File: cities.py

package info (click to toggle)
pyephem 4.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,380 kB
  • sloc: ansic: 77,574; python: 2,529; makefile: 74
file content (191 lines) | stat: -rw-r--r-- 10,672 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
"""Modest database of more than a hundred world cities."""

import ephem
import json
import sys
from math import radians

_python3 = sys.version_info > (3,)
if _python3:
    from urllib.parse import urlencode
    from urllib.request import urlopen
else:
    from urllib import urlencode
    from urllib2 import urlopen

_city_data = {
    'London': ('51.5001524', '-0.1262362', 14.605533),  # United Kingdom
    'Paris': ('48.8566667', '2.3509871', 35.917042),  # France
    'New York': ('40.7143528', '-74.0059731', 9.775694),  # United States
    'Tokyo': ('35.6894875', '139.6917064', 37.145370),  # Japan
    'Chicago': ('41.8781136', '-87.6297982', 181.319290),  # United States
    'Frankfurt': ('50.1115118', '8.6805059', 106.258285),  # Germany
    'Hong Kong': ('22.396428', '114.109497', 321.110260),  # Hong Kong
    'Los Angeles': ('34.0522342', '-118.2436849', 86.847092),  # United States
    'Milan': ('45.4636889', '9.1881408', 122.246513),  # Italy
    'Singapore': ('1.352083', '103.819836', 57.821636),  # Singapore
    'San Francisco': ('37.7749295', '-122.4194155', 15.557819),  # United States
    'Sydney': ('-33.8599722', '151.2111111', 3.341026),  # Australia
    'Toronto': ('43.6525', '-79.3816667', 90.239403),  # Canada
    'Zurich': ('47.3833333', '8.5333333', 405.500916),  # Switzerland
    'Brussels': ('50.8503', '4.35171', 26.808620),  # Belgium
    'Madrid': ('40.4166909', '-3.7003454', 653.005005),  # Spain
    'Mexico City': ('19.4270499', '-99.1275711', 2228.146484),  # Mexico
    'Sao Paulo': ('-23.5489433', '-46.6388182', 760.344849),  # Brazil
    'Moscow': ('55.755786', '37.617633', 151.189835),  # Russian Federation
    'Seoul': ('37.566535', '126.9779692', 41.980915),  # South Korea
    'Amsterdam': ('52.3730556', '4.8922222', 14.975505),  # The Netherlands
    'Boston': ('42.3584308', '-71.0597732', 15.338848),  # United States
    'Caracas': ('10.491016', '-66.902061', 974.727417),  # Venezuela
    'Dallas': ('32.802955', '-96.769923', 154.140625),  # United States
    'Dusseldorf': ('51.2249429', '6.7756524', 43.204800),  # Germany
    'Geneva': ('46.2057645', '6.141593', 379.026245),  # Switzerland
    'Houston': ('29.7628844', '-95.3830615', 6.916622),  # United States
    'Jakarta': ('-6.211544', '106.845172', 10.218226),  # Indonesia
    'Johannesburg': ('-26.1704415', '27.9717606', 1687.251099),  # South Africa
    'Melbourne': ('-37.8131869', '144.9629796', 27.000000),  # Australia
    'Osaka': ('34.6937378', '135.5021651', 16.347811),  # Japan
    'Prague': ('50.0878114', '14.4204598', 191.103485),  # Czech Republic
    'Santiago': ('-33.4253598', '-70.5664659', 665.926880),  # Chile
    'Taipei': ('25.091075', '121.5598345', 32.288563),  # Taiwan
    'Washington': ('38.8951118', '-77.0363658', 7.119641),  # United States
    'Bangkok': ('13.7234186', '100.4762319', 4.090096),  # Thailand
    'Beijing': ('39.904214', '116.407413', 51.858883),  # China
    'Montreal': ('45.5088889', '-73.5541667', 16.620916),  # Canada
    'Rome': ('41.8954656', '12.4823243', 19.704413),  # Italy
    'Stockholm': ('59.3327881', '18.0644881', 25.595907),  # Sweden
    'Warsaw': ('52.2296756', '21.0122287', 115.027786),  # Poland
    'Atlanta': ('33.7489954', '-84.3879824', 319.949738),  # United States
    'Barcelona': ('41.387917', '2.1699187', 19.991053),  # Spain
    'Berlin': ('52.5234051', '13.4113999', 45.013939),  # Germany
    'Buenos Aires': ('-34.6084175', '-58.3731613', 40.544090),  # Argentina
    'Budapest': ('47.4984056', '19.0407578', 106.463295),  # Hungary
    'Copenhagen': ('55.693403', '12.583046', 6.726723),  # Denmark
    'Hamburg': ('53.5538148', '9.9915752', 5.104634),  # Germany
    'Istanbul': ('41.00527', '28.97696', 37.314278),  # Turkey
    'Kuala Lumpur': ('3.139003', '101.686855', 52.271698),  # Malaysia
    'Manila': ('14.5833333', '120.9666667', 3.041384),  # Philippines
    'Miami': ('25.7889689', '-80.2264393', 0.946764),  # United States
    'Minneapolis': ('44.9799654', '-93.2638361', 253.002655),  # United States
    'Munich': ('48.1391265', '11.5801863', 523.000000),  # Germany
    'Shanghai': ('31.230393', '121.473704', 15.904707),  # China
    'Athens': ('37.97918', '23.716647', 47.597061),  # Greece
    'Auckland': ('-36.8484597', '174.7633315', 21.000000),  # New Zealand
    'Dublin': ('53.344104', '-6.2674937', 8.214323),  # Ireland
    'Helsinki': ('60.1698125', '24.9382401', 7.153307),  # Finland
    'Luxembourg': ('49.815273', '6.129583', 305.747925),  # Luxembourg
    'Lyon': ('45.767299', '4.8343287', 182.810547),  # France
    'Mumbai': ('19.0176147', '72.8561644', 12.408822),  # India
    'New Delhi': ('28.635308', '77.22496', 213.999054),  # India
    'Philadelphia': ('39.952335', '-75.163789', 12.465688),  # United States
    'Rio de Janeiro': ('-22.9035393', '-43.2095869', 9.521935),  # Brazil
    'Tel Aviv': ('32.0599254', '34.7851264', 21.114218),  # Israel
    'Vienna': ('48.20662', '16.38282', 170.493149),  # Austria
    'Abu Dhabi': ('24.4666667', '54.3666667', 6.296038),  # United Arab Emirates
    'Almaty': ('43.255058', '76.912628', 785.522156),  # Kazakhstan
    'Birmingham': ('52.4829614', '-1.893592', 141.448563),  # United Kingdom
    'Bogota': ('4.5980556', '-74.0758333', 2614.037109),  # Colombia
    'Bratislava': ('48.1483765', '17.1073105', 155.813446),  # Slovakia
    'Brisbane': ('-27.4709331', '153.0235024', 28.163914),  # Australia
    'Bucharest': ('44.437711', '26.097367', 80.407768),  # Romania
    'Cairo': ('30.064742', '31.249509', 20.248013),  # Egypt
    'Cleveland': ('41.4994954', '-81.6954088', 198.879639),  # United States
    'Cologne': ('50.9406645', '6.9599115', 59.181450),  # Germany
    'Detroit': ('42.331427', '-83.0457538', 182.763428),  # United States
    'Dubai': ('25.2644444', '55.3116667', 8.029230),  # United Arab Emirates
    'Ho Chi Minh City': ('10.75918', '106.662498', 10.757121),  # Vietnam
    'Kiev': ('50.45', '30.5233333', 157.210175),  # Ukraine
    'Lima': ('-12.0433333', '-77.0283333', 154.333740),  # Peru
    'Lisbon': ('38.7070538', '-9.1354884', 2.880179),  # Portugal
    'Manchester': ('53.4807125', '-2.2343765', 57.892406),  # United Kingdom
    'Montevideo': ('-34.8833333', '-56.1666667', 45.005032),  # Uruguay
    'Oslo': ('59.9127263', '10.7460924', 10.502326),  # Norway
    'Rotterdam': ('51.924216', '4.481776', 2.766272),  # The Netherlands
    'Riyadh': ('24.6880015', '46.7224333', 613.475281),  # Saudi Arabia
    'Seattle': ('47.6062095', '-122.3320708', 53.505501),  # United States
    'Stuttgart': ('48.7771056', '9.1807688', 249.205185),  # Germany
    'The Hague': ('52.0698576', '4.2911114', 3.686689),  # The Netherlands
    'Vancouver': ('49.248523', '-123.1088', 70.145927),  # Canada
    'Adelaide': ('-34.9305556', '138.6205556', 49.098354),  # Australia
    'Antwerp': ('51.21992', '4.39625', 7.296879),  # Belgium
    'Arhus': ('56.162939', '10.203921', 26.879421),  # Denmark
    'Baltimore': ('39.2903848', '-76.6121893', 10.258920),  # United States
    'Bangalore': ('12.9715987', '77.5945627', 911.858398),  # India
    'Bologna': ('44.4942191', '11.3464815', 72.875923),  # Italy
    'Brazilia': ('-14.235004', '-51.92528', 259.063477),  # Brazil
    'Calgary': ('51.045', '-114.0572222', 1046.000000),  # Canada
    'Cape Town': ('-33.924788', '18.429916', 5.838447),  # South Africa
    'Colombo': ('6.927468', '79.848358', 9.969995),  # Sri Lanka
    'Columbus': ('39.9611755', '-82.9987942', 237.651932),  # United States
    'Dresden': ('51.0509912', '13.7336335', 114.032356),  # Germany
    'Edinburgh': ('55.9501755', '-3.1875359', 84.453995),  # United Kingdom
    'Genoa': ('44.4070624', '8.9339889', 35.418076),  # Italy
    'Glasgow': ('55.8656274', '-4.2572227', 38.046883),  # United Kingdom
    'Gothenburg': ('57.6969943', '11.9865', 15.986326),  # Sweden
    'Guangzhou': ('23.129163', '113.264435', 18.892920),  # China
    'Hanoi': ('21.0333333', '105.85', 20.009024),  # Vietnam
    'Kansas City': ('39.1066667', '-94.6763889', 274.249390),  # United States
    'Leeds': ('53.7996388', '-1.5491221', 47.762367),  # United Kingdom
    'Lille': ('50.6371834', '3.0630174', 28.139490),  # France
    'Marseille': ('43.2976116', '5.3810421', 24.785774),  # France
    'Richmond': ('37.542979', '-77.469092', 63.624462),  # United States
    'St. Petersburg': ('59.939039', '30.315785', 11.502971),  # Russian Federation
    'Tashkent': ('41.2666667', '69.2166667', 430.668427),  # Uzbekistan
    'Tehran': ('35.6961111', '51.4230556', 1180.595947),  # Iran
    'Tijuana': ('32.533489', '-117.018204', 22.712011),  # Mexico
    'Turin': ('45.0705621', '7.6866186', 234.000000),  # Italy
    'Utrecht': ('52.0901422', '5.1096649', 7.720881),  # The Netherlands
    'Wellington': ('-41.2924945', '174.7732353', 17.000000),  # New Zealand
    }

def city(name):
    try:
        data = _city_data[name]
    except KeyError:
        raise KeyError('Unknown city: %r' % (name,))
    o = ephem.Observer()
    o.name = name
    o.lat, o.lon, o.elevation = data
    o.compute_pressure()
    return o

def lookup(address):
    """DEPRECATED: Google, alas, no longer supports anonymous lat/lon lookup.

    Because looking up an address is really a problem in geography, not
    astronomy, PyEphem is not planning on repairing this routine.  Look
    for a good Python geolocation library if you need to turn strings
    into latitudes and longitudes.

    """
    raise NotImplementedError(lookup.__doc__.split(None, 1)[1].strip())

def lookup_with_geonames(q, username):
    """Given a string `q`, do a geonames lookup and return an Observer.

    Free geonames queries require registration with an email address
    at this url: https://www.geonames.org/login

    After registration, you also must enable the free webservices
    through your user account
    """
    parameters = urlencode({'q': q, 'username': username})
    url = 'http://api.geonames.org/searchJSON?' + parameters
    data = json.loads(urlopen(url).read().decode('utf-8'))
    if data['totalResultsCount'] == 0:
        raise ValueError('geonames cannot find a place named %r' % name)
    location = data['geonames'][0]
    parameters_elev = urlencode({'lat':location['lat'],
                                 'lng':location['lng'],
                                 'username':username})
    url_elev = 'http://api.geonames.org/srtm1JSON?' + parameters_elev
    data_elev = json.loads(urlopen(url_elev).read().decode('utf-8'))

    o = ephem.Observer()
    o.name = location['toponymName']
    o.lat = location['lat']
    o.lon = location['lng']
    o.elevation = data_elev['srtm1']
    o.compute_pressure()
    return o