File: misc.c

package info (click to toggle)
pyephem 4.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 4,380 kB
  • sloc: ansic: 77,574; python: 2,529; makefile: 74
file content (515 lines) | stat: -rw-r--r-- 12,002 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
/* misc handy functions.
 * every system has such, no?
 *  4/20/98 now_lst() always just returns apparent time
 */

#include "astro.h"

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>

static union {
    unsigned char bytes[sizeof(double)];
    double value;
} _nan = {
#if (defined(__s390__) || defined(__s390x__) || defined(__zarch__))
    {0x7f, 0xf8, 0, 0, 0, 0, 0, 0}
#else
    {0, 0, 0, 0, 0, 0, 0xf8, 0x7f}
#endif
};

double ascii_strtod(const char *s00, char **se);  /* for PyEphem */

/* zero from loc for len bytes */
void
zero_mem (void *loc, unsigned len)
{
	(void) memset (loc, 0, len);
}

/* given min and max and an approximate number of divisions desired,
 * fill in ticks[] with nicely spaced values and return how many.
 * N.B. return value, and hence number of entries to ticks[], might be as
 *   much as 2 more than numdiv.
 */
int
tickmarks (double min, double max, int numdiv, double ticks[])
{
        static int factor[] = { 1, 2, 5 };
        double minscale;
        double delta;
	double lo;
        double v;
        int n;

        minscale = fabs(max - min);
        delta = minscale/numdiv;
        for (n=0; n < (int)(sizeof(factor)/sizeof(factor[0])); n++) {
	    double scale;
	    double x = delta/factor[n];
            if ((scale = (pow(10.0, ceil(log10(x)))*factor[n])) < minscale)
		minscale = scale;
	}
        delta = minscale;

        lo = floor(min/delta);
        for (n = 0; (v = delta*(lo+n)) < max+delta; )
	    ticks[n++] = v;

	return (n);
}

/* given an Obj *, return its type as a descriptive string.
 * if it's of type fixed then return its class description.
 * N.B. we return the address of static storage -- do not free or change.
 */
char *
obj_description (Obj *op)
{
	typedef struct {
	    char classcode;
	    char *desc;
	} CC;

#define	NFCM	((int)(sizeof(fixed_class_map)/sizeof(fixed_class_map[0])))
	static CC fixed_class_map[] = {
	    {'A', "Cluster of Galaxies"},
	    {'B', "Binary System"},
	    {'C', "Globular Cluster"},
	    {'D', "Double Star"},
	    {'F', "Diffuse Nebula"},
	    {'G', "Spiral Galaxy"},
	    {'H', "Spherical Galaxy"},
	    {'J', "Radio"},
	    {'K', "Dark Nebula"},
	    {'L', "Pulsar"},
	    {'M', "Multiple Star"},
	    {'N', "Bright Nebula"},
	    {'O', "Open Cluster"},
	    {'P', "Planetary Nebula"},
	    {'Q', "Quasar"},
	    {'R', "Supernova Remnant"},
	    {'S', "Star"},
	    {'T', "Star-like Object"},
	    {'U', "Cluster, with nebulosity"},
	    {'V', "Variable Star"},
	    {'Y', "Supernova"},
	};

#define	NBCM	((int)(sizeof(binary_class_map)/sizeof(binary_class_map[0])))
	static CC binary_class_map[] = {
	    {'a', "Astrometric binary"},
	    {'c', "Cataclysmic variable"},
	    {'e', "Eclipsing binary"},
	    {'x', "High-mass X-ray binary"},
	    {'y', "Low-mass X-ray binary"},
	    {'o', "Occultation binary"},
	    {'s', "Spectroscopic binary"},
	    {'t', "1-line spectral binary"},
	    {'u', "2-line spectral binary"},
	    {'v', "Spectrum binary"},
	    {'b', "Visual binary"},
	    {'d', "Visual binary, apparent"},
	    {'q', "Visual binary, optical"},
	    {'r', "Visual binary, physical"},
	    {'p', "Exoplanet"},
	};

	switch (op->o_type) {
	case FIXED:
	    if (op->f_class) {
		int i;
		for (i = 0; i < NFCM; i++)
		    if (fixed_class_map[i].classcode == op->f_class)
			return (fixed_class_map[i].desc);
	    }
	    return ("Fixed");
	case PARABOLIC:
	    return ("Solar - Parabolic");
	case HYPERBOLIC:
	    return ("Solar - Hyperbolic");
	case ELLIPTICAL:
	    return ("Solar - Elliptical");
	case BINARYSTAR:
	    if (op->f_class) {
		int i;
		for (i = 0; i < NFCM; i++)
		    if (binary_class_map[i].classcode == op->f_class)
			return (binary_class_map[i].desc);
	    }
	    return ("Binary system");
	case PLANET: {
	    static char nsstr[MAXNM + 9];
	    static Obj *biop;

	    if (op->pl_code == SUN)
		return ("Star");
	    if (op->pl_code == MOON)
		return ("Moon of Earth");
	    if (op->pl_moon == X_PLANET)
		return ("Planet");
	    if (!biop)
		getBuiltInObjs (&biop);
	    sprintf (nsstr, "Moon of %s", biop[op->pl_code].o_name);
	    return (nsstr);
	    }
	case EARTHSAT:
	    return ("Earth Sat");
	default:
	    printf ("obj_description: unknown type: 0x%x\n", op->o_type);
	    abort();
	    return (NULL);	/* for lint */
	}
}

/* given a Now *, find the local apparent sidereal time, in hours.
 */
void
now_lst (Now *np, double *lstp)
{
	static double last_mjd = -23243, last_lng = 121212, last_lst;
	double eps, lst, deps, dpsi;

	if (last_mjd == mjd && last_lng == lng) {
	    *lstp = last_lst;
	    return;
	}

	utc_gst (mjd_day(mjd), mjd_hr(mjd), &lst);
	lst += radhr(lng);

	obliquity(mjd, &eps);
	nutation(mjd, &deps, &dpsi);
	lst += radhr(dpsi*cos(eps+deps));

	range (&lst, 24.0);

	last_mjd = mjd;
	last_lng = lng;
	*lstp = last_lst = lst;
}

/* convert ra to ha, in range 0..2*PI
 * need dec too if not already apparent.
 */
void
radec2ha (Now *np, double ra, double dec, double *hap)
{
	double ha, lst;

	if (epoch != EOD)
	    as_ap (np, epoch, &ra, &dec);
	now_lst (np, &lst);
	ha = hrrad(lst) - ra;
	if (ha < 0)
	    ha += 2*PI;
	*hap = ha;
}

/* find Greenwich Hour Angle of the given object at the given time, 0..2*PI.
 */
void
gha (Now *np, Obj *op, double *ghap)
{
	Now n = *np;
	Obj o = *op;
	double tmp;

	n.n_epoch = EOD;
	n.n_lng = 0.0;
	n.n_lat = 0.0;
	obj_cir (&n, &o);
	now_lst (&n, &tmp);
	tmp = hrrad(tmp) - o.s_ra;
	if (tmp < 0)
	    tmp += 2*PI;
	*ghap = tmp;
}

/* given a circle and a line segment, find a segment of the line inside the 
 *   circle.
 * return 0 and the segment end points if one exists, else -1.
 * We use a parametric representation of the line:
 *   x = x1 + (x2-x1)*t and y = y1 + (y2-y1)*t, 0 < t < 1
 * and a centered representation of the circle:
 *   (x - xc)**2 + (y - yc)**2 = r**2
 * and solve for the t's that work, checking for usual conditions.
 */
int
lc (
int cx, int cy, int cw,			/* circle bbox corner and width */
int x1, int y1, int x2, int y2,		/* line segment endpoints */
int *sx1, int *sy1, int *sx2, int *sy2)	/* segment inside the circle */
{
	int dx = x2 - x1;
	int dy = y2 - y1;
	int r = cw/2;
	int xc = cx + r;
	int yc = cy + r;
	int A = x1 - xc;
	int B = y1 - yc;
	double a = dx*dx + dy*dy;	/* O(2 * 2**16 * 2**16) */
	double b = 2*(dx*A + dy*B);	/* O(4 * 2**16 * 2**16) */
	double c = A*A + B*B - r*r;	/* O(2 * 2**16 * 2**16) */
	double d = b*b - 4*a*c;		/* O(2**32 * 2**32) */
	double sqrtd;
	double t1, t2;

	if (d <= 0)
	    return (-1);	/* containing line is purely outside circle */

	sqrtd = sqrt(d);
	t1 = (-b - sqrtd)/(2.0*a);
	t2 = (-b + sqrtd)/(2.0*a);

	if (t1 >= 1.0 || t2 <= 0.0)
	    return (-1);	/* segment is purely outside circle */

	/* we know now that some part of the segment is inside,
	 * ie, t1 < 1 && t2 > 0
	 */

	if (t1 <= 0.0) {
	    /* (x1,y1) is inside circle */
	    *sx1 = x1;
	    *sy1 = y1;
	} else {
	    *sx1 = (int)(x1 + dx*t1);
	    *sy1 = (int)(y1 + dy*t1);
	}

	if (t2 >= 1.0) {
	    /* (x2,y2) is inside circle */
	    *sx2 = x2;
	    *sy2 = y2;
	} else {
	    *sx2 = (int)(x1 + dx*t2);
	    *sy2 = (int)(y1 + dy*t2);
	}

	return (0);
}

/* compute visual magnitude using the H/G parameters used in the Astro Almanac.
 * these are commonly used for asteroids.
 */
void
hg_mag (
double h, double g,
double rp,	/* sun-obj dist, AU */
double rho,	/* earth-obj dist, AU */
double rsn,	/* sun-earth dist, AU */
double *mp)
{
	double psi_t, Psi_1, Psi_2, beta;
	double c;
	double tb2;

	c = (rp*rp + rho*rho - rsn*rsn)/(2*rp*rho);
	if (c <= -1)
	    beta = PI;
	else if (c >= 1)
	    beta = 0;
	else
	    beta = acos(c);;
	tb2 = tan(beta/2.0);
	/* psi_t = exp(log(tan(beta/2.0))*0.63); */
	psi_t = pow (tb2, 0.63);
	Psi_1 = exp(-3.33*psi_t);
	/* psi_t = exp(log(tan(beta/2.0))*1.22); */
	psi_t = pow (tb2, 1.22);
	Psi_2 = exp(-1.87*psi_t);
	*mp = h + 5.0*log10(rp*rho);
	if (Psi_1 || Psi_2) *mp -= 2.5*log10((1-g)*Psi_1 + g*Psi_2);
}

/* given faintest desired mag, mag step magstp, image scale and object
 * magnitude and size, return diameter to draw object, in pixels, or 0 if
 * dimmer than fmag.
 */
int
magdiam (
int fmag,	/* faintest mag */
int magstp,	/* mag range per dot size */
double scale,	/* rads per pixel */
double mag,	/* magnitude */
double size)	/* rads, or 0 */
{
	int diam, sized;
	
	if (mag > fmag)
	    return (0);
	diam = (int)((fmag - mag)/magstp + 1);
	sized = (int)(size/scale + 0.5);
	if (sized > diam)
	    diam = sized;

	return (diam);
}

/* computer visual magnitude using the g/k parameters commonly used for comets.
 */
void
gk_mag (
double g, double k,
double rp,	/* sun-obj dist, AU */
double rho,	/* earth-obj dist, AU */
double *mp)
{
	*mp = g + 5.0*log10(rho) + 2.5*k*log10(rp);
}

/* given a string convert to floating point and return it as a double.
 * this is to isolate possible unportabilities associated with declaring atof().
 * it's worth it because atof() is often some 50% faster than sscanf ("%lf");
 */
double
atod (char *buf)
{
     if (*buf == '\0') return _nan.value;
     return (ascii_strtod(buf, NULL));
}

/* solve a spherical triangle:
 *           A
 *          /  \
 *         /    \
 *      c /      \ b
 *       /        \
 *      /          \
 *    B ____________ C
 *           a
 *
 * given A, b, c find B and a in range 0..B..2PI and 0..a..PI, respectively..
 * cap and Bp may be NULL if not interested in either one.
 * N.B. we pass in cos(c) and sin(c) because in many problems one of the sides
 *   remains constant for many values of A and b.
 */
void
solve_sphere (double A, double b, double cc, double sc, double *cap, double *Bp)
{
	double cb = cos(b), sb = sin(b);
	double sA, cA = cos(A);
	double x, y;
	double ca;
	double B;

	ca = cb*cc + sb*sc*cA;
	if (ca >  1.0) ca =  1.0;
	if (ca < -1.0) ca = -1.0;
	if (cap)
	    *cap = ca;

	if (!Bp)
	    return;

	if (sc < 1e-7)
	    B = cc < 0 ? A : PI-A;
	else {
	    sA = sin(A);
	    y = sA*sb*sc;
	    x = cb - ca*cc;
	    B = y ? (x ? atan2(y,x) : (y>0 ? PI/2 : -PI/2)) : (x>=0 ? 0 : PI);
	}

	*Bp = B;
	range (Bp, 2*PI);
}

/* #define WANT_MATHERR if your system supports it. it gives SGI fits.
 */
#undef WANT_MATHERR
#if defined(WANT_MATHERR)
/* attempt to do *something* reasonable when a math function blows.
 */
matherr (xp)
struct exception *xp;
{
	static char *names[8] = {
	    "acos", "asin", "atan2", "pow",
	    "exp", "log", "log10", "sqrt"
	};
	int i;

	/* catch-all */
	xp->retval = 0.0;

	for (i = 0; i < sizeof(names)/sizeof(names[0]); i++)
	    if (strcmp (xp->name, names[i]) == 0)
		switch (i) {
		case 0:	/* acos */
		    xp->retval = xp->arg1 >= 1.0 ? 0.0 : -PI;
		    break;
		case 1: /* asin */
		    xp->retval = xp->arg1 >= 1.0 ? PI/2 : -PI/2;
		    break;
		case 2: /* atan2 */
		    if (xp->arg1 == 0.0)
			xp->retval = xp->arg2 < 0.0 ? PI : 0.0;
		    else if (xp->arg2 == 0.0)
			xp->retval = xp->arg1 < 0.0 ? -PI/2 : PI/2;
		    else
			xp->retval = 0.0;
		    break;
		case 3: /* pow */
		/* FALLTHRU */
		case 4: /* exp */
		    xp->retval = xp->o_type == OVERFLOW ? 1e308 : 0.0;
		    break;
		case 5: /* log */
		/* FALLTHRU */
		case 6: /* log10 */
		    xp->retval = xp->arg1 <= 0.0 ? -1e308 : 0;
		    break;
		case 7: /* sqrt */
		    xp->retval = 0.0;
		    break;
		}

        return (1);     /* suppress default error handling */
}
#endif

/* given the difference in two RA's, in rads, return their difference,
 *   accounting for wrap at 2*PI. caller need *not* first force it into the
 *   range 0..2*PI.
 */
double
delra (double dra)
{
	double fdra = fmod(fabs(dra), 2*PI);

	if (fdra > PI)
	    fdra = 2*PI - fdra;
	return (fdra);
}

/* return 1 if object is considered to be "deep sky", else 0.
 * The only things deep-sky are fixed objects other than stars.
 */
int
is_deepsky (Obj *op)
{
	int deepsky = 0;

	if (is_type(op, FIXEDM)) {
	    switch (op->f_class) {
	    case 'T':
	    case 'B':
	    case 'D':
	    case 'M':
	    case 'S':
	    case 'V':
		break;
	    default:
		deepsky = 1;
		break;
	    }
	}

	return (deepsky);
}