1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
Interactive use of PyEPR_
-------------------------
.. highlight:: ipython
In this tutorial it is showed an example of how to use PyEPR_ interactively
to open, browse and display data of an ENVISAT_ ASAR_ product.
For the interactive session it is used the IPython_ interactive shell an
started with the :option:`ipython -pylab` option to enable interactive
plotting provided by the matplotlib_ package.
The ASAR_ product used in this example is a `free sample`_ available at the
ESA_ web site.
.. _PyEPR: https://github.com/avalentino/pyepr
.. _ENVISAT: http://envisat.esa.int
.. _ASAR: http://envisat.esa.int/handbooks/asar
.. _IPython: http://ipython.scipy.org/moin
.. _matplotlib: http://matplotlib.sourceforge.net
.. _`free sample`: http://earth.esa.int/services/sample_products/asar/IMP/ASA_IMP_1PNUPA20060202_062233_000000152044_00435_20529_3110.N1.gz
.. _ESA: http://earth.esa.int
:mod:`epr` module and classes
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
After starting the ipython shell with the following command:
.. code-block:: sh
$ ipython -pylab
one can import the :mod:`epr` module and start start taking confidence with
available classes and functions::
Python 2.6.6 (r266:84292, Sep 15 2010, 16:22:56)
Type "copyright", "credits" or "license" for more information.
IPython 0.10 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object'. ?object also works, ?? prints more.
Welcome to pylab, a matplotlib-based Python environment.
For more information, type 'help(pylab)'.
In [1]: import epr
In [2]: epr?
Base Class: <type 'module'>
String Form: <module 'epr' from 'epr.so'>
Namespace: Interactive
File: /home/antonio/projects/pyepr/epr.so
Docstring:
Python bindings for ENVISAT Product Reader C API
PyEPR_ provides Python_ bindings for the ENVISAT Product Reader C API
(`EPR API`_) for reading satellite data from ENVISAT_ ESA_ (European
Space Agency) mission.
PyEPR_ is fully object oriented and, as well as the `EPR API`_ for C,
supports ENVISAT_ MERIS, AATSR Level 1B and Level 2 and also ASAR data
products. It provides access to the data either on a geophysical
(decoded, ready-to-use pixel samples) or on a raw data layer.
The raw data access makes it possible to read any data field contained
in a product file.
.. _PyEPR: http://avalentino.github.com/pyepr
.. _Python: http://www.python.org
.. _`EPR API`: https://github.com/bcdev/epr-api
.. _ENVISAT: http://envisat.esa.int
.. _ESA: http://earth.esa.int
In [3]: epr.__version__, epr.EPR_C_API_VERSION
Out[3]: ('0.7', '2.2')
Docstrings are available for almost all classes, methods and functions in
the :mod:`epr` and they can be displayed using the :func:`help` python_
command or the ``?`` IPython_ shortcut as showed above.
.. _python: http://www.python.org
Also IPython_ provides a handy tab completion mechanism to automatically
complete commands or to display available functions and classes::
In [4]: product = epr. [TAB]
epr.Band epr.E_TID_TIME
epr.__builtins__ epr.E_TID_UCHAR
epr.__class__ epr.E_TID_UINT
epr._CLib epr.E_TID_UNKNOWN
epr._close_api epr.E_TID_USHORT
epr.collections epr.Field
epr.create_bitmask_raster epr.__file__
epr.create_raster epr.__format__
epr.Dataset epr.__getattribute__
epr.data_type_id_to_str epr.get_data_type_size
epr.__delattr__ epr.get_sample_model_name
epr.__dict__ epr.get_scaling_method_name
epr.__doc__ epr.__hash__
epr.DSD epr.__init__
epr.EPR_C_API_VERSION epr.__name__
epr.EPRError epr.__new__
epr.EprObject epr.np
epr.EPRTime epr.open
epr.EPRValueError epr.__package__
epr.E_SMID_LIN epr.Product
epr.E_SMID_LOG epr.Raster
epr.E_SMID_NON epr.Record
epr.E_SMOD_1OF1 epr.__reduce__
epr.E_SMOD_1OF2 epr.__reduce_ex__
epr.E_SMOD_2OF2 epr.__repr__
epr.E_SMOD_2TOF epr.__revision__
epr.E_SMOD_3TOI epr.__setattr__
epr.E_TID_CHAR epr.__sizeof__
epr.E_TID_DOUBLE epr.so
epr.E_TID_FLOAT epr.__str__
epr.E_TID_INT epr.__subclasshook__
epr.E_TID_SHORT epr.sys
epr.E_TID_SPARE epr.__test__
epr.E_TID_STRING epr.__version__
:class:`epr.Product` navigation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The first thing to do is to use the :func:`epr.open` function to get an
instance of the desired ENVISAT_ :class:`epr.Product`::
In [4]: product = epr.open(\
'ASA_IMP_1PNUPA20060202_062233_000000152044_00435_20529_3110.N1')
In [4]: product.
product.bands product.get_num_dsds
product.__class__ product.get_scene_height
product.datasets product.get_scene_width
product.__delattr__ product.get_sph
product.__doc__ product.__hash__
product.file_path product.id_string
product.__format__ product.__init__
product.__getattribute__ product.meris_iodd_version
product.get_band product.__new__
product.get_band_at product.read_bitmask_raster
product.get_band_names product.__reduce__
product.get_dataset product.__reduce_ex__
product.get_dataset_at product.__repr__
product.get_dataset_names product.__setattr__
product.get_dsd_at product.__sizeof__
product.get_mph product.__str__
product.get_num_bands product.__subclasshook__
product.get_num_datasets product.tot_size
In [5]: product.tot_size / 1024.**2
Out[5]: 132.01041889190674
In [6]: print product
epr.Product(ASA_IMP_1PNUPA20060202_ ...) 7 datasets, 5 bands
epr.Dataset(MDS1_SQ_ADS) 1 records
epr.Dataset(MAIN_PROCESSING_PARAMS_ADS) 1 records
epr.Dataset(DOP_CENTROID_COEFFS_ADS) 1 records
epr.Dataset(SR_GR_ADS) 1 records
epr.Dataset(CHIRP_PARAMS_ADS) 1 records
epr.Dataset(GEOLOCATION_GRID_ADS) 11 records
epr.Dataset(MDS1) 8192 records
epr.Band(slant_range_time) of epr.Product(ASA_IMP_1PNUPA20060202_ ...)
epr.Band(incident_angle) of epr.Product(ASA_IMP_1PNUPA20060202_ ...)
epr.Band(latitude) of epr.Product(ASA_IMP_1PNUPA20060202 ...)
epr.Band(longitude) of epr.Product(ASA_IMP_1PNUPA20060202 ...)
epr.Band(proc_data) of epr.Product(ASA_IMP_1PNUPA20060202 ...)
A short summary of product contents can be displayed simply printing the
:class:`epr.Product` object as showed above.
Being able to display contents of each object it is easy to keep browsing and
get all desired information from the product::
In [7]: dataset = product.get_dataset('MAIN_PROCESSING_PARAMS_ADS')
In [8]: dataset
Out[8]: epr.Dataset(MAIN_PROCESSING_PARAMS_ADS) 1 records
In [9]: record = dataset.[TAB]
dataset.__class__ dataset.get_name dataset.__reduce__
dataset.create_record dataset.get_num_records dataset.__reduce_ex__
dataset.__delattr__ dataset.__hash__ dataset.__repr__
dataset.description dataset.__init__ dataset.__setattr__
dataset.__doc__ dataset.__iter__ dataset.__sizeof__
dataset.__format__ dataset.__new__ dataset.__str__
dataset.__getattribute__ dataset.product dataset.__subclasshook__
dataset.get_dsd dataset.read_record
dataset.get_dsd_name dataset.records
In [9]: record = dataset.read_record(0)
In [10]: record
Out[10]: <epr.Record object at 0x33570f0> 220 fields
In [11]: record.get_field_names()[:20]
Out[11]:
['first_zero_doppler_time',
'attach_flag',
'last_zero_doppler_time',
'work_order_id',
'time_diff',
'swath_id',
'range_spacing',
'azimuth_spacing',
'line_time_interval',
'num_output_lines',
'num_samples_per_line',
'data_type',
'spare_1',
'data_analysis_flag',
'ant_elev_corr_flag',
'chirp_extract_flag',
'srgr_flag',
'dop_cen_flag',
'dop_amb_flag',
'range_spread_comp_flag']
In [12]: field = record.get_field('range_spacing')
In [13]: field.get [TAB]
field.get_description field.get_name field.get_unit
field.get_elem field.get_num_elems
field.get_elems field.get_type
In [13]: field.get_description()
Out[13]: 'Range sample spacing'
In [14]: epr.data_type_id_to_str(field.get_type())
Out[14]: 'float'
In [15]: field.get_num_elems()
Out[15]: 1
In [16]: field.get_unit()
Out[16]: 'm'
In [17]: print field
range_spacing = 12.500000
Iterating over :mod:`epr` objects
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
:class:`epr.Record` objects are also iterable_ so one can write code like
the following::
In [18]: for field in record:
if field.get_num_elems() == 4:
print '%s: %d elements' % (field.get_name(), len(field))
....:
nominal_chirp.1.nom_chirp_amp: 4 elements
nominal_chirp.1.nom_chirp_phs: 4 elements
nominal_chirp.2.nom_chirp_amp: 4 elements
nominal_chirp.2.nom_chirp_phs: 4 elements
nominal_chirp.3.nom_chirp_amp: 4 elements
nominal_chirp.3.nom_chirp_phs: 4 elements
nominal_chirp.4.nom_chirp_amp: 4 elements
nominal_chirp.4.nom_chirp_phs: 4 elements
nominal_chirp.5.nom_chirp_amp: 4 elements
nominal_chirp.5.nom_chirp_phs: 4 elements
beam_merge_sl_range: 4 elements
beam_merge_alg_param: 4 elements
Image data
~~~~~~~~~~
Dealing with image data is simple as well::
In [19]: product.get_band_names()
Out[19]: ['slant_range_time',
'incident_angle',
'latitude',
'longitude',
'proc_data']
In [19]: band = product.get_band('proc_data')
In [20]: data = band. [TAB]
band.bm_expr band.read_as_array
band.__class__ band.read_raster
band.create_compatible_raster band.__reduce__
band.data_type band.__reduce_ex__
band.__delattr__ band.__repr__
band.description band.sample_model
band.__doc__ band.scaling_factor
band.__format__ band.scaling_method
band.__getattribute__ band.scaling_offset
band.get_name band.__setattr__
band.__hash__ band.__sizeof__
band.__init__ band.spectr_band_index
band.lines_mirrored band.__str__
band.__new__ band.__subclasshook__
band.product band.unit
band.__pyx_vtable__
In [20]: data = band.read_as_array(1000, 1000, xoffset=100, yoffset=6500, \
xstep=2, ystep=2)
In [21]: data
Out[21]:
array([[ 146., 153., 134., ..., 51., 55., 72.],
[ 198., 163., 146., ..., 26., 54., 57.],
[ 127., 205., 105., ..., 64., 76., 61.],
...,
[ 64., 78., 52., ..., 96., 176., 159.],
[ 66., 41., 45., ..., 200., 153., 203.],
[ 64., 71., 88., ..., 289., 182., 123.]], dtype=float32)
In [22]: data.shape
Out[22]: (500, 500)
In [23]: imshow(data, cmap=cm.gray, vmin=0, vmax=1000)
Out[23]: <matplotlib.image.AxesImage object at 0x60dcf10>
In [24]: title(band.description)
Out[24]: <matplotlib.text.Text object at 0x67e9950>
In [25]: colorbar()
Out[25]: <matplotlib.colorbar.Colorbar instance at 0x6b18cb0>
.. figure:: images/ASA_IMP_crop.*
:width: 100%
Image data read from the "proc_data" band
.. _iterable: http://docs.python.org/glossary.html#term-iterable
.. raw:: latex
\clearpage
|