (Python 3)'
_12_LOG_2_OVER_49 = 12 * math.log(2) / 49
RECORD = 1162795072109807846655696105569042240239

class ts:
   '''Does basic manipulations with Taylor Series (centered at 0). An example call to ts:
a = ts(7, 23, [1<<23, 2<<23, 3<<23]) -- now, a represents 1 + 2x + 3x^2. Here, computations will be done to degree 7, with accuracy 2^(-23). Input coefficients must be integers.'''

   def __init__(self, degree, acc, p):
      self.acc = acc
      self.coefficients = p[:degree + 1]
      while len(self.coefficients) <= degree:
         self.coefficients.append(0)

   def add(self, a, b):
      '''Adds a and b'''
      b_ = b.coefficients[:]
      a_ = a.coefficients[:]
      self.coefficients = []

      while len(b_) > len(a_):
         a_.append(0)
      while len(b_) < len(a_):
         b_.append(0)

      for i in range(len(a_)):
         self.coefficients.append(a_[i] + b_[i])

      self.acc = a.acc

   def ev(self, x):
      '''Returns a(x)'''
      answer = 0
      for i in range(len(self.coefficients) - 1, -1, -1):
         answer *= x
         answer += self.coefficients[i]
      return answer

   def evh(self):
      '''Returns a(1/2)'''
      answer = 0
      for i in range(len(self.coefficients) - 1, -1, -1):
         answer >>= 1
         answer += self.coefficients[i]
      return answer

   def evmh(self):
      '''Returns a(-1/2)'''
      answer = 0
      for i in range(len(self.coefficients) - 1, -1, -1):
         answer = - answer >> 1
         answer += self.coefficients[i]
      return answer

   def int(self):
      '''Replaces a by an integral of a'''
      self.coefficients = [0] + self.coefficients
      for i in range(1, len(self.coefficients)):
         self.coefficients[i] = self.coefficients[i] // i

   def lindiv(self, a):
      '''a.lindiv(k) -- sets a/(x-k/2) for integer k'''
      for i in range(len(self.coefficients) - 1):
         self.coefficients[i] <<= 1
         self.coefficients[i] = self.coefficients[i] // a
         self.coefficients[i + 1] -= self.coefficients[i]
      self.coefficients[-1] <<= 1
      self.coefficients[-1] = self.coefficients[-1] // a

   def neg(self):
      '''Sets a to -a'''
      for i in range(len(self.coefficients)):
         self.coefficients[i] = - self.coefficients[i]

   def set(self, a):
      '''a.set(b) sets a to b'''
      self.coefficients = a.coefficients[:]
      self.acc = a.acc

   def simp(self):
      '''Turns a into a type of Taylor series that can be fed into ev, but cannot be computed with further.'''
      for i in range(len(self.coefficients)):
         shift = max(0, int(math.log(abs(self.coefficients[i]) + 1) / LOG_2) - 1000)
         self.coefficients[i] = float(self.coefficients[i] >> shift)
         shift = self.acc - shift
         for _ in range(shift >> 9):
            self.coefficients[i] /= BIG
         self.coefficients[i] /= 2.0**(shift & 511)
         if (abs(self.coefficients[i] / self.coefficients[0]) <= SMALL):
            self.coefficients = self.coefficients[:i]
            break

# Functions are declared in alphabetical order except when dependencies force them to be at the end.

def add(p1, p2,  n):
   '''Adds first argument to second (second argument is not preserved). The arguments are points on an elliptic curve. The first argument may be a tuple instead of a list. The addition is thus done pointwise. This function has bizzare input/output because there are fast algorithms for inverting a bunch of numbers at once.

Returns a list of the addition results.'''
   inv = list(range(len(p1)))

   for i in range(len(p1)):
      inv[i] = p1[i][0] - p2[i][0]

   inv = parallel_invert(inv, n)

   if not isinstance(inv, list):
      return inv

   for i in range(len(p1)):
      m = ((p1[i][1] - p2[i][1]) * inv[i]) % n
      p2[i][0] = (m * m - p1[i][0] - p2[i][0]) % n
      p2[i][1] = (m * (p1[i][0] - p2[i][0]) - p1[i][1]) % n

   return p2

def add_sub_x_only(p1, p2,  n):
   '''Given a pair of lists of points p1 and p2, computes the x-coordinates of
p1[i] + p2[i] and p1[i] - p2[i] for each i.

Returns two lists, the first being the sums and the second the differences.'''
   sums = list(range(len(p1)))
   difs = list(range(len(p1)))

   for i in range(len(p1)):
      sums[i] = p2[i][0] - p1[i][0]

   sums = parallel_invert(sums, n)

   if not isinstance(sums, list):
      return (sums, None)

   for i in range(len(p1)):
      ms = ((p2[i][1] - p1[i][1]) * sums[i]) % n
      md = ((p2[i][1] + p1[i][1]) * sums[i]) % n
      sums[i] = (ms * ms - p1[i][0] - p2[i][0]) % n
      difs[i] = (md * md - p1[i][0] - p2[i][0]) % n

   sums = tuple(sums)
   difs = tuple(difs)

   return (sums, difs)

def atdn(a, d, n):
   '''Calculates a to the dth power modulo n.

Returns the calculation's result.'''
   x = 1
   pos = int(math.log(d) / LOG_2)

   while pos >= 0:
      x = (x * x) % n
      if (d >> pos) & 1:
         x *= a
      pos -= 1

   return x % n

def copy(p):
   '''Copies a list using only deep copies.

Returns a copy of p.'''
   answer = []
   for i in p:
      answer.append(i[:])

   return answer

def could_be_prime(n):
   '''Performs some trials to compute whether n could be prime. Run time is O(N^3 / (log N)^2) for N bits.

Returns whether it is possible for n to be prime (True or False).
'''
   if n < 2:
      return False
   if n == 2:
      return True
   if not int(n) & 1:
      return False

   product = ONE
   log_n = int(math.log(n)) + 1
   bound = int(math.log(n) / (LOG_2 * math.log(math.log(n))**2)) + 1
   if bound * log_n >= n:
      bound = 1
      log_n = int(sqrt(n))
   prime_bound = 0
   prime = 3

   for _ in range(bound):
      p = []
      prime_bound += log_n
      while prime <= prime_bound:
         p.append(prime)
         prime = next_prime(prime)
      if p != []:
         p = prod(p)
         product = (product * p) % n

   return gcd(n, product) == 1

def double(p, n):
   '''Doubles each point in the input list. Much like the add function, we take advantage of fast inversion.

Returns the doubled list.'''
   inv = list(range(len(p)))
   for i in range(len(p)):
      inv[i] = p[i][1] << 1

   inv = parallel_invert(inv, n)

   if not isinstance(inv, list):
      return inv

   for i in range(len(p)):
      x = p[i][0]
      m = (x * x) % n
      m = ((m + m + m + p[i][2]) * inv[i]) % n
      p[i][0] = (m * m - x - x) % n
      p[i][1] = (m * (x - p[i][0]) - p[i][1]) % n
   return p

def fastprime(n):
   '''Tests for primality of n using an algorithm that is very fast, O(N**3 / log(N)) (assuming quadratic multiplication) where n has N digits, but ocasionally inaccurate for n >= 2047.

Returns the primality of n (True or False).'''
   if not could_be_prime(n):
      return False
   if n == 2:
      return True

   j = 1
   d = n >> 1

   while not d & 1:
      d >>= 1
      j += 1

   p = 1
   pos = int(math.log(d) / LOG_2)

   while pos >= 0:
      p = (p * p) % n
      p <<= (d >> pos) & 1
      pos -= 1

   if p in (n - 1, n + 1):
      return True

   for _ in range(j):
      p = (p * p) % n

      if p == 1:
         return False
      elif p == n - 1:
         return True

   return False

def greatest_n(phi_max):
   '''Finds the greatest n such that phi(n) < phi_max.

Returns the greatest n such that phi(n) < phi_max.'''
   phi_product = 1
   product = 1
   prime = 1
   while phi_product <= phi_max:
      prime = next_prime(prime)
      phi_product *= prime - 1
      product *= prime

   n_max = (phi_max * product) // phi_product
   phi_values = list(range(n_max))

   prime = 2
   while prime <= n_max:
      for i in range(0, n_max, prime):
         phi_values[i] -= phi_values[i] // prime

      prime = next_prime(prime)

   for i in range(n_max - 1, 0, -1):
      if phi_values[i] <= phi_max:
         return i

def inv_const(n):
   '''Finds a constant relating the complexity of multiplication to that of modular inversion.

Returns the constant for a given n.'''
   return int(INV_C * math.log(n)**0.42)

def naf(d):
   '''Finds a number's non-adjacent form, reverses the bits, replaces the
-1's with 3's, and interprets the result base 4.

Returns the result interpreted as if in base 4.'''
   g = 0
   while d:
      g <<= 2
      g ^= ((d & 2) & (d << 1)) ^ (d & 1)
      d += (d & 2) >> 1
      d >>= 1
   return g

def parallel_invert(l, n):
   '''Inverts all elements of a list modulo some number, using 3(n-1) modular multiplications and one inversion.

Returns the list with all elements inverted modulo 3(n-1).'''
   l_ = l[:]
   for i in range(len(l)-1):
      l[i+1] = (l[i] * l[i+1]) % n

   try:
      inv = invert(l[-1], n)
   except ZeroDivisionError:
      inv = 0
   if inv == 0:
      return gcd(l[-1], n)

   for i in range(len(l)-1, 0, -1):
      l[i] = (inv * l[i-1]) % n
      inv = (inv * l_[i]) % n
   l[0] = inv

   return l

def prod(p):
   '''Multiplies all elements of a list together. The order in which the
elements are multiplied is chosen to take advantage of Python's Karatsuba
Multiplication

Returns the product of everything in p.'''
   jump = 1

   while jump < len(p):
      for i in range(0, len(p) - jump, jump << 1):
         p[i] *= p[i + jump]
         p[i + jump] = None

      jump <<= 1

   return p[0]

def rho_ev(x, ts):
   '''Evaluates Dickman's rho function, which calculates the asymptotic
probability as N approaches infinity (for a given x) that all of N's factors
are bounded by N^(1/x).'''
   return ts[int(x)].ev(x - int(x) - 0.5)

def rho_ts(n):
   '''Makes a list of Taylor series for the rho function centered at 0.5, 1.5, 2.5 ... n + 0.5. The reason this is necessary is that the radius of convergence of rho is small, so we need lots of Taylor series centered at different places to correctly evaluate it.

Returns a list of Taylor series.'''
   f = ts(10, 10, [])
   answer = [ts(10, 10, [1])]
   for _ in range(n):
      answer.append(ts(10, 10, [1]))
   deg = 5
   acc = 50 + n * int(1 + math.log(1 + n) + math.log(math.log(3 + n)))
   r = 1
   rho_series = ts(1, 10, [0])
   while r != rho_series.coefficients[0]:
      deg = (deg + (deg << 2)) // 3
      r = rho_series.coefficients[0]
      rho_series = ts(deg, acc, [(1) << acc])
      center = 0.5
      for i in range(1, n+1):
         f.set(rho_series)
         center += 1
         f.lindiv(int(2*center))
         f.int()
         f.neg()
         d = ts(deg, acc, [rho_series.evh() - f.evmh()])
         f.add(f, d)
         rho_series.set(f)
         f.simp()
         answer[i].set(f)
      rho_series.simp()

   return answer

def sub_sub_sure_factors(f, u, curve_parameter):
   '''Finds all factors that can be found using ECM with a smoothness bound of u and sigma and give curve parameters. If that fails, checks for being a prime power and does Fermat factoring as well.

Yields factors.'''
   while not (f & 1):
      yield 2
      f >>= 1

   while not (f % 3):
      yield 3
      f = f // 3

   if isprime(f):
      yield f
      return

   log_u = math.log(u)
   u2 = int(_7_OVER_LOG_2 * u * log_u / math.log(log_u))
   primes = []
   still_a_chance = True
   log_mo = math.log(f + 1 + sqrt(f << 2))

   g = gcd(curve_parameter, f)
   if g not in (1, f):
      for factor in sub_sub_sure_factors(g, u, curve_parameter):
         yield factor
      for factor in sub_sub_sure_factors(f//g, u, curve_parameter):
         yield factor
      return

   g2 = gcd(curve_parameter**2 - 5, f)
   if g2 not in (1, f):
      for factor in sub_sub_sure_factors(g2, u, curve_parameter):
         yield factor
      for factor in sub_sub_sure_factors(f // g2, u, curve_parameter):
         yield factor
      return

   if f in (g, g2):
      yield f

   while still_a_chance:
      p1 = get_points([curve_parameter], f)
      for prime in primes:
         p1 = multiply(p1, prime, f)
         if not isinstance(p1, list):
            if p1 != f:
               for factor in sub_sub_sure_factors(p1, u, curve_parameter):
                  yield factor
               for factor in sub_sub_sure_factors(f//p1, u, curve_parameter):
                  yield factor
               return
            else:
               still_a_chance = False
               break

      if not still_a_chance:
         break

      prime = 1
      still_a_chance = False
      while prime < u2:
         prime = next_prime(prime)
         should_break = False
         for _ in range(int(log_mo / math.log(prime))):
            p1 = multiply(p1, prime, f)
            if not isinstance(p1, list):
               if p1 != f:
                  for factor in sub_sub_sure_factors(p1, u, curve_parameter):
                     yield factor
                  for factor in sub_sub_sure_factors(f//p1, u, curve_parameter):
                     yield factor
                  return

               else:
                  still_a_chance = True
                  primes.append(prime)
                  should_break = True
                  break
         if should_break:
            break

   for i in range(2, int(math.log(f) / LOG_2) + 2):
      r = root(f, i)
      if r[1]:
         for factor in sub_sub_sure_factors(r[0], u, curve_parameter):
            for _ in range(i):
               yield factor
         return

   a = 1 + sqrt(f)
   bsq = a * a - f
   iter = 0

   while bsq != sqrt(bsq)**2 and iter < 3:
      a += 1
      iter += 1
      bsq += a + a - 1

   if bsq == sqrt(bsq)**2:
      b = sqrt(bsq)
      for factor in sub_sub_sure_factors(a - b, u, curve_parameter):
         yield factor
      for factor in sub_sub_sure_factors(a + b, u, curve_parameter):
         yield factor
      return

   yield f
   return

def sub_sure_factors(f, u, curve_params):
   '''Factors n as far as possible using the fact that f came from a mainloop call.

Yields factors of n.'''
   if len(curve_params) == 1:
      for factor in sub_sub_sure_factors(f, u, curve_params[0]):
         yield factor
      return

   c1 = curve_params[:len(curve_params) >> 1]
   c2 = curve_params[len(curve_params) >> 1:]

   if mainloop(f, u, c1) == 1:
      for factor in sub_sure_factors(f, u, c2):
         yield factor
      return

   if mainloop(f, u, c2) == 1:
      for factor in sub_sure_factors(f, u, c1):
         yield factor
      return

   for factor in sub_sure_factors(f, u, c1):
      if isprime(factor):
         yield factor
      else:
         for factor_of_factor in sub_sure_factors(factor, u, c2):
            yield factor_of_factor

   return

def subtract(p1, p2,  n):
   '''Given two points on an elliptic curve, subtract them pointwise.

Returns the resulting point.'''
   inv = list(range(len(p1)))

   for i in range(len(p1)):
      inv[i] = p2[i][0] - p1[i][0]

   inv = parallel_invert(inv, n)

   if not isinstance(inv, list):
      return inv

   for i in range(len(p1)):
      m = ((p1[i][1] + p2[i][1]) * inv[i]) % n
      p2[i][0] = (m * m - p1[i][0] - p2[i][0]) % n
      p2[i][1] = (m * (p1[i][0] - p2[i][0]) + p1[i][1]) % n

   return p2

def congrats(f, veb):
   '''Prints a congratulations message when a record factor is found. This only happens if the second parameter (verbosity) is set to True.

Returns nothing.'''

   if veb and f > RECORD:
      print('Congratulations! You may have found a record factor via pyecm!')
      print('Please email the Mainloop call to Eric Larson <elarson3@uoregon.edu>')

   return

def sure_factors(n, u, curve_params, veb, ra, ov, tdb, pr):
   '''Factor n as far as possible with given smoothness bound and curve parameters, including possibly (but very rarely) calling ecm again.

Yields factors of n.'''
   f = mainloop(n, u, curve_params)

   if f == 1:
      return

   if veb:
      print('Found factor:', f)
      print('Mainloop call was:', n, u, curve_params)

   if isprime(f):
      congrats(f, veb)
      yield f
      n = n//f
      if isprime(n):
         yield n
      if veb:
         print('(factor processed)')
      return
   for factor in sub_sure_factors(f, u, curve_params):
      if isprime(factor):
         congrats(f, veb)
         yield factor
      else:
         if veb:
            print('entering new ecm loop to deal with stubborn factor:', factor)
         for factor_of_factor in ecm(factor, True, ov, veb, tdb, pr):
            yield factor_of_factor
      n = n//factor

   if isprime(n):
      yield n

   if veb:
      print('(factor processed)')
   return

def to_tuple(p):
   '''Converts a list of two-element lists into a list of two-element tuples.

Returns a list.'''
   answer = []
   for i in p:
      answer.append((i[0], i[1]))

   return tuple(answer)

def mainloop(n, u, p1):
   ''' Input:     n  -- an integer to (try) to factor.
               u  -- the phase 1 smoothness bound
               p1 -- a list of sigma parameters to try

   Output: A factor of n. (1 is returned on faliure).

   Notes:
         1. Other parameters, such as the phase 2 smoothness bound are selected by the mainloop function.
         2. This function uses batch algorithms, so if p1 is not long enough, there will be a loss in efficiency.
         3. Of course, if p1 is too long, then the mainloop will have to use more memory.
              [The memory is polynomial in the length of p1, log u, and log n].'''
   k = inv_const(n)
   log_u = math.log(u)
   log_log_u = math.log(log_u)
   log_n = math.log(n)
   u2 = int(_7_OVER_LOG_2 * u * log_u / log_log_u)
   ncurves = len(p1)
   w = int(math.sqrt(_3_OVER_LOG_2 * ncurves / k) - 0.5)
   number_of_primes = int((ncurves << w) * math.sqrt(LOG_4_OVER_9 * log_n / k) / log_u) # Lagrange multipliers!
   number_of_primes = min(number_of_primes, int((log_n / math.log(log_n))**2 * ncurves / log_u), int(u / log_u))
   number_of_primes = max(number_of_primes, 1)
   m = math.log(number_of_primes) + log_log_u
   w = min(w, int((m - 2 * math.log(m) + LOG_3_MINUS_LOG_LOG_2) / LOG_2))
   w = max(w, 1)
   max_order = n + sqrt(n << 2) + 1 # By Hasse's theorem.
   det_bound = ((1 << w) - 1 + ((w & 1) << 1)) // 3
   log_mo = math.log(max_order)
   p = list(range(number_of_primes))
   prime = mpz(2)
   p1 = get_points(p1, n)
   if not isinstance(p1, list):
      return p1

   for _ in range(int(log_mo / LOG_2)):
      p1 = double(p1, n)
      if not isinstance(p1, list):
         return p1

   for i in range(1, det_bound):
      prime  = (i << 1) + 1
      if isprime(prime):
         for _ in range(int(log_mo / math.log(prime))):
            p1 = multiply(p1, prime, n)
            if not isinstance(p1, list):
               return p1

   while prime < sqrt(u) and isinstance(p1, list):
      for i in range(number_of_primes):
         prime = next_prime(prime)
         p[i] = prime ** max(1, int(log_u / math.log(prime)))
      p1 = fast_multiply(p1, prod(p),  n, w)

   if not isinstance(p1, list):
      return p1

   while prime < u and isinstance(p1, list):
      for i in range(number_of_primes):
         prime = next_prime(prime)
         p[i] = prime
      p1 = fast_multiply(p1, prod(p),  n, w)

   if not isinstance(p1, list):
      return p1

   del p

   small_jump = int(greatest_n((1 << (w + 2)) // 3))
   small_jump = max(120, small_jump)
   big_jump = 1 + (int(sqrt((5 << w) // 21)) << 1)
   total_jump = small_jump * big_jump
   big_multiple = max(total_jump << 1, ((int(next_prime(prime)) - (total_jump >> 1)) // total_jump) * total_jump)
   big_jump_2 = big_jump >> 1
   small_jump_2 = small_jump >> 1
   product = ONE

   psmall_jump = multiply(p1, small_jump, n)
   if not isinstance(psmall_jump, list):
      return psmall_jump

   ptotal_jump = multiply(psmall_jump, big_jump, n)
   if not isinstance(ptotal_jump, list):
      return ptotal_jump

   pgiant_step = multiply(p1, big_multiple, n)
   if not isinstance(pgiant_step, list):
      return pgiant_step

   small_multiples = [None]
   for i in range(1, small_jump >> 1):
      if gcd(i, small_jump) == 1:
         tmp = multiply(p1, i, n)
         if not isinstance(tmp, list):
            return tmp
         for i in range(len(tmp)):
            tmp[i] = tmp[i][0]
         small_multiples.append(tuple(tmp))
      else:
         small_multiples.append(None)
   small_multiples = tuple(small_multiples)

   big_multiples = [None]
   for i in range(1, (big_jump + 1) >> 1):
      tmp = multiply(psmall_jump, i, n)
      if not isinstance(tmp, list):
         return tmp
      big_multiples.append(to_tuple(tmp))
   big_multiples = tuple(big_multiples)

   psmall_jump = to_tuple(psmall_jump)
   ptotal_jump = to_tuple(ptotal_jump)

   while big_multiple < u2:
      big_multiple += total_jump
      center_up = big_multiple
      center_down = big_multiple
      pgiant_step = add(ptotal_jump, pgiant_step, n)
      if not isinstance(pgiant_step, list):
         return pgiant_step

      prime_up = next_prime(big_multiple - small_jump_2)
      while prime_up < big_multiple + small_jump_2:
         s = small_multiples[abs(int(prime_up) - big_multiple)]
         for j in range(ncurves):
            product *= pgiant_step[j][0] - s[j]
            product %= n
         prime_up = next_prime(prime_up)

      for i in range(1, big_jump_2 + 1):
         center_up += small_jump
         center_down -= small_jump

         pmed_step_up, pmed_step_down = add_sub_x_only(big_multiples[i], pgiant_step, n)
         if pmed_step_down == None:
            return pmed_step_up

         while prime_up < center_up + small_jump_2:
            s = small_multiples[abs(int(prime_up) - center_up)]
            for j in range(ncurves):
               product *= pmed_step_up[j] - s[j]
               product %= n
            prime_up = next_prime(prime_up)

         prime_down = next_prime(center_down - small_jump_2)
         while prime_down < center_down + small_jump_2:
            s = small_multiples[abs(int(prime_down) - center_down)]
            for j in range(ncurves):
               product *= pmed_step_down[j] - s[j]
               product %= n
            prime_down = next_prime(prime_down)

   if gcd(product, n) != 1:
      return gcd(product, n)

   return 1

def fast_multiply(p, d, n, w):
   '''Multiplies each element of p by d. Multiplication is on
an elliptic curve. Both d and <p> must be odd. Also, <p> may not be divisible by anything less than or equal to 2 * (2**w + (-1)**w) / 3 + 1.

Returns the list p multiplied by d.'''

   mask = (1 << (w << 1)) - 1
   flop = mask // 3
   g = naf(d) >> 4
   precomp = {}
   m = copy(p)
   p = double(p, n)

   for i in range((flop >> w) + (w & 1)):
      key = naf((i << 1) + 1)
      precomp[key] = to_tuple(m)
      precomp[((key & flop) << 1) ^ key] = precomp[key]
      m = add(p, m, n)

   while g > 0:
      if g & 1:
         t = g & mask
         sh = 1 + int(math.log(t) / LOG_4)
         for _ in range(sh):
            p = double(p, n)

         if g & 2:
            p = subtract(precomp[t], p, n)
         else:
            p = add(precomp[t], p,  n)

         g >>= (sh << 1)
         if not isinstance(p, list):
            return p
      else:
         p = double(p, n)
         g >>= 2

   return p

def get_points(p1, n):
   '''Outputs points in Weierstrass form, given input in Suyama
parametrization.

Returns the points.'''
   p1 = list(p1)
   invs = p1[:]
   ncurves = len(p1)

   for j in range(ncurves):
      sigma = mpz(p1[j])
      u = (sigma**2 - 5) % n
      v = sigma << 2
      i = (((u * u) % n) * ((v * u << 2) % n)) % n
      p1[j] = [u, v, i]
      invs[j] = (i * v) % n

   invs = parallel_invert(invs, n)
   if not isinstance(invs, list):
      return invs

   for j in range(ncurves):
      u, v, i = p1[j]
      inv = invs[j]

      a = (((((((v - u)**3 % n) * v) % n) * (u + u + u + v)) % n) * inv - 2) % n # <-- This line is a thing of beauty
      x_0 = (((((u * i) % n) * inv) % n) ** 3) % n # And this one gets second place
      b = ((((x_0 + a) * x_0 + 1) % n) * x_0) % n
      x_0 = (b * x_0) % n
      y_0 = (b**2) % n

      while a % 3:
         a += n

      x_0 = (x_0 + a * b // 3) % n
      c = (y_0 * ((1 - a**2 // 3) % n)) % n

      p1[j] = [x_0, y_0, c]

   return p1

def isprime(n):
   ''' Tests for primality of n trying first fastprime and then a slower but accurate algorithm. Time complexity is O(N**3) (assuming quadratic multiplication), where n has N digits.

Returns the primality of n (True or False).'''
   if not fastprime(n):
      return False
   elif n < SMALLEST_COUNTEREXAMPLE_FASTPRIME:
      return True

   do_loop = False
   j = 1
   d = n >> 1
   a = 2
   bound = int(0.75 * math.log(math.log(n)) * math.log(n)) + 1

   while not d & 1:
      d >>= 1
      j += 1

   while a < bound:
      a = next_prime(a)
      p = atdn(a, d, n)

      if p == 1 or p == n - 1:
         continue

      for _ in range(j):
         p = (p * p) % n

         if p == 1:
            return False
         elif p == n - 1:
            do_loop = True
            break

      if do_loop:
         do_loop = False
         continue

      return False

   return True

def multiply(p1, d, n):
   '''Multiplies each element of a list by a number, without using too much overhead.

Returns a list p multiplied through by d.'''
   pos = int(math.log(d) / LOG_2) - 1
   p = copy(p1)

   while pos >= 0:
      p = double(p, n)
      if not isinstance(p, list):
         return p
      if (d >> pos) & 1:
         p = add(p1, p,  n)
         if not isinstance(p, list):
            return p
      pos -= 1

   return p

def ecm(n, ra, ov, veb, tdb, pr): # DOCUMENTATION
   '''Input:
   n   -- An integer to factor
   veb -- If True, be verbose
   ra  -- If True, select sigma values randomly
   ov  -- How asymptotically fast the calculation is
   pr  -- What portion of the total processing power this run gets

Output: Factors of n, via a generator.

Notes:
1. A good value of ov for typical numbers is somewhere around 10. If this parameter is too high, overhead and memory usage grow.
2. If ra is set to False and veb is set to True, then results are reproducible. If ra is set to True, then one number may be done in parallel on disconnected machines (at only a small loss of efficiency, which is less if pr is set correctly).'''

   if veb:
      looking_for = 0
   k = inv_const(n)

   if ra:
      sigma = 6 + random.randrange(BILLION)
   else:
      sigma = 6

   for factor in sure_factors(n, k, list(range(sigma, sigma + k)), veb, ra, ov, tdb, pr):
      yield factor
      n = n//factor

   if n == 1:
      return

   if ra:
      sigma += k + random.randrange(BILLION)
   else:
      sigma += k

   x_max = 0.5 * math.log(n) / math.log(k)
   t = rho_ts(int(x_max))
   prime_probs = []
   nc = 1 + int(_12_LOG_2_OVER_49 * ov * ov * k)
   eff_nc = nc / pr

   for i in range(1 + (int(math.log(n)) >> 1)):
      if i < math.log(tdb):
         prime_probs.append(0)
      else:
         prime_probs.append(1.0/i)

   for i in range(len(prime_probs)):
      p_success = rho_ev((i - 2.65) / math.log(k), t)
      p_fail = max(0, (1 - p_success * math.log(math.log(k)))) ** (k / pr)
      prime_probs[i] = p_fail * prime_probs[i] / (p_fail * prime_probs[i] + 1 - prime_probs[i])

   while n != 1:
      low = int(k)
      high = n
      while high > low + 1:
         u = (high + low) >> 1
         sum = 0
         log_u = math.log(u)
         for i in range(len(prime_probs)):
            log_p = i - 2.65
            log_u = math.log(u)
            quot = log_p / log_u
            sum += prime_probs[i] * (rho_ev(quot - 1, t) - rho_ev(quot, t) * log_u)
         if sum < 0:
            high = u
         else:
            low = u

      if ra:
         sigma += nc + random.randrange(BILLION)
      else:
         sigma += nc

      for factor in sure_factors(n, u, list(range(sigma, sigma + nc)), veb, ra, ov, tdb, pr):
         yield factor
         n = n // factor

      for i in range(len(prime_probs)):
         p_success = rho_ev((i - 2.65) / math.log(u), t)
         p_fail = max(0, (1 - p_success * math.log(math.log(u)))) ** eff_nc
         prime_probs[i] = p_fail * prime_probs[i] / (p_fail * prime_probs[i] + 1 - prime_probs[i])
      prime_probs = prime_probs[:1 + (int(math.log(n)) >> 1)]

      if veb and n != 1:
         m = max(prime_probs)
         for i in range(len(prime_probs)):
            if prime_probs[i] == m:
               break

         new_looking_for = (int(i / _5_LOG_10) + 1)
         new_looking_for += new_looking_for << 2
         if new_looking_for != looking_for:
            looking_for = new_looking_for
            print('Searching for primes around', looking_for, 'digits')

   return

def factors(n, veb, ra, ov, pr):
   '''Generates factors of n.
Strips small primes, then feeds to ecm function.

Input:
   n   -- An integer to factor
   veb -- If True, be verbose
   ra  -- If True, select sigma values randomly
   ov  -- How asymptotically fast the calculation is
   pr  -- What portion of the total processing power this run gets

Output: Factors of n, via a generator.

Notes:
1. A good value of ov for typical numbers is somewhere around 10. If this parameter is too high, overhead and memory usage grow.
2. If ra is set to False and veb is set to True, then results are reproducible. If ra is set to True, then one number may be done in parallel on disconnected machines (at only a small loss of efficiency, which is less if pr is set correctly).'''


   if type(n) not in T:
      raise ValueError('Number given must be integer or long.')

   if n == 0:
      raise ValueError('Number given must be greater than 0.')

   if not 0 < pr <= 1:
      yield 'Error: pr must be between 0 and 1'
      return

   while not n & 1:
      n >>= 1
      yield mpz(2)

   n = mpz(n)
   k = inv_const(n)
   prime = 2
   trial_division_bound = max(10 * k**2, 100)

   while prime < trial_division_bound:
      prime = next_prime(prime)
      while not n % prime:
         n = n//prime
         yield prime

   if isprime(n):
      yield n
      return

   if n == 1:
      return

   for factor in ecm(n, ra, ov, veb, trial_division_bound, pr):
      yield factor

### End of algorithm code; beginning of interface code ##

def is_switch(s):
   '''Tests whether the input string is a switch (e.g. "-v" or "--help").

Returns True or False.'''

   for i in range(len(s)):
      if s[i] != '-':
         break

   if i == 0: # s not begin with "-"
      return False
   for char in s[i:]:
      if not char.isalpha():
         if char == '=': # Switches like "--portion=" are acceptable
            return True
         else:
            return False
   return True

def parse_switch(s, switch):
   '''Parses a switch in the form '--string=num' and returns num or calls help() if the string is invalid.

Returns the num in '--string=num'.'''

   try:
      return float(s[len(switch) + 3:])
   except ValueError:
      help()

def valid_input(s):
   '''Tests the input string for validity as a mathematical expressions.

Returns True or False.'''
   valid = ('(', ')', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '-', '*', '/', '^', ' ', '\t')

   for char in s:
      if char not in valid:
         return False

   return True

def help():
   print( '''\
Usage: pyecm [OPTION] [expression to factor]
Factor numbers using the Elliptic Curve Method.

--portion=num    Does only part of the work for factoring, corresponding to
what fraction of the total work the machine is doing. Useful for working in
parallel. For example, if there are three machines: 1GHz, 1GHz, and 2GHz, print
should be set to 0.25 for the 1GHz machines and 0.5 for the 2GHz machine.
Implies -r and -v. -r is needed to avoid duplicating work and -v is needed to
report results.
--ov=num        Sets the value of the internal parameter ov, which
determines the trade-off between memory and time usage. Do not touch if you do
not know what you are doing. Please read all the documentation and understand
the full implications of the parameter before using this switch.
-n, --noverbose   Terse. On by default. Needed to cancel the -v from the
--portion or --random switches. If both -n and -v are specified, the one
specified last takes precedence.
-r, --random     Chooses random values for sigma, an internal parameter in
the calculation. Implies -v; if you're doing something random, you want to know
what's happening.
-v, --verbose    Explains what is being done with intermediate calculations
and results.

With no integers to factor given via command-line, read standard input.

Please report bugs to Eric Larson <elarson3@uoregon.edu>.''')
   sys.exit()

def command_line(veb, ra, ov, pr):
   l = len(sys.argv)
   for i in range(1, l):
      if not is_switch(sys.argv[i]):
         break

   for j in range(i, l): # Start with the first non-switch
      if j != i: # Pretty printing
         print( '')
      response = sys.argv[j]
      if valid_input(response):
         response = response.replace('^', '**')
         try:
            n = eval(response)
            int(n)
         except (SyntaxError, TypeError, ValueError):
            help()
      else:
         help()

      print('Factoring {0}:'.format(n))
      if n < 0:
         print(-1)
         n = -n
      if n == 0:
         print( '0 does not have a well-defined factorization.')
         continue
      elif n == 1:
         print( 1)
         continue

      if ov == DUMMY:
         ov = 2*math.log(math.log(n))
      for factor in factors(n, veb, ra, ov, pr):
         print(factor)

def interactive(veb, ra, ov, pr):
   print('pyecm v. {0} (interactive mode):'.format(VERSION))
   print('Type "exit" at any time to quit.')
   print()

   user_input = input()
   while user_input != 'exit' and user_input != 'quit':
      if valid_input(user_input):
         user_input = user_input.replace('^', '**')
         try:
            n = eval(user_input)
            int(n)
         except (SyntaxError, TypeError, ValueError):
            help()
      else:
         help()

      print('Factoring number %d:' % n)
      if n < 0:
         print( -1)
         n = -n
      if n == 0:
         print('0 does not have a well-defined factorization.')
         print()
         user_input = input()
         continue
      elif n == 1:
         print(1)
         print()
         user_input = input()
         continue

      if ov == DUMMY:
         ov = 2*math.log(math.log(n))
      for factor in factors(n, veb, ra, ov, pr):
         print(factor)
      print()
      user_input = input()

def main():
   ra = veb = False
   pr = 1.0
   ov = DUMMY
   for item in sys.argv[1:]:
      if item == '--help':
         help()
      elif item == '--noverbose':
         veb = False
      elif item == '--random':
         ra = veb = True
      elif item == '--verbose':
         veb = True
      elif item[:10] == '--portion=':
         pr = parse_switch(item, 'portion')
         ra = veb = True
      elif item[:5] == '--ov=':
         ov = parse_switch(item, 'ov')
      elif len(item) >= 2 and item[0] == '-' and item[1] != '-': # Short switch
         for char in item:
            if char == 'h':
               help()
            elif char == 'n':
               veb = False
            elif char == 'r':
               ra = veb = True
            elif char == 'v':
               veb = True
      else:
         if not valid_input(item):
            print('I am confused about the following: "{0}". Here\'s the help page:'.format(item))
            print()
            help()

   if len(sys.argv) > 1 and not is_switch(sys.argv[-1]):
      command_line(veb, ra, ov, pr)
   else:
      interactive(veb, ra, ov, pr)

if __name__ == '__main__':
   try:
      main()
   except (EOFError, KeyboardInterrupt):
      sys.exit()