File: core.py

package info (click to toggle)
pyerfa 1.7.2%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 5,652 kB
  • sloc: ansic: 30,690; sh: 4,242; python: 2,349; makefile: 78
file content (21155 lines) | stat: -rw-r--r-- 726,984 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
# Licensed under a 3-clause BSD style license - see LICENSE.rst

# "core.py" is auto-generated by erfa_generator.py from the template
# "core.py.templ". Do *not* edit "core.py" directly, instead edit
# "core.py.templ" and run erfa_generator.py from the source directory to
# update it.

"""
Python wrappers for the ufunc wrappers of the ERFA library.

The key idea is that any function can be called with inputs that are arrays,
and the ufuncs will automatically vectorize and call the ERFA functions for
each item using broadcasting rules for numpy.  So the return values are always
numpy arrays of some sort.

For ERFA functions that take/return vectors or matrices, the vector/matrix
dimension(s) are always the *last* dimension(s).  For example, if you
want to give ten matrices (i.e., the ERFA input type is double[3][3]),
you would pass in a (10, 3, 3) numpy array.  If the output of the ERFA
function is scalar, you'll get back a length-10 1D array.
(Note that the ufuncs take this into account using structured dtypes.)

Note that the ufunc part of these functions are implemented in a separate
module (compiled as ``ufunc``), derived from the ``ufunc.c`` file.
"""

import warnings

import numpy

from . import ufunc

__all__ = [
    'ErfaError', 'ErfaWarning',
    'cal2jd', 'epb', 'epb2jd', 'epj', 'epj2jd', 'jd2cal', 'jdcalf', 'ab', 'apcg',
    'apcg13', 'apci', 'apci13', 'apco', 'apco13', 'apcs', 'apcs13', 'aper',
    'aper13', 'apio', 'apio13', 'atci13', 'atciq', 'atciqn', 'atciqz', 'atco13',
    'atic13', 'aticq', 'aticqn', 'atio13', 'atioq', 'atoc13', 'atoi13', 'atoiq',
    'ld', 'ldn', 'ldsun', 'pmpx', 'pmsafe', 'pvtob', 'refco', 'epv00', 'plan94',
    'fad03', 'fae03', 'faf03', 'faju03', 'fal03', 'falp03', 'fama03', 'fame03',
    'fane03', 'faom03', 'fapa03', 'fasa03', 'faur03', 'fave03', 'bi00', 'bp00',
    'bp06', 'bpn2xy', 'c2i00a', 'c2i00b', 'c2i06a', 'c2ibpn', 'c2ixy', 'c2ixys',
    'c2t00a', 'c2t00b', 'c2t06a', 'c2tcio', 'c2teqx', 'c2tpe', 'c2txy', 'eo06a',
    'eors', 'fw2m', 'fw2xy', 'ltp', 'ltpb', 'ltpecl', 'ltpequ', 'num00a', 'num00b',
    'num06a', 'numat', 'nut00a', 'nut00b', 'nut06a', 'nut80', 'nutm80', 'obl06',
    'obl80', 'p06e', 'pb06', 'pfw06', 'pmat00', 'pmat06', 'pmat76', 'pn00',
    'pn00a', 'pn00b', 'pn06', 'pn06a', 'pnm00a', 'pnm00b', 'pnm06a', 'pnm80',
    'pom00', 'pr00', 'prec76', 's00', 's00a', 's00b', 's06', 's06a', 'sp00',
    'xy06', 'xys00a', 'xys00b', 'xys06a', 'ee00', 'ee00a', 'ee00b', 'ee06a',
    'eect00', 'eqeq94', 'era00', 'gmst00', 'gmst06', 'gmst82', 'gst00a', 'gst00b',
    'gst06', 'gst06a', 'gst94', 'pvstar', 'starpv', 'fk425', 'fk45z', 'fk524',
    'fk52h', 'fk54z', 'fk5hip', 'fk5hz', 'h2fk5', 'hfk5z', 'starpm', 'eceq06',
    'ecm06', 'eqec06', 'lteceq', 'ltecm', 'lteqec', 'g2icrs', 'icrs2g', 'eform',
    'gc2gd', 'gc2gde', 'gd2gc', 'gd2gce', 'd2dtf', 'dat', 'dtdb', 'dtf2d', 'taitt',
    'taiut1', 'taiutc', 'tcbtdb', 'tcgtt', 'tdbtcb', 'tdbtt', 'tttai', 'tttcg',
    'tttdb', 'ttut1', 'ut1tai', 'ut1tt', 'ut1utc', 'utctai', 'utcut1', 'ae2hd',
    'hd2ae', 'hd2pa', 'tpors', 'tporv', 'tpsts', 'tpstv', 'tpxes', 'tpxev', 'a2af',
    'a2tf', 'af2a', 'anp', 'anpm', 'd2tf', 'tf2a', 'tf2d', 'rx', 'ry', 'rz', 'cp',
    'cpv', 'cr', 'p2pv', 'pv2p', 'ir', 'zp', 'zpv', 'zr', 'rxr', 'tr', 'rxp',
    'rxpv', 'trxp', 'trxpv', 'rm2v', 'rv2m', 'pap', 'pas', 'sepp', 'seps', 'c2s',
    'p2s', 'pv2s', 's2c', 's2p', 's2pv', 'pdp', 'pm', 'pmp', 'pn', 'ppp', 'ppsp',
    'pvdpv', 'pvm', 'pvmpv', 'pvppv', 'pvu', 'pvup', 'pvxpv', 'pxp', 's2xpv',
    'sxp', 'sxpv',
    'DPI', 'D2PI', 'DR2D', 'DD2R', 'DR2AS', 'DAS2R', 'DS2R', 'TURNAS', 'DMAS2R',
    'DTY', 'DAYSEC', 'DJY', 'DJC', 'DJM', 'DJ00', 'DJM0', 'DJM00', 'DJM77',
    'TTMTAI', 'DAU', 'CMPS', 'AULT', 'DC', 'ELG', 'ELB', 'TDB0', 'SRS', 'WGS84',
    'GRS80', 'WGS72']


class ErfaError(ValueError):
    """
    A class for errors triggered by ERFA functions (status codes < 0)

    Note: this class should *not* be referenced by fully-qualified name, because
    it may move to ERFA in a future version.  In a future such move it will
    still be imported here as an alias, but the true namespace of the class may
    change.
    """


class ErfaWarning(UserWarning):
    """
    A class for warnings triggered by ERFA functions (status codes > 0)

    Note: this class should *not* be referenced by fully-qualified name, because
    it may move to ERFA in a future version.  In a future such move it will
    still be imported here as an alias, but the true namespace of the class may
    change.
    """


# <---------------------------------Error-handling---------------------------->


STATUS_CODES = {}  # populated below before each function that returns an int

# This is a hard-coded list of status codes that need to be remapped,
# such as to turn errors into warnings.
STATUS_CODES_REMAP = {
    'cal2jd': {-3: 3}
}


def check_errwarn(statcodes, func_name):
    if not numpy.any(statcodes):
        return
    # Remap any errors into warnings in the STATUS_CODES_REMAP dict.
    if func_name in STATUS_CODES_REMAP:
        for before, after in STATUS_CODES_REMAP[func_name].items():
            statcodes[statcodes == before] = after
            STATUS_CODES[func_name][after] = STATUS_CODES[func_name][before]

    if numpy.any(statcodes < 0):
        # Errors present - only report the errors.
        if statcodes.shape:
            statcodes = statcodes[statcodes < 0]

        errcodes = numpy.unique(statcodes)

        errcounts = dict([(e, numpy.sum(statcodes == e)) for e in errcodes])

        elsemsg = STATUS_CODES[func_name].get('else', None)
        if elsemsg is None:
            errmsgs = dict([(e, STATUS_CODES[func_name].get(
                e, 'Return code ' + str(e))) for e in errcodes])
        else:
            errmsgs = dict([(e, STATUS_CODES[func_name].get(
                e, elsemsg)) for e in errcodes])

        emsg = ', '.join(['{0} of "{1}"'.format(errcounts[e], errmsgs[e])
                          for e in errcodes])
        raise ErfaError('ERFA function "{}" yielded {}'
                        .format(func_name, emsg))

    elif numpy.any(statcodes > 0):
        # Only warnings present.
        if statcodes.shape:
            statcodes = statcodes[statcodes > 0]

        warncodes = numpy.unique(statcodes)

        warncounts = dict([(w, numpy.sum(statcodes == w)) for w in warncodes])

        elsemsg = STATUS_CODES[func_name].get('else', None)
        if elsemsg is None:
            warnmsgs = dict([(w, STATUS_CODES[func_name].get(
                w, 'Return code ' + str(w))) for w in warncodes])
        else:
            warnmsgs = dict([(w, STATUS_CODES[func_name].get(
                w, elsemsg)) for w in warncodes])

        wmsg = ', '.join(['{0} of "{1}"'.format(warncounts[w], warnmsgs[w])
                          for w in warncodes])
        warnings.warn('ERFA function "{}" yielded {}'.format(func_name, wmsg),
                      ErfaWarning)


# <------------------------structured dtype conversion------------------------>

dt_bytes1 = numpy.dtype('S1')
dt_bytes12 = numpy.dtype('S12')

# <--------------------------Actual ERFA-wrapping code------------------------>


DPI = (3.141592653589793238462643)
"""Pi"""
D2PI = (6.283185307179586476925287)
"""2Pi"""
DR2D = (57.29577951308232087679815)
"""Radians to degrees"""
DD2R = (1.745329251994329576923691e-2)
"""Degrees to radians"""
DR2AS = (206264.8062470963551564734)
"""Radians to arcseconds"""
DAS2R = (4.848136811095359935899141e-6)
"""Arcseconds to radians"""
DS2R = (7.272205216643039903848712e-5)
"""Seconds of time to radians"""
TURNAS = (1296000.0)
"""Arcseconds in a full circle"""
DMAS2R = (DAS2R / 1e3)
"""Milliarcseconds to radians"""
DTY = (365.242198781)
"""Length of tropical year B1900 (days)"""
DAYSEC = (86400.0)
"""Seconds per day."""
DJY = (365.25)
"""Days per Julian year"""
DJC = (36525.0)
"""Days per Julian century"""
DJM = (365250.0)
"""Days per Julian millennium"""
DJ00 = (2451545.0)
"""Reference epoch (J2000.0), Julian Date"""
DJM0 = (2400000.5)
"""Julian Date of Modified Julian Date zero"""
DJM00 = (51544.5)
"""Reference epoch (J2000.0), Modified Julian Date"""
DJM77 = (43144.0)
"""1977 Jan 1.0 as MJD"""
TTMTAI = (32.184)
"""TT minus TAI (s)"""
DAU = (149597870.7e3)
"""Astronomical unit (m, IAU 2012)"""
CMPS = 299792458.0
"""Speed of light (m/s)"""
AULT = (DAU/CMPS)
"""Light time for 1 au (s)"""
DC = (DAYSEC/AULT)
"""Speed of light (au per day)"""
ELG = (6.969290134e-10)
"""L_G = 1 - d(TT)/d(TCG)"""
ELB = (1.550519768e-8)
"""L_B = 1 - d(TDB)/d(TCB), and TDB (s) at TAI 1977/1/1.0"""
TDB0 = (-6.55e-5)
"""L_B = 1 - d(TDB)/d(TCB), and TDB (s) at TAI 1977/1/1.0"""
SRS = 1.97412574336e-8
"""Schwarzschild radius of the Sun (au) = 2 * 1.32712440041e20 / (2.99792458e8)^2
/ 1.49597870700e11"""
WGS84 = 1
"""Reference ellipsoids"""
GRS80 = 2
"""Reference ellipsoids"""
WGS72 = 3
"""Reference ellipsoids"""


def cal2jd(iy, im, id):
    """
    Gregorian Calendar to Julian Date.

    Parameters
    ----------
    iy : int array
    im : int array
    id : int array

    Returns
    -------
    djm0 : double array
    djm : double array

    Notes
    -----
    Wraps ERFA function ``eraCal2jd``. The ERFA documentation is::

        - - - - - - - - - -
         e r a C a l 2 j d
        - - - - - - - - - -

        Gregorian Calendar to Julian Date.

        Given:
           iy,im,id  int     year, month, day in Gregorian calendar (Note 1)

        Returned:
           djm0      double  MJD zero-point: always 2400000.5
           djm       double  Modified Julian Date for 0 hrs

        Returned (function value):
                     int     status:
                                 0 = OK
                                -1 = bad year   (Note 3: JD not computed)
                                -2 = bad month  (JD not computed)
                                -3 = bad day    (JD computed)

        Notes:

        1) The algorithm used is valid from -4800 March 1, but this
           implementation rejects dates before -4799 January 1.

        2) The Julian Date is returned in two pieces, in the usual ERFA
           manner, which is designed to preserve time resolution.  The
           Julian Date is available as a single number by adding djm0 and
           djm.

        3) In early eras the conversion is from the "Proleptic Gregorian
           Calendar";  no account is taken of the date(s) of adoption of
           the Gregorian Calendar, nor is the AD/BC numbering convention
           observed.

        Reference:

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992),
           Section 12.92 (p604).

        This revision:  2013 August 7

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    djm0, djm, c_retval = ufunc.cal2jd(iy, im, id)
    check_errwarn(c_retval, 'cal2jd')
    return djm0, djm


STATUS_CODES['cal2jd'] = {
    0: 'OK',
    -1: 'bad year   (Note 3: JD not computed)',
    -2: 'bad month  (JD not computed)',
    -3: 'bad day    (JD computed)',
}


def epb(dj1, dj2):
    """
    Julian Date to Besselian Epoch.

    Parameters
    ----------
    dj1 : double array
    dj2 : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraEpb``. The ERFA documentation is::

        - - - - - - -
         e r a E p b
        - - - - - - -

        Julian Date to Besselian Epoch.

        Given:
           dj1,dj2    double     Julian Date (see note)

        Returned (function value):
                      double     Besselian Epoch.

        Note:

           The Julian Date is supplied in two pieces, in the usual ERFA
           manner, which is designed to preserve time resolution.  The
           Julian Date is available as a single number by adding dj1 and
           dj2.  The maximum resolution is achieved if dj1 is 2451545.0
           (J2000.0).

        Reference:

           Lieske, J.H., 1979. Astron.Astrophys., 73, 282.

        This revision:  2013 August 21

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.epb(dj1, dj2)
    return c_retval


def epb2jd(epb):
    """
    Besselian Epoch to Julian Date.

    Parameters
    ----------
    epb : double array

    Returns
    -------
    djm0 : double array
    djm : double array

    Notes
    -----
    Wraps ERFA function ``eraEpb2jd``. The ERFA documentation is::

        - - - - - - - - - -
         e r a E p b 2 j d
        - - - - - - - - - -

        Besselian Epoch to Julian Date.

        Given:
           epb      double    Besselian Epoch (e.g. 1957.3)

        Returned:
           djm0     double    MJD zero-point: always 2400000.5
           djm      double    Modified Julian Date

        Note:

           The Julian Date is returned in two pieces, in the usual ERFA
           manner, which is designed to preserve time resolution.  The
           Julian Date is available as a single number by adding djm0 and
           djm.

        Reference:

           Lieske, J.H., 1979, Astron.Astrophys. 73, 282.

        This revision:  2013 August 13

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    djm0, djm = ufunc.epb2jd(epb)
    return djm0, djm


def epj(dj1, dj2):
    """
    Julian Date to Julian Epoch.

    Parameters
    ----------
    dj1 : double array
    dj2 : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraEpj``. The ERFA documentation is::

        - - - - - - -
         e r a E p j
        - - - - - - -

        Julian Date to Julian Epoch.

        Given:
           dj1,dj2    double     Julian Date (see note)

        Returned (function value):
                      double     Julian Epoch

        Note:

           The Julian Date is supplied in two pieces, in the usual ERFA
           manner, which is designed to preserve time resolution.  The
           Julian Date is available as a single number by adding dj1 and
           dj2.  The maximum resolution is achieved if dj1 is 2451545.0
           (J2000.0).

        Reference:

           Lieske, J.H., 1979, Astron.Astrophys. 73, 282.

        This revision:  2013 August 7

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.epj(dj1, dj2)
    return c_retval


def epj2jd(epj):
    """
    Julian Epoch to Julian Date.

    Parameters
    ----------
    epj : double array

    Returns
    -------
    djm0 : double array
    djm : double array

    Notes
    -----
    Wraps ERFA function ``eraEpj2jd``. The ERFA documentation is::

        - - - - - - - - - -
         e r a E p j 2 j d
        - - - - - - - - - -

        Julian Epoch to Julian Date.

        Given:
           epj      double    Julian Epoch (e.g. 1996.8)

        Returned:
           djm0     double    MJD zero-point: always 2400000.5
           djm      double    Modified Julian Date

        Note:

           The Julian Date is returned in two pieces, in the usual ERFA
           manner, which is designed to preserve time resolution.  The
           Julian Date is available as a single number by adding djm0 and
           djm.

        Reference:

           Lieske, J.H., 1979, Astron.Astrophys. 73, 282.

        This revision:  2013 August 7

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    djm0, djm = ufunc.epj2jd(epj)
    return djm0, djm


def jd2cal(dj1, dj2):
    """
    Julian Date to Gregorian year, month, day, and fraction of a day.

    Parameters
    ----------
    dj1 : double array
    dj2 : double array

    Returns
    -------
    iy : int array
    im : int array
    id : int array
    fd : double array

    Notes
    -----
    Wraps ERFA function ``eraJd2cal``. The ERFA documentation is::

        - - - - - - - - - -
         e r a J d 2 c a l
        - - - - - - - - - -

        Julian Date to Gregorian year, month, day, and fraction of a day.

        Given:
           dj1,dj2   double   Julian Date (Notes 1, 2)

        Returned (arguments):
           iy        int      year
           im        int      month
           id        int      day
           fd        double   fraction of day

        Returned (function value):
                     int      status:
                                 0 = OK
                                -1 = unacceptable date (Note 1)

        Notes:

        1) The earliest valid date is -68569.5 (-4900 March 1).  The
           largest value accepted is 1e9.

        2) The Julian Date is apportioned in any convenient way between
           the arguments dj1 and dj2.  For example, JD=2450123.7 could
           be expressed in any of these ways, among others:

                  dj1             dj2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           Separating integer and fraction uses the "compensated summation"
           algorithm of Kahan-Neumaier to preserve as much precision as
           possible irrespective of the jd1+jd2 apportionment.

        3) In early eras the conversion is from the "proleptic Gregorian
           calendar";  no account is taken of the date(s) of adoption of
           the Gregorian calendar, nor is the AD/BC numbering convention
           observed.

        References:

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992),
           Section 12.92 (p604).

           Klein, A., A Generalized Kahan-Babuska-Summation-Algorithm.
           Computing, 76, 279-293 (2006), Section 3.

        This revision:  2020 October 21

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    iy, im, id, fd, c_retval = ufunc.jd2cal(dj1, dj2)
    check_errwarn(c_retval, 'jd2cal')
    return iy, im, id, fd


STATUS_CODES['jd2cal'] = {
    0: 'OK',
    -1: 'unacceptable date (Note 1)',
}


def jdcalf(ndp, dj1, dj2):
    """
    Julian Date to Gregorian Calendar, expressed in a form convenient
    for formatting messages:  rounded to a specified precision.

    Parameters
    ----------
    ndp : int array
    dj1 : double array
    dj2 : double array

    Returns
    -------
    iymdf : int array

    Notes
    -----
    Wraps ERFA function ``eraJdcalf``. The ERFA documentation is::

        - - - - - - - - - -
         e r a J d c a l f
        - - - - - - - - - -

        Julian Date to Gregorian Calendar, expressed in a form convenient
        for formatting messages:  rounded to a specified precision.

        Given:
           ndp       int      number of decimal places of days in fraction
           dj1,dj2   double   dj1+dj2 = Julian Date (Note 1)

        Returned:
           iymdf     int[4]   year, month, day, fraction in Gregorian
                              calendar

        Returned (function value):
                     int      status:
                                -1 = date out of range
                                 0 = OK
                                +1 = NDP not 0-9 (interpreted as 0)

        Notes:

        1) The Julian Date is apportioned in any convenient way between
           the arguments dj1 and dj2.  For example, JD=2450123.7 could
           be expressed in any of these ways, among others:

                   dj1            dj2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

        2) In early eras the conversion is from the "Proleptic Gregorian
           Calendar";  no account is taken of the date(s) of adoption of
           the Gregorian Calendar, nor is the AD/BC numbering convention
           observed.

        3) See also the function eraJd2cal.

        4) The number of decimal places ndp should be 4 or less if internal
           overflows are to be avoided on platforms which use 16-bit
           integers.

        Called:
           eraJd2cal    JD to Gregorian calendar

        Reference:

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992),
           Section 12.92 (p604).

        This revision:  2020 October 22

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    iymdf, c_retval = ufunc.jdcalf(ndp, dj1, dj2)
    check_errwarn(c_retval, 'jdcalf')
    return iymdf


STATUS_CODES['jdcalf'] = {
    -1: 'date out of range',
    0: 'OK',
    1: 'NDP not 0-9 (interpreted as 0)',
}


def ab(pnat, v, s, bm1):
    """
    Apply aberration to transform natural direction into proper
    direction.

    Parameters
    ----------
    pnat : double array
    v : double array
    s : double array
    bm1 : double array

    Returns
    -------
    ppr : double array

    Notes
    -----
    Wraps ERFA function ``eraAb``. The ERFA documentation is::

        - - - - - -
         e r a A b
        - - - - - -

        Apply aberration to transform natural direction into proper
        direction.

        Given:
          pnat    double[3]   natural direction to the source (unit vector)
          v       double[3]   observer barycentric velocity in units of c
          s       double      distance between the Sun and the observer (au)
          bm1     double      sqrt(1-|v|^2): reciprocal of Lorenz factor

        Returned:
          ppr     double[3]   proper direction to source (unit vector)

        Notes:

        1) The algorithm is based on Expr. (7.40) in the Explanatory
           Supplement (Urban & Seidelmann 2013), but with the following
           changes:

           o  Rigorous rather than approximate normalization is applied.

           o  The gravitational potential term from Expr. (7) in
              Klioner (2003) is added, taking into account only the Sun's
              contribution.  This has a maximum effect of about
              0.4 microarcsecond.

        2) In almost all cases, the maximum accuracy will be limited by the
           supplied velocity.  For example, if the ERFA eraEpv00 function is
           used, errors of up to 5 microarcseconds could occur.

        References:

           Urban, S. & Seidelmann, P. K. (eds), Explanatory Supplement to
           the Astronomical Almanac, 3rd ed., University Science Books
           (2013).

           Klioner, Sergei A., "A practical relativistic model for micro-
           arcsecond astrometry in space", Astr. J. 125, 1580-1597 (2003).

        Called:
           eraPdp       scalar product of two p-vectors

        This revision:   2013 October 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    ppr = ufunc.ab(pnat, v, s, bm1)
    return ppr


def apcg(date1, date2, ebpv, ehp):
    """
    For a geocentric observer, prepare star-independent astrometry
    parameters for transformations between ICRS and GCRS coordinates.

    Parameters
    ----------
    date1 : double array
    date2 : double array
    ebpv : double array
    ehp : double array

    Returns
    -------
    astrom : eraASTROM array

    Notes
    -----
    Wraps ERFA function ``eraApcg``. The ERFA documentation is::

        - - - - - - - -
         e r a A p c g
        - - - - - - - -

        For a geocentric observer, prepare star-independent astrometry
        parameters for transformations between ICRS and GCRS coordinates.
        The Earth ephemeris is supplied by the caller.

        The parameters produced by this function are required in the
        parallax, light deflection and aberration parts of the astrometric
        transformation chain.

        Given:
           date1  double       TDB as a 2-part...
           date2  double       ...Julian Date (Note 1)
           ebpv   double[2][3] Earth barycentric pos/vel (au, au/day)
           ehp    double[3]    Earth heliocentric position (au)

        Returned:
           astrom eraASTROM         star-independent astrometry parameters:
            pmt    double       PM time interval (SSB, Julian years)
            eb     double[3]    SSB to observer (vector, au)
            eh     double[3]    Sun to observer (unit vector)
            em     double       distance from Sun to observer (au)
            v      double[3]    barycentric observer velocity (vector, c)
            bm1    double       sqrt(1-|v|^2): reciprocal of Lorenz factor
            bpn    double[3][3] bias-precession-nutation matrix
            along  double       unchanged
            xpl    double       unchanged
            ypl    double       unchanged
            sphi   double       unchanged
            cphi   double       unchanged
            diurab double       unchanged
            eral   double       unchanged
            refa   double       unchanged
            refb   double       unchanged

        Notes:

        1) The TDB date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TDB)=2450123.7 could be expressed in any of these ways, among
           others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in cases
           where the loss of several decimal digits of resolution is
           acceptable.  The J2000 method is best matched to the way the
           argument is handled internally and will deliver the optimum
           resolution.  The MJD method and the date & time methods are both
           good compromises between resolution and convenience.  For most
           applications of this function the choice will not be at all
           critical.

           TT can be used instead of TDB without any significant impact on
           accuracy.

        2) All the vectors are with respect to BCRS axes.

        3) This is one of several functions that inserts into the astrom
           structure star-independent parameters needed for the chain of
           astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.

           The various functions support different classes of observer and
           portions of the transformation chain:

                functions         observer        transformation

             eraApcg eraApcg13    geocentric      ICRS <-> GCRS
             eraApci eraApci13    terrestrial     ICRS <-> CIRS
             eraApco eraApco13    terrestrial     ICRS <-> observed
             eraApcs eraApcs13    space           ICRS <-> GCRS
             eraAper eraAper13    terrestrial     update Earth rotation
             eraApio eraApio13    terrestrial     CIRS <-> observed

           Those with names ending in "13" use contemporary ERFA models to
           compute the various ephemerides.  The others accept ephemerides
           supplied by the caller.

           The transformation from ICRS to GCRS covers space motion,
           parallax, light deflection, and aberration.  From GCRS to CIRS
           comprises frame bias and precession-nutation.  From CIRS to
           observed takes account of Earth rotation, polar motion, diurnal
           aberration and parallax (unless subsumed into the ICRS <-> GCRS
           transformation), and atmospheric refraction.

        4) The context structure astrom produced by this function is used by
           eraAtciq* and eraAticq*.

        Called:
           eraApcs      astrometry parameters, ICRS-GCRS, space observer

        This revision:   2013 October 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    astrom = ufunc.apcg(date1, date2, ebpv, ehp)
    return astrom


def apcg13(date1, date2):
    """
    For a geocentric observer, prepare star-independent astrometry
    parameters for transformations between ICRS and GCRS coordinates.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    astrom : eraASTROM array

    Notes
    -----
    Wraps ERFA function ``eraApcg13``. The ERFA documentation is::

        - - - - - - - - - -
         e r a A p c g 1 3
        - - - - - - - - - -

        For a geocentric observer, prepare star-independent astrometry
        parameters for transformations between ICRS and GCRS coordinates.
        The caller supplies the date, and ERFA models are used to predict
        the Earth ephemeris.

        The parameters produced by this function are required in the
        parallax, light deflection and aberration parts of the astrometric
        transformation chain.

        Given:
           date1  double     TDB as a 2-part...
           date2  double     ...Julian Date (Note 1)

        Returned:
           astrom eraASTROM* star-independent astrometry parameters:
            pmt    double       PM time interval (SSB, Julian years)
            eb     double[3]    SSB to observer (vector, au)
            eh     double[3]    Sun to observer (unit vector)
            em     double       distance from Sun to observer (au)
            v      double[3]    barycentric observer velocity (vector, c)
            bm1    double       sqrt(1-|v|^2): reciprocal of Lorenz factor
            bpn    double[3][3] bias-precession-nutation matrix
            along  double       unchanged
            xpl    double       unchanged
            ypl    double       unchanged
            sphi   double       unchanged
            cphi   double       unchanged
            diurab double       unchanged
            eral   double       unchanged
            refa   double       unchanged
            refb   double       unchanged

        Notes:

        1) The TDB date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TDB)=2450123.7 could be expressed in any of these ways, among
           others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in cases
           where the loss of several decimal digits of resolution is
           acceptable.  The J2000 method is best matched to the way the
           argument is handled internally and will deliver the optimum
           resolution.  The MJD method and the date & time methods are both
           good compromises between resolution and convenience.  For most
           applications of this function the choice will not be at all
           critical.

           TT can be used instead of TDB without any significant impact on
           accuracy.

        2) All the vectors are with respect to BCRS axes.

        3) In cases where the caller wishes to supply his own Earth
           ephemeris, the function eraApcg can be used instead of the present
           function.

        4) This is one of several functions that inserts into the astrom
           structure star-independent parameters needed for the chain of
           astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.

           The various functions support different classes of observer and
           portions of the transformation chain:

                functions         observer        transformation

             eraApcg eraApcg13    geocentric      ICRS <-> GCRS
             eraApci eraApci13    terrestrial     ICRS <-> CIRS
             eraApco eraApco13    terrestrial     ICRS <-> observed
             eraApcs eraApcs13    space           ICRS <-> GCRS
             eraAper eraAper13    terrestrial     update Earth rotation
             eraApio eraApio13    terrestrial     CIRS <-> observed

           Those with names ending in "13" use contemporary ERFA models to
           compute the various ephemerides.  The others accept ephemerides
           supplied by the caller.

           The transformation from ICRS to GCRS covers space motion,
           parallax, light deflection, and aberration.  From GCRS to CIRS
           comprises frame bias and precession-nutation.  From CIRS to
           observed takes account of Earth rotation, polar motion, diurnal
           aberration and parallax (unless subsumed into the ICRS <-> GCRS
           transformation), and atmospheric refraction.

        5) The context structure astrom produced by this function is used by
           eraAtciq* and eraAticq*.

        Called:
           eraEpv00     Earth position and velocity
           eraApcg      astrometry parameters, ICRS-GCRS, geocenter

        This revision:   2013 October 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    astrom = ufunc.apcg13(date1, date2)
    return astrom


def apci(date1, date2, ebpv, ehp, x, y, s):
    """
    For a terrestrial observer, prepare star-independent astrometry
    parameters for transformations between ICRS and geocentric CIRS
    coordinates.

    Parameters
    ----------
    date1 : double array
    date2 : double array
    ebpv : double array
    ehp : double array
    x : double array
    y : double array
    s : double array

    Returns
    -------
    astrom : eraASTROM array

    Notes
    -----
    Wraps ERFA function ``eraApci``. The ERFA documentation is::

        - - - - - - - -
         e r a A p c i
        - - - - - - - -

        For a terrestrial observer, prepare star-independent astrometry
        parameters for transformations between ICRS and geocentric CIRS
        coordinates.  The Earth ephemeris and CIP/CIO are supplied by the
        caller.

        The parameters produced by this function are required in the
        parallax, light deflection, aberration, and bias-precession-nutation
        parts of the astrometric transformation chain.

        Given:
           date1  double       TDB as a 2-part...
           date2  double       ...Julian Date (Note 1)
           ebpv   double[2][3] Earth barycentric position/velocity (au, au/day)
           ehp    double[3]    Earth heliocentric position (au)
           x,y    double       CIP X,Y (components of unit vector)
           s      double       the CIO locator s (radians)

        Returned:
           astrom eraASTROM         star-independent astrometry parameters:
            pmt    double       PM time interval (SSB, Julian years)
            eb     double[3]    SSB to observer (vector, au)
            eh     double[3]    Sun to observer (unit vector)
            em     double       distance from Sun to observer (au)
            v      double[3]    barycentric observer velocity (vector, c)
            bm1    double       sqrt(1-|v|^2): reciprocal of Lorenz factor
            bpn    double[3][3] bias-precession-nutation matrix
            along  double       unchanged
            xpl    double       unchanged
            ypl    double       unchanged
            sphi   double       unchanged
            cphi   double       unchanged
            diurab double       unchanged
            eral   double       unchanged
            refa   double       unchanged
            refb   double       unchanged

        Notes:

        1) The TDB date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TDB)=2450123.7 could be expressed in any of these ways, among
           others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in cases
           where the loss of several decimal digits of resolution is
           acceptable.  The J2000 method is best matched to the way the
           argument is handled internally and will deliver the optimum
           resolution.  The MJD method and the date & time methods are both
           good compromises between resolution and convenience.  For most
           applications of this function the choice will not be at all
           critical.

           TT can be used instead of TDB without any significant impact on
           accuracy.

        2) All the vectors are with respect to BCRS axes.

        3) In cases where the caller does not wish to provide the Earth
           ephemeris and CIP/CIO, the function eraApci13 can be used instead
           of the present function.  This computes the required quantities
           using other ERFA functions.

        4) This is one of several functions that inserts into the astrom
           structure star-independent parameters needed for the chain of
           astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.

           The various functions support different classes of observer and
           portions of the transformation chain:

                functions         observer        transformation

             eraApcg eraApcg13    geocentric      ICRS <-> GCRS
             eraApci eraApci13    terrestrial     ICRS <-> CIRS
             eraApco eraApco13    terrestrial     ICRS <-> observed
             eraApcs eraApcs13    space           ICRS <-> GCRS
             eraAper eraAper13    terrestrial     update Earth rotation
             eraApio eraApio13    terrestrial     CIRS <-> observed

           Those with names ending in "13" use contemporary ERFA models to
           compute the various ephemerides.  The others accept ephemerides
           supplied by the caller.

           The transformation from ICRS to GCRS covers space motion,
           parallax, light deflection, and aberration.  From GCRS to CIRS
           comprises frame bias and precession-nutation.  From CIRS to
           observed takes account of Earth rotation, polar motion, diurnal
           aberration and parallax (unless subsumed into the ICRS <-> GCRS
           transformation), and atmospheric refraction.

        5) The context structure astrom produced by this function is used by
           eraAtciq* and eraAticq*.

        Called:
           eraApcg      astrometry parameters, ICRS-GCRS, geocenter
           eraC2ixys    celestial-to-intermediate matrix, given X,Y and s

        This revision:   2013 September 25

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    astrom = ufunc.apci(date1, date2, ebpv, ehp, x, y, s)
    return astrom


def apci13(date1, date2):
    """
    For a terrestrial observer, prepare star-independent astrometry
    parameters for transformations between ICRS and geocentric CIRS
    coordinates.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    astrom : eraASTROM array
    eo : double array

    Notes
    -----
    Wraps ERFA function ``eraApci13``. The ERFA documentation is::

        - - - - - - - - - -
         e r a A p c i 1 3
        - - - - - - - - - -

        For a terrestrial observer, prepare star-independent astrometry
        parameters for transformations between ICRS and geocentric CIRS
        coordinates.  The caller supplies the date, and ERFA models are used
        to predict the Earth ephemeris and CIP/CIO.

        The parameters produced by this function are required in the
        parallax, light deflection, aberration, and bias-precession-nutation
        parts of the astrometric transformation chain.

        Given:
           date1  double      TDB as a 2-part...
           date2  double      ...Julian Date (Note 1)

        Returned:
           astrom eraASTROM        star-independent astrometry parameters:
            pmt    double       PM time interval (SSB, Julian years)
            eb     double[3]    SSB to observer (vector, au)
            eh     double[3]    Sun to observer (unit vector)
            em     double       distance from Sun to observer (au)
            v      double[3]    barycentric observer velocity (vector, c)
            bm1    double       sqrt(1-|v|^2): reciprocal of Lorenz factor
            bpn    double[3][3] bias-precession-nutation matrix
            along  double       unchanged
            xpl    double       unchanged
            ypl    double       unchanged
            sphi   double       unchanged
            cphi   double       unchanged
            diurab double       unchanged
            eral   double       unchanged
            refa   double       unchanged
            refb   double       unchanged
           eo     double           equation of the origins (ERA-GST)

        Notes:

        1) The TDB date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TDB)=2450123.7 could be expressed in any of these ways, among
           others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in cases
           where the loss of several decimal digits of resolution is
           acceptable.  The J2000 method is best matched to the way the
           argument is handled internally and will deliver the optimum
           resolution.  The MJD method and the date & time methods are both
           good compromises between resolution and convenience.  For most
           applications of this function the choice will not be at all
           critical.

           TT can be used instead of TDB without any significant impact on
           accuracy.

        2) All the vectors are with respect to BCRS axes.

        3) In cases where the caller wishes to supply his own Earth
           ephemeris and CIP/CIO, the function eraApci can be used instead
           of the present function.

        4) This is one of several functions that inserts into the astrom
           structure star-independent parameters needed for the chain of
           astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.

           The various functions support different classes of observer and
           portions of the transformation chain:

                functions         observer        transformation

             eraApcg eraApcg13    geocentric      ICRS <-> GCRS
             eraApci eraApci13    terrestrial     ICRS <-> CIRS
             eraApco eraApco13    terrestrial     ICRS <-> observed
             eraApcs eraApcs13    space           ICRS <-> GCRS
             eraAper eraAper13    terrestrial     update Earth rotation
             eraApio eraApio13    terrestrial     CIRS <-> observed

           Those with names ending in "13" use contemporary ERFA models to
           compute the various ephemerides.  The others accept ephemerides
           supplied by the caller.

           The transformation from ICRS to GCRS covers space motion,
           parallax, light deflection, and aberration.  From GCRS to CIRS
           comprises frame bias and precession-nutation.  From CIRS to
           observed takes account of Earth rotation, polar motion, diurnal
           aberration and parallax (unless subsumed into the ICRS <-> GCRS
           transformation), and atmospheric refraction.

        5) The context structure astrom produced by this function is used by
           eraAtciq* and eraAticq*.

        Called:
           eraEpv00     Earth position and velocity
           eraPnm06a    classical NPB matrix, IAU 2006/2000A
           eraBpn2xy    extract CIP X,Y coordinates from NPB matrix
           eraS06       the CIO locator s, given X,Y, IAU 2006
           eraApci      astrometry parameters, ICRS-CIRS
           eraEors      equation of the origins, given NPB matrix and s

        This revision:   2013 October 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    astrom, eo = ufunc.apci13(date1, date2)
    return astrom, eo


def apco(date1, date2, ebpv, ehp, x, y, s, theta, elong, phi, hm, xp, yp, sp, refa, refb):
    """
    For a terrestrial observer, prepare star-independent astrometry
    parameters for transformations between ICRS and observed
    coordinates.

    Parameters
    ----------
    date1 : double array
    date2 : double array
    ebpv : double array
    ehp : double array
    x : double array
    y : double array
    s : double array
    theta : double array
    elong : double array
    phi : double array
    hm : double array
    xp : double array
    yp : double array
    sp : double array
    refa : double array
    refb : double array

    Returns
    -------
    astrom : eraASTROM array

    Notes
    -----
    Wraps ERFA function ``eraApco``. The ERFA documentation is::

        - - - - - - - -
         e r a A p c o
        - - - - - - - -

        For a terrestrial observer, prepare star-independent astrometry
        parameters for transformations between ICRS and observed
        coordinates.  The caller supplies the Earth ephemeris, the Earth
        rotation information and the refraction constants as well as the
        site coordinates.

        Given:
           date1  double       TDB as a 2-part...
           date2  double       ...Julian Date (Note 1)
           ebpv   double[2][3] Earth barycentric PV (au, au/day, Note 2)
           ehp    double[3]    Earth heliocentric P (au, Note 2)
           x,y    double       CIP X,Y (components of unit vector)
           s      double       the CIO locator s (radians)
           theta  double       Earth rotation angle (radians)
           elong  double       longitude (radians, east +ve, Note 3)
           phi    double       latitude (geodetic, radians, Note 3)
           hm     double       height above ellipsoid (m, geodetic, Note 3)
           xp,yp  double       polar motion coordinates (radians, Note 4)
           sp     double       the TIO locator s' (radians, Note 4)
           refa   double       refraction constant A (radians, Note 5)
           refb   double       refraction constant B (radians, Note 5)

        Returned:
           astrom eraASTROM         star-independent astrometry parameters:
            pmt    double       PM time interval (SSB, Julian years)
            eb     double[3]    SSB to observer (vector, au)
            eh     double[3]    Sun to observer (unit vector)
            em     double       distance from Sun to observer (au)
            v      double[3]    barycentric observer velocity (vector, c)
            bm1    double       sqrt(1-|v|^2): reciprocal of Lorenz factor
            bpn    double[3][3] bias-precession-nutation matrix
            along  double       adjusted longitude (radians)
            xpl    double       polar motion xp wrt local meridian (radians)
            ypl    double       polar motion yp wrt local meridian (radians)
            sphi   double       sine of geodetic latitude
            cphi   double       cosine of geodetic latitude
            diurab double       magnitude of diurnal aberration vector
            eral   double       "local" Earth rotation angle (radians)
            refa   double       refraction constant A (radians)
            refb   double       refraction constant B (radians)

        Notes:

        1) The TDB date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TDB)=2450123.7 could be expressed in any of these ways, among
           others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in cases
           where the loss of several decimal digits of resolution is
           acceptable.  The J2000 method is best matched to the way the
           argument is handled internally and will deliver the optimum
           resolution.  The MJD method and the date & time methods are both
           good compromises between resolution and convenience.  For most
           applications of this function the choice will not be at all
           critical.

           TT can be used instead of TDB without any significant impact on
           accuracy.

        2) The vectors eb, eh, and all the astrom vectors, are with respect
           to BCRS axes.

        3) The geographical coordinates are with respect to the ERFA_WGS84
           reference ellipsoid.  TAKE CARE WITH THE LONGITUDE SIGN
           CONVENTION:  the longitude required by the present function is
           right-handed, i.e. east-positive, in accordance with geographical
           convention.

           The adjusted longitude stored in the astrom array takes into
           account the TIO locator and polar motion.

        4) xp and yp are the coordinates (in radians) of the Celestial
           Intermediate Pole with respect to the International Terrestrial
           Reference System (see IERS Conventions), measured along the
           meridians 0 and 90 deg west respectively.  sp is the TIO locator
           s', in radians, which positions the Terrestrial Intermediate
           Origin on the equator.  For many applications, xp, yp and
           (especially) sp can be set to zero.

           Internally, the polar motion is stored in a form rotated onto the
           local meridian.

        5) The refraction constants refa and refb are for use in a
           dZ = A*tan(Z)+B*tan^3(Z) model, where Z is the observed
           (i.e. refracted) zenith distance and dZ is the amount of
           refraction.

        6) It is advisable to take great care with units, as even unlikely
           values of the input parameters are accepted and processed in
           accordance with the models used.

        7) In cases where the caller does not wish to provide the Earth
           Ephemeris, the Earth rotation information and refraction
           constants, the function eraApco13 can be used instead of the
           present function.  This starts from UTC and weather readings etc.
           and computes suitable values using other ERFA functions.

        8) This is one of several functions that inserts into the astrom
           structure star-independent parameters needed for the chain of
           astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.

           The various functions support different classes of observer and
           portions of the transformation chain:

                functions         observer        transformation

             eraApcg eraApcg13    geocentric      ICRS <-> GCRS
             eraApci eraApci13    terrestrial     ICRS <-> CIRS
             eraApco eraApco13    terrestrial     ICRS <-> observed
             eraApcs eraApcs13    space           ICRS <-> GCRS
             eraAper eraAper13    terrestrial     update Earth rotation
             eraApio eraApio13    terrestrial     CIRS <-> observed

           Those with names ending in "13" use contemporary ERFA models to
           compute the various ephemerides.  The others accept ephemerides
           supplied by the caller.

           The transformation from ICRS to GCRS covers space motion,
           parallax, light deflection, and aberration.  From GCRS to CIRS
           comprises frame bias and precession-nutation.  From CIRS to
           observed takes account of Earth rotation, polar motion, diurnal
           aberration and parallax (unless subsumed into the ICRS <-> GCRS
           transformation), and atmospheric refraction.

        9) The context structure astrom produced by this function is used by
           eraAtioq, eraAtoiq, eraAtciq* and eraAticq*.

        Called:
           eraIr        initialize r-matrix to identity
           eraRz        rotate around Z-axis
           eraRy        rotate around Y-axis
           eraRx        rotate around X-axis
           eraAnpm      normalize angle into range +/- pi
           eraC2ixys    celestial-to-intermediate matrix, given X,Y and s
           eraPvtob     position/velocity of terrestrial station
           eraTrxpv     product of transpose of r-matrix and pv-vector
           eraApcs      astrometry parameters, ICRS-GCRS, space observer
           eraCr        copy r-matrix

        This revision:   2021 January 7

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    astrom = ufunc.apco(
        date1, date2, ebpv, ehp, x, y, s, theta, elong, phi, hm, xp, yp, sp, refa, refb)
    return astrom


def apco13(utc1, utc2, dut1, elong, phi, hm, xp, yp, phpa, tc, rh, wl):
    """
    For a terrestrial observer, prepare star-independent astrometry
    parameters for transformations between ICRS and observed
    coordinates.

    Parameters
    ----------
    utc1 : double array
    utc2 : double array
    dut1 : double array
    elong : double array
    phi : double array
    hm : double array
    xp : double array
    yp : double array
    phpa : double array
    tc : double array
    rh : double array
    wl : double array

    Returns
    -------
    astrom : eraASTROM array
    eo : double array

    Notes
    -----
    Wraps ERFA function ``eraApco13``. The ERFA documentation is::

        - - - - - - - - - -
         e r a A p c o 1 3
        - - - - - - - - - -

        For a terrestrial observer, prepare star-independent astrometry
        parameters for transformations between ICRS and observed
        coordinates.  The caller supplies UTC, site coordinates, ambient air
        conditions and observing wavelength, and ERFA models are used to
        obtain the Earth ephemeris, CIP/CIO and refraction constants.

        The parameters produced by this function are required in the
        parallax, light deflection, aberration, and bias-precession-nutation
        parts of the ICRS/CIRS transformations.

        Given:
           utc1   double     UTC as a 2-part...
           utc2   double     ...quasi Julian Date (Notes 1,2)
           dut1   double     UT1-UTC (seconds, Note 3)
           elong  double     longitude (radians, east +ve, Note 4)
           phi    double     latitude (geodetic, radians, Note 4)
           hm     double     height above ellipsoid (m, geodetic, Notes 4,6)
           xp,yp  double     polar motion coordinates (radians, Note 5)
           phpa   double     pressure at the observer (hPa = mB, Note 6)
           tc     double     ambient temperature at the observer (deg C)
           rh     double     relative humidity at the observer (range 0-1)
           wl     double     wavelength (micrometers, Note 7)

        Returned:
           astrom eraASTROM* star-independent astrometry parameters:
            pmt    double       PM time interval (SSB, Julian years)
            eb     double[3]    SSB to observer (vector, au)
            eh     double[3]    Sun to observer (unit vector)
            em     double       distance from Sun to observer (au)
            v      double[3]    barycentric observer velocity (vector, c)
            bm1    double       sqrt(1-|v|^2): reciprocal of Lorenz factor
            bpn    double[3][3] bias-precession-nutation matrix
            along  double       longitude + s' (radians)
            xpl    double       polar motion xp wrt local meridian (radians)
            ypl    double       polar motion yp wrt local meridian (radians)
            sphi   double       sine of geodetic latitude
            cphi   double       cosine of geodetic latitude
            diurab double       magnitude of diurnal aberration vector
            eral   double       "local" Earth rotation angle (radians)
            refa   double       refraction constant A (radians)
            refb   double       refraction constant B (radians)
           eo     double          equation of the origins (ERA-GST)

        Returned (function value):
                  int        status: +1 = dubious year (Note 2)
                                      0 = OK
                                     -1 = unacceptable date

        Notes:

        1)  utc1+utc2 is quasi Julian Date (see Note 2), apportioned in any
            convenient way between the two arguments, for example where utc1
            is the Julian Day Number and utc2 is the fraction of a day.

            However, JD cannot unambiguously represent UTC during a leap
            second unless special measures are taken.  The convention in the
            present function is that the JD day represents UTC days whether
            the length is 86399, 86400 or 86401 SI seconds.

            Applications should use the function eraDtf2d to convert from
            calendar date and time of day into 2-part quasi Julian Date, as
            it implements the leap-second-ambiguity convention just
            described.

        2)  The warning status "dubious year" flags UTCs that predate the
            introduction of the time scale or that are too far in the
            future to be trusted.  See eraDat for further details.

        3)  UT1-UTC is tabulated in IERS bulletins.  It increases by exactly
            one second at the end of each positive UTC leap second,
            introduced in order to keep UT1-UTC within +/- 0.9s.  n.b. This
            practice is under review, and in the future UT1-UTC may grow
            essentially without limit.

        4)  The geographical coordinates are with respect to the ERFA_WGS84
            reference ellipsoid.  TAKE CARE WITH THE LONGITUDE SIGN:  the
            longitude required by the present function is east-positive
            (i.e. right-handed), in accordance with geographical convention.

        5)  The polar motion xp,yp can be obtained from IERS bulletins.  The
            values are the coordinates (in radians) of the Celestial
            Intermediate Pole with respect to the International Terrestrial
            Reference System (see IERS Conventions 2003), measured along the
            meridians 0 and 90 deg west respectively.  For many
            applications, xp and yp can be set to zero.

            Internally, the polar motion is stored in a form rotated onto
            the local meridian.

        6)  If hm, the height above the ellipsoid of the observing station
            in meters, is not known but phpa, the pressure in hPa (=mB), is
            available, an adequate estimate of hm can be obtained from the
            expression

                  hm = -29.3 * tsl * log ( phpa / 1013.25 );

            where tsl is the approximate sea-level air temperature in K
            (See Astrophysical Quantities, C.W.Allen, 3rd edition, section
            52).  Similarly, if the pressure phpa is not known, it can be
            estimated from the height of the observing station, hm, as
            follows:

                  phpa = 1013.25 * exp ( -hm / ( 29.3 * tsl ) );

            Note, however, that the refraction is nearly proportional to
            the pressure and that an accurate phpa value is important for
            precise work.

        7)  The argument wl specifies the observing wavelength in
            micrometers.  The transition from optical to radio is assumed to
            occur at 100 micrometers (about 3000 GHz).

        8)  It is advisable to take great care with units, as even unlikely
            values of the input parameters are accepted and processed in
            accordance with the models used.

        9)  In cases where the caller wishes to supply his own Earth
            ephemeris, Earth rotation information and refraction constants,
            the function eraApco can be used instead of the present function.

        10) This is one of several functions that inserts into the astrom
            structure star-independent parameters needed for the chain of
            astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.

            The various functions support different classes of observer and
            portions of the transformation chain:

                functions         observer        transformation

             eraApcg eraApcg13    geocentric      ICRS <-> GCRS
             eraApci eraApci13    terrestrial     ICRS <-> CIRS
             eraApco eraApco13    terrestrial     ICRS <-> observed
             eraApcs eraApcs13    space           ICRS <-> GCRS
             eraAper eraAper13    terrestrial     update Earth rotation
             eraApio eraApio13    terrestrial     CIRS <-> observed

            Those with names ending in "13" use contemporary ERFA models to
            compute the various ephemerides.  The others accept ephemerides
            supplied by the caller.

            The transformation from ICRS to GCRS covers space motion,
            parallax, light deflection, and aberration.  From GCRS to CIRS
            comprises frame bias and precession-nutation.  From CIRS to
            observed takes account of Earth rotation, polar motion, diurnal
            aberration and parallax (unless subsumed into the ICRS <-> GCRS
            transformation), and atmospheric refraction.

        11) The context structure astrom produced by this function is used
            by eraAtioq, eraAtoiq, eraAtciq* and eraAticq*.

        Called:
           eraUtctai    UTC to TAI
           eraTaitt     TAI to TT
           eraUtcut1    UTC to UT1
           eraEpv00     Earth position and velocity
           eraPnm06a    classical NPB matrix, IAU 2006/2000A
           eraBpn2xy    extract CIP X,Y coordinates from NPB matrix
           eraS06       the CIO locator s, given X,Y, IAU 2006
           eraEra00     Earth rotation angle, IAU 2000
           eraSp00      the TIO locator s', IERS 2000
           eraRefco     refraction constants for given ambient conditions
           eraApco      astrometry parameters, ICRS-observed
           eraEors      equation of the origins, given NPB matrix and s

        This revision:   2013 December 5

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    astrom, eo, c_retval = ufunc.apco13(
        utc1, utc2, dut1, elong, phi, hm, xp, yp, phpa, tc, rh, wl)
    check_errwarn(c_retval, 'apco13')
    return astrom, eo


STATUS_CODES['apco13'] = {
    1: 'dubious year (Note 2)',
    0: 'OK',
    -1: 'unacceptable date',
}


def apcs(date1, date2, pv, ebpv, ehp):
    """
    For an observer whose geocentric position and velocity are known,
    prepare star-independent astrometry parameters for transformations
    between ICRS and GCRS.

    Parameters
    ----------
    date1 : double array
    date2 : double array
    pv : double array
    ebpv : double array
    ehp : double array

    Returns
    -------
    astrom : eraASTROM array

    Notes
    -----
    Wraps ERFA function ``eraApcs``. The ERFA documentation is::

        - - - - - - - -
         e r a A p c s
        - - - - - - - -

        For an observer whose geocentric position and velocity are known,
        prepare star-independent astrometry parameters for transformations
        between ICRS and GCRS.  The Earth ephemeris is supplied by the
        caller.

        The parameters produced by this function are required in the space
        motion, parallax, light deflection and aberration parts of the
        astrometric transformation chain.

        Given:
           date1  double       TDB as a 2-part...
           date2  double       ...Julian Date (Note 1)
           pv     double[2][3] observer's geocentric pos/vel (m, m/s)
           ebpv   double[2][3] Earth barycentric PV (au, au/day)
           ehp    double[3]    Earth heliocentric P (au)

        Returned:
           astrom eraASTROM         star-independent astrometry parameters:
            pmt    double       PM time interval (SSB, Julian years)
            eb     double[3]    SSB to observer (vector, au)
            eh     double[3]    Sun to observer (unit vector)
            em     double       distance from Sun to observer (au)
            v      double[3]    barycentric observer velocity (vector, c)
            bm1    double       sqrt(1-|v|^2): reciprocal of Lorenz factor
            bpn    double[3][3] bias-precession-nutation matrix
            along  double       unchanged
            xpl    double       unchanged
            ypl    double       unchanged
            sphi   double       unchanged
            cphi   double       unchanged
            diurab double       unchanged
            eral   double       unchanged
            refa   double       unchanged
            refb   double       unchanged

        Notes:

        1) The TDB date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TDB)=2450123.7 could be expressed in any of these ways, among
           others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in cases
           where the loss of several decimal digits of resolution is
           acceptable.  The J2000 method is best matched to the way the
           argument is handled internally and will deliver the optimum
           resolution.  The MJD method and the date & time methods are both
           good compromises between resolution and convenience.  For most
           applications of this function the choice will not be at all
           critical.

           TT can be used instead of TDB without any significant impact on
           accuracy.

        2) All the vectors are with respect to BCRS axes.

        3) Providing separate arguments for (i) the observer's geocentric
           position and velocity and (ii) the Earth ephemeris is done for
           convenience in the geocentric, terrestrial and Earth orbit cases.
           For deep space applications it maybe more convenient to specify
           zero geocentric position and velocity and to supply the
           observer's position and velocity information directly instead of
           with respect to the Earth.  However, note the different units:
           m and m/s for the geocentric vectors, au and au/day for the
           heliocentric and barycentric vectors.

        4) In cases where the caller does not wish to provide the Earth
           ephemeris, the function eraApcs13 can be used instead of the
           present function.  This computes the Earth ephemeris using the
           ERFA function eraEpv00.

        5) This is one of several functions that inserts into the astrom
           structure star-independent parameters needed for the chain of
           astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.

           The various functions support different classes of observer and
           portions of the transformation chain:

                functions         observer        transformation

             eraApcg eraApcg13    geocentric      ICRS <-> GCRS
             eraApci eraApci13    terrestrial     ICRS <-> CIRS
             eraApco eraApco13    terrestrial     ICRS <-> observed
             eraApcs eraApcs13    space           ICRS <-> GCRS
             eraAper eraAper13    terrestrial     update Earth rotation
             eraApio eraApio13    terrestrial     CIRS <-> observed

           Those with names ending in "13" use contemporary ERFA models to
           compute the various ephemerides.  The others accept ephemerides
           supplied by the caller.

           The transformation from ICRS to GCRS covers space motion,
           parallax, light deflection, and aberration.  From GCRS to CIRS
           comprises frame bias and precession-nutation.  From CIRS to
           observed takes account of Earth rotation, polar motion, diurnal
           aberration and parallax (unless subsumed into the ICRS <-> GCRS
           transformation), and atmospheric refraction.

        6) The context structure astrom produced by this function is used by
           eraAtciq* and eraAticq*.

        Called:
           eraCp        copy p-vector
           eraPm        modulus of p-vector
           eraPn        decompose p-vector into modulus and direction
           eraIr        initialize r-matrix to identity

        This revision:   2017 March 16

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    astrom = ufunc.apcs(date1, date2, pv, ebpv, ehp)
    return astrom


def apcs13(date1, date2, pv):
    """
    For an observer whose geocentric position and velocity are known,
    prepare star-independent astrometry parameters for transformations
    between ICRS and GCRS.

    Parameters
    ----------
    date1 : double array
    date2 : double array
    pv : double array

    Returns
    -------
    astrom : eraASTROM array

    Notes
    -----
    Wraps ERFA function ``eraApcs13``. The ERFA documentation is::

        - - - - - - - - - -
         e r a A p c s 1 3
        - - - - - - - - - -

        For an observer whose geocentric position and velocity are known,
        prepare star-independent astrometry parameters for transformations
        between ICRS and GCRS.  The Earth ephemeris is from ERFA models.

        The parameters produced by this function are required in the space
        motion, parallax, light deflection and aberration parts of the
        astrometric transformation chain.

        Given:
           date1  double       TDB as a 2-part...
           date2  double       ...Julian Date (Note 1)
           pv     double[2][3] observer's geocentric pos/vel (Note 3)

        Returned:
           astrom eraASTROM         star-independent astrometry parameters:
            pmt    double       PM time interval (SSB, Julian years)
            eb     double[3]    SSB to observer (vector, au)
            eh     double[3]    Sun to observer (unit vector)
            em     double       distance from Sun to observer (au)
            v      double[3]    barycentric observer velocity (vector, c)
            bm1    double       sqrt(1-|v|^2): reciprocal of Lorenz factor
            bpn    double[3][3] bias-precession-nutation matrix
            along  double       unchanged
            xpl    double       unchanged
            ypl    double       unchanged
            sphi   double       unchanged
            cphi   double       unchanged
            diurab double       unchanged
            eral   double       unchanged
            refa   double       unchanged
            refb   double       unchanged

        Notes:

        1) The TDB date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TDB)=2450123.7 could be expressed in any of these ways, among
           others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in cases
           where the loss of several decimal digits of resolution is
           acceptable.  The J2000 method is best matched to the way the
           argument is handled internally and will deliver the optimum
           resolution.  The MJD method and the date & time methods are both
           good compromises between resolution and convenience.  For most
           applications of this function the choice will not be at all
           critical.

           TT can be used instead of TDB without any significant impact on
           accuracy.

        2) All the vectors are with respect to BCRS axes.

        3) The observer's position and velocity pv are geocentric but with
           respect to BCRS axes, and in units of m and m/s.  No assumptions
           are made about proximity to the Earth, and the function can be
           used for deep space applications as well as Earth orbit and
           terrestrial.

        4) In cases where the caller wishes to supply his own Earth
           ephemeris, the function eraApcs can be used instead of the present
           function.

        5) This is one of several functions that inserts into the astrom
           structure star-independent parameters needed for the chain of
           astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.

           The various functions support different classes of observer and
           portions of the transformation chain:

                functions         observer        transformation

             eraApcg eraApcg13    geocentric      ICRS <-> GCRS
             eraApci eraApci13    terrestrial     ICRS <-> CIRS
             eraApco eraApco13    terrestrial     ICRS <-> observed
             eraApcs eraApcs13    space           ICRS <-> GCRS
             eraAper eraAper13    terrestrial     update Earth rotation
             eraApio eraApio13    terrestrial     CIRS <-> observed

           Those with names ending in "13" use contemporary ERFA models to
           compute the various ephemerides.  The others accept ephemerides
           supplied by the caller.

           The transformation from ICRS to GCRS covers space motion,
           parallax, light deflection, and aberration.  From GCRS to CIRS
           comprises frame bias and precession-nutation.  From CIRS to
           observed takes account of Earth rotation, polar motion, diurnal
           aberration and parallax (unless subsumed into the ICRS <-> GCRS
           transformation), and atmospheric refraction.

        6) The context structure astrom produced by this function is used by
           eraAtciq* and eraAticq*.

        Called:
           eraEpv00     Earth position and velocity
           eraApcs      astrometry parameters, ICRS-GCRS, space observer

        This revision:   2013 October 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    astrom = ufunc.apcs13(date1, date2, pv)
    return astrom


def aper(theta, astrom):
    """
    In the star-independent astrometry parameters, update only the
    Earth rotation angle, supplied by the caller explicitly.

    Parameters
    ----------
    theta : double array
    astrom : eraASTROM array

    Returns
    -------
    astrom : eraASTROM array

    Notes
    -----
    Wraps ERFA function ``eraAper``. Note that, unlike the erfa routine,
    the python wrapper does not change astrom in-place. The ERFA documentation is::

        - - - - - - - -
         e r a A p e r
        - - - - - - - -

        In the star-independent astrometry parameters, update only the
        Earth rotation angle, supplied by the caller explicitly.

        Given:
           theta   double      Earth rotation angle (radians, Note 2)
           astrom  eraASTROM        star-independent astrometry parameters:
            pmt    double       not used
            eb     double[3]    not used
            eh     double[3]    not used
            em     double       not used
            v      double[3]    not used
            bm1    double       not used
            bpn    double[3][3] not used
            along  double       longitude + s' (radians)
            xpl    double       not used
            ypl    double       not used
            sphi   double       not used
            cphi   double       not used
            diurab double       not used
            eral   double       not used
            refa   double       not used
            refb   double       not used

        Returned:
           astrom  eraASTROM        star-independent astrometry parameters:
            pmt    double       unchanged
            eb     double[3]    unchanged
            eh     double[3]    unchanged
            em     double       unchanged
            v      double[3]    unchanged
            bm1    double       unchanged
            bpn    double[3][3] unchanged
            along  double       unchanged
            xpl    double       unchanged
            ypl    double       unchanged
            sphi   double       unchanged
            cphi   double       unchanged
            diurab double       unchanged
            eral   double       "local" Earth rotation angle (radians)
            refa   double       unchanged
            refb   double       unchanged

        Notes:

        1) This function exists to enable sidereal-tracking applications to
           avoid wasteful recomputation of the bulk of the astrometry
           parameters:  only the Earth rotation is updated.

        2) For targets expressed as equinox based positions, such as
           classical geocentric apparent (RA,Dec), the supplied theta can be
           Greenwich apparent sidereal time rather than Earth rotation
           angle.

        3) The function eraAper13 can be used instead of the present
           function, and starts from UT1 rather than ERA itself.

        4) This is one of several functions that inserts into the astrom
           structure star-independent parameters needed for the chain of
           astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.

           The various functions support different classes of observer and
           portions of the transformation chain:

                functions         observer        transformation

             eraApcg eraApcg13    geocentric      ICRS <-> GCRS
             eraApci eraApci13    terrestrial     ICRS <-> CIRS
             eraApco eraApco13    terrestrial     ICRS <-> observed
             eraApcs eraApcs13    space           ICRS <-> GCRS
             eraAper eraAper13    terrestrial     update Earth rotation
             eraApio eraApio13    terrestrial     CIRS <-> observed

           Those with names ending in "13" use contemporary ERFA models to
           compute the various ephemerides.  The others accept ephemerides
           supplied by the caller.

           The transformation from ICRS to GCRS covers space motion,
           parallax, light deflection, and aberration.  From GCRS to CIRS
           comprises frame bias and precession-nutation.  From CIRS to
           observed takes account of Earth rotation, polar motion, diurnal
           aberration and parallax (unless subsumed into the ICRS <-> GCRS
           transformation), and atmospheric refraction.

        This revision:   2013 September 25

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    astrom = ufunc.aper(theta, astrom)
    return astrom


def aper13(ut11, ut12, astrom):
    """
    In the star-independent astrometry parameters, update only the
    Earth rotation angle.

    Parameters
    ----------
    ut11 : double array
    ut12 : double array
    astrom : eraASTROM array

    Returns
    -------
    astrom : eraASTROM array

    Notes
    -----
    Wraps ERFA function ``eraAper13``. Note that, unlike the erfa routine,
    the python wrapper does not change astrom in-place. The ERFA documentation is::

        - - - - - - - - - -
         e r a A p e r 1 3
        - - - - - - - - - -

        In the star-independent astrometry parameters, update only the
        Earth rotation angle.  The caller provides UT1, (n.b. not UTC).

        Given:
           ut11    double      UT1 as a 2-part...
           ut12    double      ...Julian Date (Note 1)
           astrom  eraASTROM        star-independent astrometry parameters:
            pmt    double       not used
            eb     double[3]    not used
            eh     double[3]    not used
            em     double       not used
            v      double[3]    not used
            bm1    double       not used
            bpn    double[3][3] not used
            along  double       longitude + s' (radians)
            xpl    double       not used
            ypl    double       not used
            sphi   double       not used
            cphi   double       not used
            diurab double       not used
            eral   double       not used
            refa   double       not used
            refb   double       not used

        Returned:
           astrom  eraASTROM        star-independent astrometry parameters:
            pmt    double       unchanged
            eb     double[3]    unchanged
            eh     double[3]    unchanged
            em     double       unchanged
            v      double[3]    unchanged
            bm1    double       unchanged
            bpn    double[3][3] unchanged
            along  double       unchanged
            xpl    double       unchanged
            ypl    double       unchanged
            sphi   double       unchanged
            cphi   double       unchanged
            diurab double       unchanged
            eral   double       "local" Earth rotation angle (radians)
            refa   double       unchanged
            refb   double       unchanged

        Notes:

        1) The UT1 date (n.b. not UTC) ut11+ut12 is a Julian Date,
           apportioned in any convenient way between the arguments ut11 and
           ut12.  For example, JD(UT1)=2450123.7 could be expressed in any
           of these ways, among others:

                  ut11           ut12

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in cases
           where the loss of several decimal digits of resolution is
           acceptable.  The J2000 and MJD methods are good compromises
           between resolution and convenience.  The date & time method is
           best matched to the algorithm used:  maximum precision is
           delivered when the ut11 argument is for 0hrs UT1 on the day in
           question and the ut12 argument lies in the range 0 to 1, or vice
           versa.

        2) If the caller wishes to provide the Earth rotation angle itself,
           the function eraAper can be used instead.  One use of this
           technique is to substitute Greenwich apparent sidereal time and
           thereby to support equinox based transformations directly.

        3) This is one of several functions that inserts into the astrom
           structure star-independent parameters needed for the chain of
           astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.

           The various functions support different classes of observer and
           portions of the transformation chain:

                functions         observer        transformation

             eraApcg eraApcg13    geocentric      ICRS <-> GCRS
             eraApci eraApci13    terrestrial     ICRS <-> CIRS
             eraApco eraApco13    terrestrial     ICRS <-> observed
             eraApcs eraApcs13    space           ICRS <-> GCRS
             eraAper eraAper13    terrestrial     update Earth rotation
             eraApio eraApio13    terrestrial     CIRS <-> observed

           Those with names ending in "13" use contemporary ERFA models to
           compute the various ephemerides.  The others accept ephemerides
           supplied by the caller.

           The transformation from ICRS to GCRS covers space motion,
           parallax, light deflection, and aberration.  From GCRS to CIRS
           comprises frame bias and precession-nutation.  From CIRS to
           observed takes account of Earth rotation, polar motion, diurnal
           aberration and parallax (unless subsumed into the ICRS <-> GCRS
           transformation), and atmospheric refraction.

        Called:
           eraAper      astrometry parameters: update ERA
           eraEra00     Earth rotation angle, IAU 2000

        This revision:   2013 September 25

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    astrom = ufunc.aper13(ut11, ut12, astrom)
    return astrom


def apio(sp, theta, elong, phi, hm, xp, yp, refa, refb):
    """
    For a terrestrial observer, prepare star-independent astrometry
    parameters for transformations between CIRS and observed
    coordinates.

    Parameters
    ----------
    sp : double array
    theta : double array
    elong : double array
    phi : double array
    hm : double array
    xp : double array
    yp : double array
    refa : double array
    refb : double array

    Returns
    -------
    astrom : eraASTROM array

    Notes
    -----
    Wraps ERFA function ``eraApio``. The ERFA documentation is::

        - - - - - - - -
         e r a A p i o
        - - - - - - - -

        For a terrestrial observer, prepare star-independent astrometry
        parameters for transformations between CIRS and observed
        coordinates.  The caller supplies the Earth orientation information
        and the refraction constants as well as the site coordinates.

        Given:
           sp     double      the TIO locator s' (radians, Note 1)
           theta  double      Earth rotation angle (radians)
           elong  double      longitude (radians, east +ve, Note 2)
           phi    double      geodetic latitude (radians, Note 2)
           hm     double      height above ellipsoid (m, geodetic Note 2)
           xp,yp  double      polar motion coordinates (radians, Note 3)
           refa   double      refraction constant A (radians, Note 4)
           refb   double      refraction constant B (radians, Note 4)

        Returned:
           astrom eraASTROM        star-independent astrometry parameters:
            pmt    double       unchanged
            eb     double[3]    unchanged
            eh     double[3]    unchanged
            em     double       unchanged
            v      double[3]    unchanged
            bm1    double       unchanged
            bpn    double[3][3] unchanged
            along  double       adjusted longitude (radians)
            xpl    double       polar motion xp wrt local meridian (radians)
            ypl    double       polar motion yp wrt local meridian (radians)
            sphi   double       sine of geodetic latitude
            cphi   double       cosine of geodetic latitude
            diurab double       magnitude of diurnal aberration vector
            eral   double       "local" Earth rotation angle (radians)
            refa   double       refraction constant A (radians)
            refb   double       refraction constant B (radians)

        Notes:

        1) sp, the TIO locator s', is a tiny quantity needed only by the
           most precise applications.  It can either be set to zero or
           predicted using the ERFA function eraSp00.

        2) The geographical coordinates are with respect to the ERFA_WGS84
           reference ellipsoid.  TAKE CARE WITH THE LONGITUDE SIGN:  the
           longitude required by the present function is east-positive
           (i.e. right-handed), in accordance with geographical convention.

        3) The polar motion xp,yp can be obtained from IERS bulletins.  The
           values are the coordinates (in radians) of the Celestial
           Intermediate Pole with respect to the International Terrestrial
           Reference System (see IERS Conventions 2003), measured along the
           meridians 0 and 90 deg west respectively.  For many applications,
           xp and yp can be set to zero.

           Internally, the polar motion is stored in a form rotated onto the
           local meridian.

        4) The refraction constants refa and refb are for use in a
           dZ = A*tan(Z)+B*tan^3(Z) model, where Z is the observed
           (i.e. refracted) zenith distance and dZ is the amount of
           refraction.

        5) It is advisable to take great care with units, as even unlikely
           values of the input parameters are accepted and processed in
           accordance with the models used.

        6) In cases where the caller does not wish to provide the Earth
           rotation information and refraction constants, the function
           eraApio13 can be used instead of the present function.  This
           starts from UTC and weather readings etc. and computes suitable
           values using other ERFA functions.

        7) This is one of several functions that inserts into the astrom
           structure star-independent parameters needed for the chain of
           astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.

           The various functions support different classes of observer and
           portions of the transformation chain:

                functions         observer        transformation

             eraApcg eraApcg13    geocentric      ICRS <-> GCRS
             eraApci eraApci13    terrestrial     ICRS <-> CIRS
             eraApco eraApco13    terrestrial     ICRS <-> observed
             eraApcs eraApcs13    space           ICRS <-> GCRS
             eraAper eraAper13    terrestrial     update Earth rotation
             eraApio eraApio13    terrestrial     CIRS <-> observed

           Those with names ending in "13" use contemporary ERFA models to
           compute the various ephemerides.  The others accept ephemerides
           supplied by the caller.

           The transformation from ICRS to GCRS covers space motion,
           parallax, light deflection, and aberration.  From GCRS to CIRS
           comprises frame bias and precession-nutation.  From CIRS to
           observed takes account of Earth rotation, polar motion, diurnal
           aberration and parallax (unless subsumed into the ICRS <-> GCRS
           transformation), and atmospheric refraction.

        8) The context structure astrom produced by this function is used by
           eraAtioq and eraAtoiq.

        Called:
           eraIr        initialize r-matrix to identity
           eraRz        rotate around Z-axis
           eraRy        rotate around Y-axis
           eraRx        rotate around X-axis
           eraAnpm      normalize angle into range +/- pi
           eraPvtob     position/velocity of terrestrial station

        This revision:   2021 January 7

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    astrom = ufunc.apio(sp, theta, elong, phi, hm, xp, yp, refa, refb)
    return astrom


def apio13(utc1, utc2, dut1, elong, phi, hm, xp, yp, phpa, tc, rh, wl):
    """
    For a terrestrial observer, prepare star-independent astrometry
    parameters for transformations between CIRS and observed
    coordinates.

    Parameters
    ----------
    utc1 : double array
    utc2 : double array
    dut1 : double array
    elong : double array
    phi : double array
    hm : double array
    xp : double array
    yp : double array
    phpa : double array
    tc : double array
    rh : double array
    wl : double array

    Returns
    -------
    astrom : eraASTROM array

    Notes
    -----
    Wraps ERFA function ``eraApio13``. The ERFA documentation is::

        - - - - - - - - - -
         e r a A p i o 1 3
        - - - - - - - - - -

        For a terrestrial observer, prepare star-independent astrometry
        parameters for transformations between CIRS and observed
        coordinates.  The caller supplies UTC, site coordinates, ambient air
        conditions and observing wavelength.

        Given:
           utc1   double      UTC as a 2-part...
           utc2   double      ...quasi Julian Date (Notes 1,2)
           dut1   double      UT1-UTC (seconds)
           elong  double      longitude (radians, east +ve, Note 3)
           phi    double      geodetic latitude (radians, Note 3)
           hm     double      height above ellipsoid (m, geodetic Notes 4,6)
           xp,yp  double      polar motion coordinates (radians, Note 5)
           phpa   double      pressure at the observer (hPa = mB, Note 6)
           tc     double      ambient temperature at the observer (deg C)
           rh     double      relative humidity at the observer (range 0-1)
           wl     double      wavelength (micrometers, Note 7)

        Returned:
           astrom eraASTROM        star-independent astrometry parameters:
            pmt    double       unchanged
            eb     double[3]    unchanged
            eh     double[3]    unchanged
            em     double       unchanged
            v      double[3]    unchanged
            bm1    double       unchanged
            bpn    double[3][3] unchanged
            along  double       longitude + s' (radians)
            xpl    double       polar motion xp wrt local meridian (radians)
            ypl    double       polar motion yp wrt local meridian (radians)
            sphi   double       sine of geodetic latitude
            cphi   double       cosine of geodetic latitude
            diurab double       magnitude of diurnal aberration vector
            eral   double       "local" Earth rotation angle (radians)
            refa   double       refraction constant A (radians)
            refb   double       refraction constant B (radians)

        Returned (function value):
                  int         status: +1 = dubious year (Note 2)
                                       0 = OK
                                      -1 = unacceptable date

        Notes:

        1)  utc1+utc2 is quasi Julian Date (see Note 2), apportioned in any
            convenient way between the two arguments, for example where utc1
            is the Julian Day Number and utc2 is the fraction of a day.

            However, JD cannot unambiguously represent UTC during a leap
            second unless special measures are taken.  The convention in the
            present function is that the JD day represents UTC days whether
            the length is 86399, 86400 or 86401 SI seconds.

            Applications should use the function eraDtf2d to convert from
            calendar date and time of day into 2-part quasi Julian Date, as
            it implements the leap-second-ambiguity convention just
            described.

        2)  The warning status "dubious year" flags UTCs that predate the
            introduction of the time scale or that are too far in the future
            to be trusted.  See eraDat for further details.

        3)  UT1-UTC is tabulated in IERS bulletins.  It increases by exactly
            one second at the end of each positive UTC leap second,
            introduced in order to keep UT1-UTC within +/- 0.9s.  n.b. This
            practice is under review, and in the future UT1-UTC may grow
            essentially without limit.

        4)  The geographical coordinates are with respect to the ERFA_WGS84
            reference ellipsoid.  TAKE CARE WITH THE LONGITUDE SIGN:  the
            longitude required by the present function is east-positive
            (i.e. right-handed), in accordance with geographical convention.

        5)  The polar motion xp,yp can be obtained from IERS bulletins.  The
            values are the coordinates (in radians) of the Celestial
            Intermediate Pole with respect to the International Terrestrial
            Reference System (see IERS Conventions 2003), measured along the
            meridians 0 and 90 deg west respectively.  For many applications,
            xp and yp can be set to zero.

            Internally, the polar motion is stored in a form rotated onto
            the local meridian.

        6)  If hm, the height above the ellipsoid of the observing station
            in meters, is not known but phpa, the pressure in hPa (=mB), is
            available, an adequate estimate of hm can be obtained from the
            expression

                  hm = -29.3 * tsl * log ( phpa / 1013.25 );

            where tsl is the approximate sea-level air temperature in K
            (See Astrophysical Quantities, C.W.Allen, 3rd edition, section
            52).  Similarly, if the pressure phpa is not known, it can be
            estimated from the height of the observing station, hm, as
            follows:

                  phpa = 1013.25 * exp ( -hm / ( 29.3 * tsl ) );

            Note, however, that the refraction is nearly proportional to the
            pressure and that an accurate phpa value is important for
            precise work.

        7)  The argument wl specifies the observing wavelength in
            micrometers.  The transition from optical to radio is assumed to
            occur at 100 micrometers (about 3000 GHz).

        8)  It is advisable to take great care with units, as even unlikely
            values of the input parameters are accepted and processed in
            accordance with the models used.

        9)  In cases where the caller wishes to supply his own Earth
            rotation information and refraction constants, the function
            eraApc can be used instead of the present function.

        10) This is one of several functions that inserts into the astrom
            structure star-independent parameters needed for the chain of
            astrometric transformations ICRS <-> GCRS <-> CIRS <-> observed.

            The various functions support different classes of observer and
            portions of the transformation chain:

                functions         observer        transformation

             eraApcg eraApcg13    geocentric      ICRS <-> GCRS
             eraApci eraApci13    terrestrial     ICRS <-> CIRS
             eraApco eraApco13    terrestrial     ICRS <-> observed
             eraApcs eraApcs13    space           ICRS <-> GCRS
             eraAper eraAper13    terrestrial     update Earth rotation
             eraApio eraApio13    terrestrial     CIRS <-> observed

            Those with names ending in "13" use contemporary ERFA models to
            compute the various ephemerides.  The others accept ephemerides
            supplied by the caller.

            The transformation from ICRS to GCRS covers space motion,
            parallax, light deflection, and aberration.  From GCRS to CIRS
            comprises frame bias and precession-nutation.  From CIRS to
            observed takes account of Earth rotation, polar motion, diurnal
            aberration and parallax (unless subsumed into the ICRS <-> GCRS
            transformation), and atmospheric refraction.

        11) The context structure astrom produced by this function is used
            by eraAtioq and eraAtoiq.

        Called:
           eraUtctai    UTC to TAI
           eraTaitt     TAI to TT
           eraUtcut1    UTC to UT1
           eraSp00      the TIO locator s', IERS 2000
           eraEra00     Earth rotation angle, IAU 2000
           eraRefco     refraction constants for given ambient conditions
           eraApio      astrometry parameters, CIRS-observed

        This revision:   2013 October 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    astrom, c_retval = ufunc.apio13(
        utc1, utc2, dut1, elong, phi, hm, xp, yp, phpa, tc, rh, wl)
    check_errwarn(c_retval, 'apio13')
    return astrom


STATUS_CODES['apio13'] = {
    1: 'dubious year (Note 2)',
    0: 'OK',
    -1: 'unacceptable date',
}


def atci13(rc, dc, pr, pd, px, rv, date1, date2):
    """
    Transform ICRS star data, epoch J2000.0, to CIRS.

    Parameters
    ----------
    rc : double array
    dc : double array
    pr : double array
    pd : double array
    px : double array
    rv : double array
    date1 : double array
    date2 : double array

    Returns
    -------
    ri : double array
    di : double array
    eo : double array

    Notes
    -----
    Wraps ERFA function ``eraAtci13``. The ERFA documentation is::

        - - - - - - - - - -
         e r a A t c i 1 3
        - - - - - - - - - -

        Transform ICRS star data, epoch J2000.0, to CIRS.

        Given:
           rc     double   ICRS right ascension at J2000.0 (radians, Note 1)
           dc     double   ICRS declination at J2000.0 (radians, Note 1)
           pr     double   RA proper motion (radians/year; Note 2)
           pd     double   Dec proper motion (radians/year)
           px     double   parallax (arcsec)
           rv     double   radial velocity (km/s, +ve if receding)
           date1  double   TDB as a 2-part...
           date2  double   ...Julian Date (Note 3)

        Returned:
           ri,di  double        CIRS geocentric RA,Dec (radians)
           eo     double        equation of the origins (ERA-GST, Note 5)

        Notes:

        1) Star data for an epoch other than J2000.0 (for example from the
           Hipparcos catalog, which has an epoch of J1991.25) will require a
           preliminary call to eraPmsafe before use.

        2) The proper motion in RA is dRA/dt rather than cos(Dec)*dRA/dt.

        3) The TDB date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TDB)=2450123.7 could be expressed in any of these ways, among
           others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in cases
           where the loss of several decimal digits of resolution is
           acceptable.  The J2000 method is best matched to the way the
           argument is handled internally and will deliver the optimum
           resolution.  The MJD method and the date & time methods are both
           good compromises between resolution and convenience.  For most
           applications of this function the choice will not be at all
           critical.

           TT can be used instead of TDB without any significant impact on
           accuracy.

        4) The available accuracy is better than 1 milliarcsecond, limited
           mainly by the precession-nutation model that is used, namely
           IAU 2000A/2006.  Very close to solar system bodies, additional
           errors of up to several milliarcseconds can occur because of
           unmodeled light deflection;  however, the Sun's contribution is
           taken into account, to first order.  The accuracy limitations of
           the ERFA function eraEpv00 (used to compute Earth position and
           velocity) can contribute aberration errors of up to
           5 microarcseconds.  Light deflection at the Sun's limb is
           uncertain at the 0.4 mas level.

        5) Should the transformation to (equinox based) apparent place be
           required rather than (CIO based) intermediate place, subtract the
           equation of the origins from the returned right ascension:
           RA = RI - EO. (The eraAnp function can then be applied, as
           required, to keep the result in the conventional 0-2pi range.)

        Called:
           eraApci13    astrometry parameters, ICRS-CIRS, 2013
           eraAtciq     quick ICRS to CIRS

        This revision:   2017 March 12

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    ri, di, eo = ufunc.atci13(rc, dc, pr, pd, px, rv, date1, date2)
    return ri, di, eo


def atciq(rc, dc, pr, pd, px, rv, astrom):
    """
    Quick ICRS, epoch J2000.0, to CIRS transformation, given precomputed
    star-independent astrometry parameters.

    Parameters
    ----------
    rc : double array
    dc : double array
    pr : double array
    pd : double array
    px : double array
    rv : double array
    astrom : eraASTROM array

    Returns
    -------
    ri : double array
    di : double array

    Notes
    -----
    Wraps ERFA function ``eraAtciq``. The ERFA documentation is::

        - - - - - - - - -
         e r a A t c i q
        - - - - - - - - -

        Quick ICRS, epoch J2000.0, to CIRS transformation, given precomputed
        star-independent astrometry parameters.

        Use of this function is appropriate when efficiency is important and
        where many star positions are to be transformed for one date.  The
        star-independent parameters can be obtained by calling one of the
        functions eraApci[13], eraApcg[13], eraApco[13] or eraApcs[13].

        If the parallax and proper motions are zero the eraAtciqz function
        can be used instead.

        Given:
           rc,dc  double     ICRS RA,Dec at J2000.0 (radians)
           pr     double     RA proper motion (radians/year; Note 3)
           pd     double     Dec proper motion (radians/year)
           px     double     parallax (arcsec)
           rv     double     radial velocity (km/s, +ve if receding)
           astrom eraASTROM* star-independent astrometry parameters:
            pmt    double       PM time interval (SSB, Julian years)
            eb     double[3]    SSB to observer (vector, au)
            eh     double[3]    Sun to observer (unit vector)
            em     double       distance from Sun to observer (au)
            v      double[3]    barycentric observer velocity (vector, c)
            bm1    double       sqrt(1-|v|^2): reciprocal of Lorenz factor
            bpn    double[3][3] bias-precession-nutation matrix
            along  double       longitude + s' (radians)
            xpl    double       polar motion xp wrt local meridian (radians)
            ypl    double       polar motion yp wrt local meridian (radians)
            sphi   double       sine of geodetic latitude
            cphi   double       cosine of geodetic latitude
            diurab double       magnitude of diurnal aberration vector
            eral   double       "local" Earth rotation angle (radians)
            refa   double       refraction constant A (radians)
            refb   double       refraction constant B (radians)

        Returned:
           ri,di   double    CIRS RA,Dec (radians)

        Notes:

        1) All the vectors are with respect to BCRS axes.

        2) Star data for an epoch other than J2000.0 (for example from the
           Hipparcos catalog, which has an epoch of J1991.25) will require a
           preliminary call to eraPmsafe before use.

        3) The proper motion in RA is dRA/dt rather than cos(Dec)*dRA/dt.

        Called:
           eraPmpx      proper motion and parallax
           eraLdsun     light deflection by the Sun
           eraAb        stellar aberration
           eraRxp       product of r-matrix and pv-vector
           eraC2s       p-vector to spherical
           eraAnp       normalize angle into range 0 to 2pi

        This revision:   2013 October 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    ri, di = ufunc.atciq(rc, dc, pr, pd, px, rv, astrom)
    return ri, di


def atciqn(rc, dc, pr, pd, px, rv, astrom, b):
    """
    Quick ICRS, epoch J2000.0, to CIRS transformation, given precomputed
    star-independent astrometry parameters plus a list of light-
    deflecting bodies.

    Parameters
    ----------
    rc : double array
    dc : double array
    pr : double array
    pd : double array
    px : double array
    rv : double array
    astrom : eraASTROM array
    b : eraLDBODY array

    Returns
    -------
    ri : double array
    di : double array

    Notes
    -----
    Wraps ERFA function ``eraAtciqn``. The ERFA documentation is::

        - - - - - - - - - -
         e r a A t c i q n
        - - - - - - - - - -

        Quick ICRS, epoch J2000.0, to CIRS transformation, given precomputed
        star-independent astrometry parameters plus a list of light-
        deflecting bodies.

        Use of this function is appropriate when efficiency is important and
        where many star positions are to be transformed for one date.  The
        star-independent parameters can be obtained by calling one of the
        functions eraApci[13], eraApcg[13], eraApco[13] or eraApcs[13].


        If the only light-deflecting body to be taken into account is the
        Sun, the eraAtciq function can be used instead.  If in addition the
        parallax and proper motions are zero, the eraAtciqz function can be
        used.

        Given:
           rc,dc  double       ICRS RA,Dec at J2000.0 (radians)
           pr     double       RA proper motion (radians/year; Note 3)
           pd     double       Dec proper motion (radians/year)
           px     double       parallax (arcsec)
           rv     double       radial velocity (km/s, +ve if receding)
           astrom eraASTROM         star-independent astrometry parameters:
            pmt    double       PM time interval (SSB, Julian years)
            eb     double[3]    SSB to observer (vector, au)
            eh     double[3]    Sun to observer (unit vector)
            em     double       distance from Sun to observer (au)
            v      double[3]    barycentric observer velocity (vector, c)
            bm1    double       sqrt(1-|v|^2): reciprocal of Lorenz factor
            bpn    double[3][3] bias-precession-nutation matrix
            along  double       longitude + s' (radians)
            xpl    double       polar motion xp wrt local meridian (radians)
            ypl    double       polar motion yp wrt local meridian (radians)
            sphi   double       sine of geodetic latitude
            cphi   double       cosine of geodetic latitude
            diurab double       magnitude of diurnal aberration vector
            eral   double       "local" Earth rotation angle (radians)
            refa   double       refraction constant A (radians)
            refb   double       refraction constant B (radians)
           n      int          number of bodies (Note 3)
           b      eraLDBODY[n] data for each of the n bodies (Notes 3,4):
            bm     double       mass of the body (solar masses, Note 5)
            dl     double       deflection limiter (Note 6)
            pv     [2][3]       barycentric PV of the body (au, au/day)

        Returned:
           ri,di   double    CIRS RA,Dec (radians)

        Notes:

        1) Star data for an epoch other than J2000.0 (for example from the
           Hipparcos catalog, which has an epoch of J1991.25) will require a
           preliminary call to eraPmsafe before use.

        2) The proper motion in RA is dRA/dt rather than cos(Dec)*dRA/dt.

        3) The struct b contains n entries, one for each body to be
           considered.  If n = 0, no gravitational light deflection will be
           applied, not even for the Sun.

        4) The struct b should include an entry for the Sun as well as for
           any planet or other body to be taken into account.  The entries
           should be in the order in which the light passes the body.

        5) In the entry in the b struct for body i, the mass parameter
           b[i].bm can, as required, be adjusted in order to allow for such
           effects as quadrupole field.

        6) The deflection limiter parameter b[i].dl is phi^2/2, where phi is
           the angular separation (in radians) between star and body at
           which limiting is applied.  As phi shrinks below the chosen
           threshold, the deflection is artificially reduced, reaching zero
           for phi = 0.   Example values suitable for a terrestrial
           observer, together with masses, are as follows:

              body i     b[i].bm        b[i].dl

              Sun        1.0            6e-6
              Jupiter    0.00095435     3e-9
              Saturn     0.00028574     3e-10

        7) For efficiency, validation of the contents of the b array is
           omitted.  The supplied masses must be greater than zero, the
           position and velocity vectors must be right, and the deflection
           limiter greater than zero.

        Called:
           eraPmpx      proper motion and parallax
           eraLdn       light deflection by n bodies
           eraAb        stellar aberration
           eraRxp       product of r-matrix and pv-vector
           eraC2s       p-vector to spherical
           eraAnp       normalize angle into range 0 to 2pi

        This revision:   2021 January 6

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    ri, di = ufunc.atciqn(rc, dc, pr, pd, px, rv, astrom, b)
    return ri, di


def atciqz(rc, dc, astrom):
    """
    Quick ICRS to CIRS transformation, given precomputed star-
    independent astrometry parameters, and assuming zero parallax and
    proper motion.

    Parameters
    ----------
    rc : double array
    dc : double array
    astrom : eraASTROM array

    Returns
    -------
    ri : double array
    di : double array

    Notes
    -----
    Wraps ERFA function ``eraAtciqz``. The ERFA documentation is::

        - - - - - - - - - -
         e r a A t c i q z
        - - - - - - - - - -

        Quick ICRS to CIRS transformation, given precomputed star-
        independent astrometry parameters, and assuming zero parallax and
        proper motion.

        Use of this function is appropriate when efficiency is important and
        where many star positions are to be transformed for one date.  The
        star-independent parameters can be obtained by calling one of the
        functions eraApci[13], eraApcg[13], eraApco[13] or eraApcs[13].

        The corresponding function for the case of non-zero parallax and
        proper motion is eraAtciq.

        Given:
           rc,dc  double     ICRS astrometric RA,Dec (radians)
           astrom eraASTROM* star-independent astrometry parameters:
            pmt    double       PM time interval (SSB, Julian years)
            eb     double[3]    SSB to observer (vector, au)
            eh     double[3]    Sun to observer (unit vector)
            em     double       distance from Sun to observer (au)
            v      double[3]    barycentric observer velocity (vector, c)
            bm1    double       sqrt(1-|v|^2): reciprocal of Lorenz factor
            bpn    double[3][3] bias-precession-nutation matrix
            along  double       longitude + s' (radians)
            xpl    double       polar motion xp wrt local meridian (radians)
            ypl    double       polar motion yp wrt local meridian (radians)
            sphi   double       sine of geodetic latitude
            cphi   double       cosine of geodetic latitude
            diurab double       magnitude of diurnal aberration vector
            eral   double       "local" Earth rotation angle (radians)
            refa   double       refraction constant A (radians)
            refb   double       refraction constant B (radians)

        Returned:
           ri,di  double     CIRS RA,Dec (radians)

        Note:

           All the vectors are with respect to BCRS axes.

        References:

           Urban, S. & Seidelmann, P. K. (eds), Explanatory Supplement to
           the Astronomical Almanac, 3rd ed., University Science Books
           (2013).

           Klioner, Sergei A., "A practical relativistic model for micro-
           arcsecond astrometry in space", Astr. J. 125, 1580-1597 (2003).

        Called:
           eraS2c       spherical coordinates to unit vector
           eraLdsun     light deflection due to Sun
           eraAb        stellar aberration
           eraRxp       product of r-matrix and p-vector
           eraC2s       p-vector to spherical
           eraAnp       normalize angle into range +/- pi

        This revision:   2013 October 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    ri, di = ufunc.atciqz(rc, dc, astrom)
    return ri, di


def atco13(rc, dc, pr, pd, px, rv, utc1, utc2, dut1, elong, phi, hm, xp, yp, phpa, tc, rh, wl):
    """
    ICRS RA,Dec to observed place.  The caller supplies UTC, site
    coordinates, ambient air conditions and observing wavelength.

    Parameters
    ----------
    rc : double array
    dc : double array
    pr : double array
    pd : double array
    px : double array
    rv : double array
    utc1 : double array
    utc2 : double array
    dut1 : double array
    elong : double array
    phi : double array
    hm : double array
    xp : double array
    yp : double array
    phpa : double array
    tc : double array
    rh : double array
    wl : double array

    Returns
    -------
    aob : double array
    zob : double array
    hob : double array
    dob : double array
    rob : double array
    eo : double array

    Notes
    -----
    Wraps ERFA function ``eraAtco13``. The ERFA documentation is::

        - - - - - - - - - -
         e r a A t c o 1 3
        - - - - - - - - - -

        ICRS RA,Dec to observed place.  The caller supplies UTC, site
        coordinates, ambient air conditions and observing wavelength.

        ERFA models are used for the Earth ephemeris, bias-precession-
        nutation, Earth orientation and refraction.

        Given:
           rc,dc  double   ICRS right ascension at J2000.0 (radians, Note 1)
           pr     double   RA proper motion (radians/year; Note 2)
           pd     double   Dec proper motion (radians/year)
           px     double   parallax (arcsec)
           rv     double   radial velocity (km/s, +ve if receding)
           utc1   double   UTC as a 2-part...
           utc2   double   ...quasi Julian Date (Notes 3-4)
           dut1   double   UT1-UTC (seconds, Note 5)
           elong  double   longitude (radians, east +ve, Note 6)
           phi    double   latitude (geodetic, radians, Note 6)
           hm     double   height above ellipsoid (m, geodetic, Notes 6,8)
           xp,yp  double   polar motion coordinates (radians, Note 7)
           phpa   double   pressure at the observer (hPa = mB, Note 8)
           tc     double   ambient temperature at the observer (deg C)
           rh     double   relative humidity at the observer (range 0-1)
           wl     double   wavelength (micrometers, Note 9)

        Returned:
           aob    double        observed azimuth (radians: N=0,E=90)
           zob    double        observed zenith distance (radians)
           hob    double        observed hour angle (radians)
           dob    double        observed declination (radians)
           rob    double        observed right ascension (CIO-based, radians)
           eo     double        equation of the origins (ERA-GST)

        Returned (function value):
                  int      status: +1 = dubious year (Note 4)
                                    0 = OK
                                   -1 = unacceptable date

        Notes:

        1)  Star data for an epoch other than J2000.0 (for example from the
            Hipparcos catalog, which has an epoch of J1991.25) will require
            a preliminary call to eraPmsafe before use.

        2)  The proper motion in RA is dRA/dt rather than cos(Dec)*dRA/dt.

        3)  utc1+utc2 is quasi Julian Date (see Note 2), apportioned in any
            convenient way between the two arguments, for example where utc1
            is the Julian Day Number and utc2 is the fraction of a day.

            However, JD cannot unambiguously represent UTC during a leap
            second unless special measures are taken.  The convention in the
            present function is that the JD day represents UTC days whether
            the length is 86399, 86400 or 86401 SI seconds.

            Applications should use the function eraDtf2d to convert from
            calendar date and time of day into 2-part quasi Julian Date, as
            it implements the leap-second-ambiguity convention just
            described.

        4)  The warning status "dubious year" flags UTCs that predate the
            introduction of the time scale or that are too far in the
            future to be trusted.  See eraDat for further details.

        5)  UT1-UTC is tabulated in IERS bulletins.  It increases by exactly
            one second at the end of each positive UTC leap second,
            introduced in order to keep UT1-UTC within +/- 0.9s.  n.b. This
            practice is under review, and in the future UT1-UTC may grow
            essentially without limit.

        6)  The geographical coordinates are with respect to the ERFA_WGS84
            reference ellipsoid.  TAKE CARE WITH THE LONGITUDE SIGN:  the
            longitude required by the present function is east-positive
            (i.e. right-handed), in accordance with geographical convention.

        7)  The polar motion xp,yp can be obtained from IERS bulletins.  The
            values are the coordinates (in radians) of the Celestial
            Intermediate Pole with respect to the International Terrestrial
            Reference System (see IERS Conventions 2003), measured along the
            meridians 0 and 90 deg west respectively.  For many
            applications, xp and yp can be set to zero.

        8)  If hm, the height above the ellipsoid of the observing station
            in meters, is not known but phpa, the pressure in hPa (=mB),
            is available, an adequate estimate of hm can be obtained from
            the expression

                  hm = -29.3 * tsl * log ( phpa / 1013.25 );

            where tsl is the approximate sea-level air temperature in K
            (See Astrophysical Quantities, C.W.Allen, 3rd edition, section
            52).  Similarly, if the pressure phpa is not known, it can be
            estimated from the height of the observing station, hm, as
            follows:

                  phpa = 1013.25 * exp ( -hm / ( 29.3 * tsl ) );

            Note, however, that the refraction is nearly proportional to
            the pressure and that an accurate phpa value is important for
            precise work.

        9)  The argument wl specifies the observing wavelength in
            micrometers.  The transition from optical to radio is assumed to
            occur at 100 micrometers (about 3000 GHz).

        10) The accuracy of the result is limited by the corrections for
            refraction, which use a simple A*tan(z) + B*tan^3(z) model.
            Providing the meteorological parameters are known accurately and
            there are no gross local effects, the predicted observed
            coordinates should be within 0.05 arcsec (optical) or 1 arcsec
            (radio) for a zenith distance of less than 70 degrees, better
            than 30 arcsec (optical or radio) at 85 degrees and better
            than 20 arcmin (optical) or 30 arcmin (radio) at the horizon.

            Without refraction, the complementary functions eraAtco13 and
            eraAtoc13 are self-consistent to better than 1 microarcsecond
            all over the celestial sphere.  With refraction included,
            consistency falls off at high zenith distances, but is still
            better than 0.05 arcsec at 85 degrees.

        11) "Observed" Az,ZD means the position that would be seen by a
            perfect geodetically aligned theodolite.  (Zenith distance is
            used rather than altitude in order to reflect the fact that no
            allowance is made for depression of the horizon.)  This is
            related to the observed HA,Dec via the standard rotation, using
            the geodetic latitude (corrected for polar motion), while the
            observed HA and RA are related simply through the Earth rotation
            angle and the site longitude.  "Observed" RA,Dec or HA,Dec thus
            means the position that would be seen by a perfect equatorial
            with its polar axis aligned to the Earth's axis of rotation.

        12) It is advisable to take great care with units, as even unlikely
            values of the input parameters are accepted and processed in
            accordance with the models used.

        Called:
           eraApco13    astrometry parameters, ICRS-observed, 2013
           eraAtciq     quick ICRS to CIRS
           eraAtioq     quick CIRS to observed

        This revision:   2016 February 2

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    aob, zob, hob, dob, rob, eo, c_retval = ufunc.atco13(
        rc, dc, pr, pd, px, rv, utc1, utc2, dut1, elong, phi, hm, xp, yp, phpa, tc, rh, wl)
    check_errwarn(c_retval, 'atco13')
    return aob, zob, hob, dob, rob, eo


STATUS_CODES['atco13'] = {
    1: 'dubious year (Note 4)',
    0: 'OK',
    -1: 'unacceptable date',
}


def atic13(ri, di, date1, date2):
    """
    Transform star RA,Dec from geocentric CIRS to ICRS astrometric.

    Parameters
    ----------
    ri : double array
    di : double array
    date1 : double array
    date2 : double array

    Returns
    -------
    rc : double array
    dc : double array
    eo : double array

    Notes
    -----
    Wraps ERFA function ``eraAtic13``. The ERFA documentation is::

        - - - - - - - - - -
         e r a A t i c 1 3
        - - - - - - - - - -

        Transform star RA,Dec from geocentric CIRS to ICRS astrometric.

        Given:
           ri,di  double  CIRS geocentric RA,Dec (radians)
           date1  double  TDB as a 2-part...
           date2  double  ...Julian Date (Note 1)

        Returned:
           rc,dc  double  ICRS astrometric RA,Dec (radians)
           eo     double  equation of the origins (ERA-GST, Note 4)

        Notes:

        1) The TDB date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TDB)=2450123.7 could be expressed in any of these ways, among
           others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in cases
           where the loss of several decimal digits of resolution is
           acceptable.  The J2000 method is best matched to the way the
           argument is handled internally and will deliver the optimum
           resolution.  The MJD method and the date & time methods are both
           good compromises between resolution and convenience.  For most
           applications of this function the choice will not be at all
           critical.

           TT can be used instead of TDB without any significant impact on
           accuracy.

        2) Iterative techniques are used for the aberration and light
           deflection corrections so that the functions eraAtic13 (or
           eraAticq) and eraAtci13 (or eraAtciq) are accurate inverses;
           even at the edge of the Sun's disk the discrepancy is only about
           1 nanoarcsecond.

        3) The available accuracy is better than 1 milliarcsecond, limited
           mainly by the precession-nutation model that is used, namely
           IAU 2000A/2006.  Very close to solar system bodies, additional
           errors of up to several milliarcseconds can occur because of
           unmodeled light deflection;  however, the Sun's contribution is
           taken into account, to first order.  The accuracy limitations of
           the ERFA function eraEpv00 (used to compute Earth position and
           velocity) can contribute aberration errors of up to
           5 microarcseconds.  Light deflection at the Sun's limb is
           uncertain at the 0.4 mas level.

        4) Should the transformation to (equinox based) J2000.0 mean place
           be required rather than (CIO based) ICRS coordinates, subtract the
           equation of the origins from the returned right ascension:
           RA = RI - EO.  (The eraAnp function can then be applied, as
           required, to keep the result in the conventional 0-2pi range.)

        Called:
           eraApci13    astrometry parameters, ICRS-CIRS, 2013
           eraAticq     quick CIRS to ICRS astrometric

        This revision:   2013 October 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rc, dc, eo = ufunc.atic13(ri, di, date1, date2)
    return rc, dc, eo


def aticq(ri, di, astrom):
    """
    Quick CIRS RA,Dec to ICRS astrometric place, given the star-
    independent astrometry parameters.

    Parameters
    ----------
    ri : double array
    di : double array
    astrom : eraASTROM array

    Returns
    -------
    rc : double array
    dc : double array

    Notes
    -----
    Wraps ERFA function ``eraAticq``. The ERFA documentation is::

        - - - - - - - - -
         e r a A t i c q
        - - - - - - - - -

        Quick CIRS RA,Dec to ICRS astrometric place, given the star-
        independent astrometry parameters.

        Use of this function is appropriate when efficiency is important and
        where many star positions are all to be transformed for one date.
        The star-independent astrometry parameters can be obtained by
        calling one of the functions eraApci[13], eraApcg[13], eraApco[13]
        or eraApcs[13].

        Given:
           ri,di  double     CIRS RA,Dec (radians)
           astrom eraASTROM* star-independent astrometry parameters:
            pmt    double       PM time interval (SSB, Julian years)
            eb     double[3]    SSB to observer (vector, au)
            eh     double[3]    Sun to observer (unit vector)
            em     double       distance from Sun to observer (au)
            v      double[3]    barycentric observer velocity (vector, c)
            bm1    double       sqrt(1-|v|^2): reciprocal of Lorenz factor
            bpn    double[3][3] bias-precession-nutation matrix
            along  double       longitude + s' (radians)
            xpl    double       polar motion xp wrt local meridian (radians)
            ypl    double       polar motion yp wrt local meridian (radians)
            sphi   double       sine of geodetic latitude
            cphi   double       cosine of geodetic latitude
            diurab double       magnitude of diurnal aberration vector
            eral   double       "local" Earth rotation angle (radians)
            refa   double       refraction constant A (radians)
            refb   double       refraction constant B (radians)

        Returned:
           rc,dc  double     ICRS astrometric RA,Dec (radians)

        Notes:

        1) Only the Sun is taken into account in the light deflection
           correction.

        2) Iterative techniques are used for the aberration and light
           deflection corrections so that the functions eraAtic13 (or
           eraAticq) and eraAtci13 (or eraAtciq) are accurate inverses;
           even at the edge of the Sun's disk the discrepancy is only about
           1 nanoarcsecond.

        Called:
           eraS2c       spherical coordinates to unit vector
           eraTrxp      product of transpose of r-matrix and p-vector
           eraZp        zero p-vector
           eraAb        stellar aberration
           eraLdsun     light deflection by the Sun
           eraC2s       p-vector to spherical
           eraAnp       normalize angle into range +/- pi

        This revision:   2013 October 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rc, dc = ufunc.aticq(ri, di, astrom)
    return rc, dc


def aticqn(ri, di, astrom, b):
    """
    Quick CIRS to ICRS astrometric place transformation, given the star-
    independent astrometry parameters plus a list of light-deflecting
    bodies.

    Parameters
    ----------
    ri : double array
    di : double array
    astrom : eraASTROM array
    b : eraLDBODY array

    Returns
    -------
    rc : double array
    dc : double array

    Notes
    -----
    Wraps ERFA function ``eraAticqn``. The ERFA documentation is::

        - - - - - - - - - -
         e r a A t i c q n
        - - - - - - - - - -

        Quick CIRS to ICRS astrometric place transformation, given the star-
        independent astrometry parameters plus a list of light-deflecting
        bodies.

        Use of this function is appropriate when efficiency is important and
        where many star positions are all to be transformed for one date.
        The star-independent astrometry parameters can be obtained by
        calling one of the functions eraApci[13], eraApcg[13], eraApco[13]
        or eraApcs[13].

        If the only light-deflecting body to be taken into account is the
        Sun, the eraAticq function can be used instead.

        Given:
           ri,di  double      CIRS RA,Dec (radians)
           astrom eraASTROM        star-independent astrometry parameters:
            pmt    double       PM time interval (SSB, Julian years)
            eb     double[3]    SSB to observer (vector, au)
            eh     double[3]    Sun to observer (unit vector)
            em     double       distance from Sun to observer (au)
            v      double[3]    barycentric observer velocity (vector, c)
            bm1    double       sqrt(1-|v|^2): reciprocal of Lorenz factor
            bpn    double[3][3] bias-precession-nutation matrix
            along  double       longitude + s' (radians)
            xpl    double       polar motion xp wrt local meridian (radians)
            ypl    double       polar motion yp wrt local meridian (radians)
            sphi   double       sine of geodetic latitude
            cphi   double       cosine of geodetic latitude
            diurab double       magnitude of diurnal aberration vector
            eral   double       "local" Earth rotation angle (radians)
            refa   double       refraction constant A (radians)
            refb   double       refraction constant B (radians)
           n      int          number of bodies (Note 3)
           b      eraLDBODY[n] data for each of the n bodies (Notes 3,4):
            bm     double       mass of the body (solar masses, Note 5)
            dl     double       deflection limiter (Note 6)
            pv     [2][3]       barycentric PV of the body (au, au/day)

        Returned:
           rc,dc  double     ICRS astrometric RA,Dec (radians)

        Notes:

        1) Iterative techniques are used for the aberration and light
           deflection corrections so that the functions eraAticqn and
           eraAtciqn are accurate inverses; even at the edge of the Sun's
           disk the discrepancy is only about 1 nanoarcsecond.

        2) If the only light-deflecting body to be taken into account is the
           Sun, the eraAticq function can be used instead.

        3) The struct b contains n entries, one for each body to be
           considered.  If n = 0, no gravitational light deflection will be
           applied, not even for the Sun.

        4) The struct b should include an entry for the Sun as well as for
           any planet or other body to be taken into account.  The entries
           should be in the order in which the light passes the body.

        5) In the entry in the b struct for body i, the mass parameter
           b[i].bm can, as required, be adjusted in order to allow for such
           effects as quadrupole field.

        6) The deflection limiter parameter b[i].dl is phi^2/2, where phi is
           the angular separation (in radians) between star and body at
           which limiting is applied.  As phi shrinks below the chosen
           threshold, the deflection is artificially reduced, reaching zero
           for phi = 0.   Example values suitable for a terrestrial
           observer, together with masses, are as follows:

              body i     b[i].bm        b[i].dl

              Sun        1.0            6e-6
              Jupiter    0.00095435     3e-9
              Saturn     0.00028574     3e-10

        7) For efficiency, validation of the contents of the b array is
           omitted.  The supplied masses must be greater than zero, the
           position and velocity vectors must be right, and the deflection
           limiter greater than zero.

        Called:
           eraS2c       spherical coordinates to unit vector
           eraTrxp      product of transpose of r-matrix and p-vector
           eraZp        zero p-vector
           eraAb        stellar aberration
           eraLdn       light deflection by n bodies
           eraC2s       p-vector to spherical
           eraAnp       normalize angle into range +/- pi

        This revision:   2021 January 6

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rc, dc = ufunc.aticqn(ri, di, astrom, b)
    return rc, dc


def atio13(ri, di, utc1, utc2, dut1, elong, phi, hm, xp, yp, phpa, tc, rh, wl):
    """
    CIRS RA,Dec to observed place.  The caller supplies UTC, site
    coordinates, ambient air conditions and observing wavelength.

    Parameters
    ----------
    ri : double array
    di : double array
    utc1 : double array
    utc2 : double array
    dut1 : double array
    elong : double array
    phi : double array
    hm : double array
    xp : double array
    yp : double array
    phpa : double array
    tc : double array
    rh : double array
    wl : double array

    Returns
    -------
    aob : double array
    zob : double array
    hob : double array
    dob : double array
    rob : double array

    Notes
    -----
    Wraps ERFA function ``eraAtio13``. The ERFA documentation is::

        - - - - - - - - - -
         e r a A t i o 1 3
        - - - - - - - - - -

        CIRS RA,Dec to observed place.  The caller supplies UTC, site
        coordinates, ambient air conditions and observing wavelength.

        Given:
           ri     double   CIRS right ascension (CIO-based, radians)
           di     double   CIRS declination (radians)
           utc1   double   UTC as a 2-part...
           utc2   double   ...quasi Julian Date (Notes 1,2)
           dut1   double   UT1-UTC (seconds, Note 3)
           elong  double   longitude (radians, east +ve, Note 4)
           phi    double   geodetic latitude (radians, Note 4)
           hm     double   height above ellipsoid (m, geodetic Notes 4,6)
           xp,yp  double   polar motion coordinates (radians, Note 5)
           phpa   double   pressure at the observer (hPa = mB, Note 6)
           tc     double   ambient temperature at the observer (deg C)
           rh     double   relative humidity at the observer (range 0-1)
           wl     double   wavelength (micrometers, Note 7)

        Returned:
           aob    double        observed azimuth (radians: N=0,E=90)
           zob    double        observed zenith distance (radians)
           hob    double        observed hour angle (radians)
           dob    double        observed declination (radians)
           rob    double        observed right ascension (CIO-based, radians)

        Returned (function value):
                  int      status: +1 = dubious year (Note 2)
                                    0 = OK
                                   -1 = unacceptable date

        Notes:

        1)  utc1+utc2 is quasi Julian Date (see Note 2), apportioned in any
            convenient way between the two arguments, for example where utc1
            is the Julian Day Number and utc2 is the fraction of a day.

            However, JD cannot unambiguously represent UTC during a leap
            second unless special measures are taken.  The convention in the
            present function is that the JD day represents UTC days whether
            the length is 86399, 86400 or 86401 SI seconds.

            Applications should use the function eraDtf2d to convert from
            calendar date and time of day into 2-part quasi Julian Date, as
            it implements the leap-second-ambiguity convention just
            described.

        2)  The warning status "dubious year" flags UTCs that predate the
            introduction of the time scale or that are too far in the
            future to be trusted.  See eraDat for further details.

        3)  UT1-UTC is tabulated in IERS bulletins.  It increases by exactly
            one second at the end of each positive UTC leap second,
            introduced in order to keep UT1-UTC within +/- 0.9s.  n.b. This
            practice is under review, and in the future UT1-UTC may grow
            essentially without limit.

        4)  The geographical coordinates are with respect to the ERFA_WGS84
            reference ellipsoid.  TAKE CARE WITH THE LONGITUDE SIGN:  the
            longitude required by the present function is east-positive
            (i.e. right-handed), in accordance with geographical convention.

        5)  The polar motion xp,yp can be obtained from IERS bulletins.  The
            values are the coordinates (in radians) of the Celestial
            Intermediate Pole with respect to the International Terrestrial
            Reference System (see IERS Conventions 2003), measured along the
            meridians 0 and 90 deg west respectively.  For many
            applications, xp and yp can be set to zero.

        6)  If hm, the height above the ellipsoid of the observing station
            in meters, is not known but phpa, the pressure in hPa (=mB), is
            available, an adequate estimate of hm can be obtained from the
            expression

                  hm = -29.3 * tsl * log ( phpa / 1013.25 );

            where tsl is the approximate sea-level air temperature in K
            (See Astrophysical Quantities, C.W.Allen, 3rd edition, section
            52).  Similarly, if the pressure phpa is not known, it can be
            estimated from the height of the observing station, hm, as
            follows:

                  phpa = 1013.25 * exp ( -hm / ( 29.3 * tsl ) );

            Note, however, that the refraction is nearly proportional to
            the pressure and that an accurate phpa value is important for
            precise work.

        7)  The argument wl specifies the observing wavelength in
            micrometers.  The transition from optical to radio is assumed to
            occur at 100 micrometers (about 3000 GHz).

        8)  "Observed" Az,ZD means the position that would be seen by a
            perfect geodetically aligned theodolite.  (Zenith distance is
            used rather than altitude in order to reflect the fact that no
            allowance is made for depression of the horizon.)  This is
            related to the observed HA,Dec via the standard rotation, using
            the geodetic latitude (corrected for polar motion), while the
            observed HA and RA are related simply through the Earth rotation
            angle and the site longitude.  "Observed" RA,Dec or HA,Dec thus
            means the position that would be seen by a perfect equatorial
            with its polar axis aligned to the Earth's axis of rotation.

        9)  The accuracy of the result is limited by the corrections for
            refraction, which use a simple A*tan(z) + B*tan^3(z) model.
            Providing the meteorological parameters are known accurately and
            there are no gross local effects, the predicted astrometric
            coordinates should be within 0.05 arcsec (optical) or 1 arcsec
            (radio) for a zenith distance of less than 70 degrees, better
            than 30 arcsec (optical or radio) at 85 degrees and better
            than 20 arcmin (optical) or 30 arcmin (radio) at the horizon.

        10) The complementary functions eraAtio13 and eraAtoi13 are self-
            consistent to better than 1 microarcsecond all over the
            celestial sphere.

        11) It is advisable to take great care with units, as even unlikely
            values of the input parameters are accepted and processed in
            accordance with the models used.

        Called:
           eraApio13    astrometry parameters, CIRS-observed, 2013
           eraAtioq     quick CIRS to observed

        This revision:   2016 February 2

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    aob, zob, hob, dob, rob, c_retval = ufunc.atio13(
        ri, di, utc1, utc2, dut1, elong, phi, hm, xp, yp, phpa, tc, rh, wl)
    check_errwarn(c_retval, 'atio13')
    return aob, zob, hob, dob, rob


STATUS_CODES['atio13'] = {
    1: 'dubious year (Note 2)',
    0: 'OK',
    -1: 'unacceptable date',
}


def atioq(ri, di, astrom):
    """
    Quick CIRS to observed place transformation.

    Parameters
    ----------
    ri : double array
    di : double array
    astrom : eraASTROM array

    Returns
    -------
    aob : double array
    zob : double array
    hob : double array
    dob : double array
    rob : double array

    Notes
    -----
    Wraps ERFA function ``eraAtioq``. The ERFA documentation is::

        - - - - - - - - -
         e r a A t i o q
        - - - - - - - - -

        Quick CIRS to observed place transformation.

        Use of this function is appropriate when efficiency is important and
        where many star positions are all to be transformed for one date.
        The star-independent astrometry parameters can be obtained by
        calling eraApio[13] or eraApco[13].

        Given:
           ri     double     CIRS right ascension
           di     double     CIRS declination
           astrom eraASTROM* star-independent astrometry parameters:
            pmt    double       PM time interval (SSB, Julian years)
            eb     double[3]    SSB to observer (vector, au)
            eh     double[3]    Sun to observer (unit vector)
            em     double       distance from Sun to observer (au)
            v      double[3]    barycentric observer velocity (vector, c)
            bm1    double       sqrt(1-|v|^2): reciprocal of Lorenz factor
            bpn    double[3][3] bias-precession-nutation matrix
            along  double       longitude + s' (radians)
            xpl    double       polar motion xp wrt local meridian (radians)
            ypl    double       polar motion yp wrt local meridian (radians)
            sphi   double       sine of geodetic latitude
            cphi   double       cosine of geodetic latitude
            diurab double       magnitude of diurnal aberration vector
            eral   double       "local" Earth rotation angle (radians)
            refa   double       refraction constant A (radians)
            refb   double       refraction constant B (radians)

        Returned:
           aob    double          observed azimuth (radians: N=0,E=90)
           zob    double          observed zenith distance (radians)
           hob    double          observed hour angle (radians)
           dob    double          observed declination (radians)
           rob    double          observed right ascension (CIO-based, radians)

        Notes:

        1) This function returns zenith distance rather than altitude in
           order to reflect the fact that no allowance is made for
           depression of the horizon.

        2) The accuracy of the result is limited by the corrections for
           refraction, which use a simple A*tan(z) + B*tan^3(z) model.
           Providing the meteorological parameters are known accurately and
           there are no gross local effects, the predicted observed
           coordinates should be within 0.05 arcsec (optical) or 1 arcsec
           (radio) for a zenith distance of less than 70 degrees, better
           than 30 arcsec (optical or radio) at 85 degrees and better
           than 20 arcmin (optical) or 30 arcmin (radio) at the horizon.

           Without refraction, the complementary functions eraAtioq and
           eraAtoiq are self-consistent to better than 1 microarcsecond all
           over the celestial sphere.  With refraction included, consistency
           falls off at high zenith distances, but is still better than
           0.05 arcsec at 85 degrees.

        3) It is advisable to take great care with units, as even unlikely
           values of the input parameters are accepted and processed in
           accordance with the models used.

        4) The CIRS RA,Dec is obtained from a star catalog mean place by
           allowing for space motion, parallax, the Sun's gravitational lens
           effect, annual aberration and precession-nutation.  For star
           positions in the ICRS, these effects can be applied by means of
           the eraAtci13 (etc.) functions.  Starting from classical "mean
           place" systems, additional transformations will be needed first.

        5) "Observed" Az,El means the position that would be seen by a
           perfect geodetically aligned theodolite.  This is obtained from
           the CIRS RA,Dec by allowing for Earth orientation and diurnal
           aberration, rotating from equator to horizon coordinates, and
           then adjusting for refraction.  The HA,Dec is obtained by
           rotating back into equatorial coordinates, and is the position
           that would be seen by a perfect equatorial with its polar axis
           aligned to the Earth's axis of rotation.  Finally, the RA is
           obtained by subtracting the HA from the local ERA.

        6) The star-independent CIRS-to-observed-place parameters in ASTROM
           may be computed with eraApio[13] or eraApco[13].  If nothing has
           changed significantly except the time, eraAper[13] may be used to
           perform the requisite adjustment to the astrom structure.

        Called:
           eraS2c       spherical coordinates to unit vector
           eraC2s       p-vector to spherical
           eraAnp       normalize angle into range 0 to 2pi

        This revision:   2020 December 7

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    aob, zob, hob, dob, rob = ufunc.atioq(ri, di, astrom)
    return aob, zob, hob, dob, rob


def atoc13(type, ob1, ob2, utc1, utc2, dut1, elong, phi, hm, xp, yp, phpa, tc, rh, wl):
    """
    Observed place at a groundbased site to to ICRS astrometric RA,Dec.
    The caller supplies UTC, site coordinates, ambient air conditions
    and observing wavelength.

    Parameters
    ----------
    type : const char array
    ob1 : double array
    ob2 : double array
    utc1 : double array
    utc2 : double array
    dut1 : double array
    elong : double array
    phi : double array
    hm : double array
    xp : double array
    yp : double array
    phpa : double array
    tc : double array
    rh : double array
    wl : double array

    Returns
    -------
    rc : double array
    dc : double array

    Notes
    -----
    Wraps ERFA function ``eraAtoc13``. The ERFA documentation is::

        - - - - - - - - - -
         e r a A t o c 1 3
        - - - - - - - - - -

        Observed place at a groundbased site to to ICRS astrometric RA,Dec.
        The caller supplies UTC, site coordinates, ambient air conditions
        and observing wavelength.

        Given:
           type   char[]   type of coordinates - "R", "H" or "A" (Notes 1,2)
           ob1    double   observed Az, HA or RA (radians; Az is N=0,E=90)
           ob2    double   observed ZD or Dec (radians)
           utc1   double   UTC as a 2-part...
           utc2   double   ...quasi Julian Date (Notes 3,4)
           dut1   double   UT1-UTC (seconds, Note 5)
           elong  double   longitude (radians, east +ve, Note 6)
           phi    double   geodetic latitude (radians, Note 6)
           hm     double   height above ellipsoid (m, geodetic Notes 6,8)
           xp,yp  double   polar motion coordinates (radians, Note 7)
           phpa   double   pressure at the observer (hPa = mB, Note 8)
           tc     double   ambient temperature at the observer (deg C)
           rh     double   relative humidity at the observer (range 0-1)
           wl     double   wavelength (micrometers, Note 9)

        Returned:
           rc,dc  double   ICRS astrometric RA,Dec (radians)

        Returned (function value):
                  int      status: +1 = dubious year (Note 4)
                                    0 = OK
                                   -1 = unacceptable date

        Notes:

        1)  "Observed" Az,ZD means the position that would be seen by a
            perfect geodetically aligned theodolite.  (Zenith distance is
            used rather than altitude in order to reflect the fact that no
            allowance is made for depression of the horizon.)  This is
            related to the observed HA,Dec via the standard rotation, using
            the geodetic latitude (corrected for polar motion), while the
            observed HA and RA are related simply through the Earth rotation
            angle and the site longitude.  "Observed" RA,Dec or HA,Dec thus
            means the position that would be seen by a perfect equatorial
            with its polar axis aligned to the Earth's axis of rotation.

        2)  Only the first character of the type argument is significant.
            "R" or "r" indicates that ob1 and ob2 are the observed right
            ascension and declination;  "H" or "h" indicates that they are
            hour angle (west +ve) and declination;  anything else ("A" or
            "a" is recommended) indicates that ob1 and ob2 are azimuth
            (north zero, east 90 deg) and zenith distance.

        3)  utc1+utc2 is quasi Julian Date (see Note 2), apportioned in any
            convenient way between the two arguments, for example where utc1
            is the Julian Day Number and utc2 is the fraction of a day.

            However, JD cannot unambiguously represent UTC during a leap
            second unless special measures are taken.  The convention in the
            present function is that the JD day represents UTC days whether
            the length is 86399, 86400 or 86401 SI seconds.

            Applications should use the function eraDtf2d to convert from
            calendar date and time of day into 2-part quasi Julian Date, as
            it implements the leap-second-ambiguity convention just
            described.

        4)  The warning status "dubious year" flags UTCs that predate the
            introduction of the time scale or that are too far in the
            future to be trusted.  See eraDat for further details.

        5)  UT1-UTC is tabulated in IERS bulletins.  It increases by exactly
            one second at the end of each positive UTC leap second,
            introduced in order to keep UT1-UTC within +/- 0.9s.  n.b. This
            practice is under review, and in the future UT1-UTC may grow
            essentially without limit.

        6)  The geographical coordinates are with respect to the ERFA_WGS84
            reference ellipsoid.  TAKE CARE WITH THE LONGITUDE SIGN:  the
            longitude required by the present function is east-positive
            (i.e. right-handed), in accordance with geographical convention.

        7)  The polar motion xp,yp can be obtained from IERS bulletins.  The
            values are the coordinates (in radians) of the Celestial
            Intermediate Pole with respect to the International Terrestrial
            Reference System (see IERS Conventions 2003), measured along the
            meridians 0 and 90 deg west respectively.  For many
            applications, xp and yp can be set to zero.

        8)  If hm, the height above the ellipsoid of the observing station
            in meters, is not known but phpa, the pressure in hPa (=mB), is
            available, an adequate estimate of hm can be obtained from the
            expression

                  hm = -29.3 * tsl * log ( phpa / 1013.25 );

            where tsl is the approximate sea-level air temperature in K
            (See Astrophysical Quantities, C.W.Allen, 3rd edition, section
            52).  Similarly, if the pressure phpa is not known, it can be
            estimated from the height of the observing station, hm, as
            follows:

                  phpa = 1013.25 * exp ( -hm / ( 29.3 * tsl ) );

            Note, however, that the refraction is nearly proportional to
            the pressure and that an accurate phpa value is important for
            precise work.

        9)  The argument wl specifies the observing wavelength in
            micrometers.  The transition from optical to radio is assumed to
            occur at 100 micrometers (about 3000 GHz).

        10) The accuracy of the result is limited by the corrections for
            refraction, which use a simple A*tan(z) + B*tan^3(z) model.
            Providing the meteorological parameters are known accurately and
            there are no gross local effects, the predicted astrometric
            coordinates should be within 0.05 arcsec (optical) or 1 arcsec
            (radio) for a zenith distance of less than 70 degrees, better
            than 30 arcsec (optical or radio) at 85 degrees and better
            than 20 arcmin (optical) or 30 arcmin (radio) at the horizon.

            Without refraction, the complementary functions eraAtco13 and
            eraAtoc13 are self-consistent to better than 1 microarcsecond
            all over the celestial sphere.  With refraction included,
            consistency falls off at high zenith distances, but is still
            better than 0.05 arcsec at 85 degrees.

        11) It is advisable to take great care with units, as even unlikely
            values of the input parameters are accepted and processed in
            accordance with the models used.

        Called:
           eraApco13    astrometry parameters, ICRS-observed
           eraAtoiq     quick observed to CIRS
           eraAticq     quick CIRS to ICRS

        This revision:   2013 October 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rc, dc, c_retval = ufunc.atoc13(
        type, ob1, ob2, utc1, utc2, dut1, elong, phi, hm, xp, yp, phpa, tc, rh, wl)
    check_errwarn(c_retval, 'atoc13')
    return rc, dc


STATUS_CODES['atoc13'] = {
    1: 'dubious year (Note 4)',
    0: 'OK',
    -1: 'unacceptable date',
}


def atoi13(type, ob1, ob2, utc1, utc2, dut1, elong, phi, hm, xp, yp, phpa, tc, rh, wl):
    """
    Observed place to CIRS.  The caller supplies UTC, site coordinates,
    ambient air conditions and observing wavelength.

    Parameters
    ----------
    type : const char array
    ob1 : double array
    ob2 : double array
    utc1 : double array
    utc2 : double array
    dut1 : double array
    elong : double array
    phi : double array
    hm : double array
    xp : double array
    yp : double array
    phpa : double array
    tc : double array
    rh : double array
    wl : double array

    Returns
    -------
    ri : double array
    di : double array

    Notes
    -----
    Wraps ERFA function ``eraAtoi13``. The ERFA documentation is::

        - - - - - - - - - -
         e r a A t o i 1 3
        - - - - - - - - - -

        Observed place to CIRS.  The caller supplies UTC, site coordinates,
        ambient air conditions and observing wavelength.

        Given:
           type   char[]   type of coordinates - "R", "H" or "A" (Notes 1,2)
           ob1    double   observed Az, HA or RA (radians; Az is N=0,E=90)
           ob2    double   observed ZD or Dec (radians)
           utc1   double   UTC as a 2-part...
           utc2   double   ...quasi Julian Date (Notes 3,4)
           dut1   double   UT1-UTC (seconds, Note 5)
           elong  double   longitude (radians, east +ve, Note 6)
           phi    double   geodetic latitude (radians, Note 6)
           hm     double   height above the ellipsoid (meters, Notes 6,8)
           xp,yp  double   polar motion coordinates (radians, Note 7)
           phpa   double   pressure at the observer (hPa = mB, Note 8)
           tc     double   ambient temperature at the observer (deg C)
           rh     double   relative humidity at the observer (range 0-1)
           wl     double   wavelength (micrometers, Note 9)

        Returned:
           ri     double        CIRS right ascension (CIO-based, radians)
           di     double        CIRS declination (radians)

        Returned (function value):
                  int      status: +1 = dubious year (Note 2)
                                    0 = OK
                                   -1 = unacceptable date

        Notes:

        1)  "Observed" Az,ZD means the position that would be seen by a
            perfect geodetically aligned theodolite.  (Zenith distance is
            used rather than altitude in order to reflect the fact that no
            allowance is made for depression of the horizon.)  This is
            related to the observed HA,Dec via the standard rotation, using
            the geodetic latitude (corrected for polar motion), while the
            observed HA and RA are related simply through the Earth rotation
            angle and the site longitude.  "Observed" RA,Dec or HA,Dec thus
            means the position that would be seen by a perfect equatorial
            with its polar axis aligned to the Earth's axis of rotation.

        2)  Only the first character of the type argument is significant.
            "R" or "r" indicates that ob1 and ob2 are the observed right
            ascension and declination;  "H" or "h" indicates that they are
            hour angle (west +ve) and declination;  anything else ("A" or
            "a" is recommended) indicates that ob1 and ob2 are azimuth
            (north zero, east 90 deg) and zenith distance.

        3)  utc1+utc2 is quasi Julian Date (see Note 2), apportioned in any
            convenient way between the two arguments, for example where utc1
            is the Julian Day Number and utc2 is the fraction of a day.

            However, JD cannot unambiguously represent UTC during a leap
            second unless special measures are taken.  The convention in the
            present function is that the JD day represents UTC days whether
            the length is 86399, 86400 or 86401 SI seconds.

            Applications should use the function eraDtf2d to convert from
            calendar date and time of day into 2-part quasi Julian Date, as
            it implements the leap-second-ambiguity convention just
            described.

        4)  The warning status "dubious year" flags UTCs that predate the
            introduction of the time scale or that are too far in the
            future to be trusted.  See eraDat for further details.

        5)  UT1-UTC is tabulated in IERS bulletins.  It increases by exactly
            one second at the end of each positive UTC leap second,
            introduced in order to keep UT1-UTC within +/- 0.9s.  n.b. This
            practice is under review, and in the future UT1-UTC may grow
            essentially without limit.

        6)  The geographical coordinates are with respect to the ERFA_WGS84
            reference ellipsoid.  TAKE CARE WITH THE LONGITUDE SIGN:  the
            longitude required by the present function is east-positive
            (i.e. right-handed), in accordance with geographical convention.

        7)  The polar motion xp,yp can be obtained from IERS bulletins.  The
            values are the coordinates (in radians) of the Celestial
            Intermediate Pole with respect to the International Terrestrial
            Reference System (see IERS Conventions 2003), measured along the
            meridians 0 and 90 deg west respectively.  For many
            applications, xp and yp can be set to zero.

        8)  If hm, the height above the ellipsoid of the observing station
            in meters, is not known but phpa, the pressure in hPa (=mB), is
            available, an adequate estimate of hm can be obtained from the
            expression

                  hm = -29.3 * tsl * log ( phpa / 1013.25 );

            where tsl is the approximate sea-level air temperature in K
            (See Astrophysical Quantities, C.W.Allen, 3rd edition, section
            52).  Similarly, if the pressure phpa is not known, it can be
            estimated from the height of the observing station, hm, as
            follows:

                  phpa = 1013.25 * exp ( -hm / ( 29.3 * tsl ) );

            Note, however, that the refraction is nearly proportional to
            the pressure and that an accurate phpa value is important for
            precise work.

        9)  The argument wl specifies the observing wavelength in
            micrometers.  The transition from optical to radio is assumed to
            occur at 100 micrometers (about 3000 GHz).

        10) The accuracy of the result is limited by the corrections for
            refraction, which use a simple A*tan(z) + B*tan^3(z) model.
            Providing the meteorological parameters are known accurately and
            there are no gross local effects, the predicted astrometric
            coordinates should be within 0.05 arcsec (optical) or 1 arcsec
            (radio) for a zenith distance of less than 70 degrees, better
            than 30 arcsec (optical or radio) at 85 degrees and better
            than 20 arcmin (optical) or 30 arcmin (radio) at the horizon.

            Without refraction, the complementary functions eraAtio13 and
            eraAtoi13 are self-consistent to better than 1 microarcsecond
            all over the celestial sphere.  With refraction included,
            consistency falls off at high zenith distances, but is still
            better than 0.05 arcsec at 85 degrees.

        12) It is advisable to take great care with units, as even unlikely
            values of the input parameters are accepted and processed in
            accordance with the models used.

        Called:
           eraApio13    astrometry parameters, CIRS-observed, 2013
           eraAtoiq     quick observed to CIRS

        This revision:   2013 October 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    ri, di, c_retval = ufunc.atoi13(
        type, ob1, ob2, utc1, utc2, dut1, elong, phi, hm, xp, yp, phpa, tc, rh, wl)
    check_errwarn(c_retval, 'atoi13')
    return ri, di


STATUS_CODES['atoi13'] = {
    1: 'dubious year (Note 2)',
    0: 'OK',
    -1: 'unacceptable date',
}


def atoiq(type, ob1, ob2, astrom):
    """
    Quick observed place to CIRS, given the star-independent astrometry
    parameters.

    Parameters
    ----------
    type : const char array
    ob1 : double array
    ob2 : double array
    astrom : eraASTROM array

    Returns
    -------
    ri : double array
    di : double array

    Notes
    -----
    Wraps ERFA function ``eraAtoiq``. The ERFA documentation is::

        - - - - - - - - -
         e r a A t o i q
        - - - - - - - - -

        Quick observed place to CIRS, given the star-independent astrometry
        parameters.

        Use of this function is appropriate when efficiency is important and
        where many star positions are all to be transformed for one date.
        The star-independent astrometry parameters can be obtained by
        calling eraApio[13] or eraApco[13].

        Given:
           type   char[]     type of coordinates: "R", "H" or "A" (Note 1)
           ob1    double     observed Az, HA or RA (radians; Az is N=0,E=90)
           ob2    double     observed ZD or Dec (radians)
           astrom eraASTROM* star-independent astrometry parameters:
            pmt    double       PM time interval (SSB, Julian years)
            eb     double[3]    SSB to observer (vector, au)
            eh     double[3]    Sun to observer (unit vector)
            em     double       distance from Sun to observer (au)
            v      double[3]    barycentric observer velocity (vector, c)
            bm1    double       sqrt(1-|v|^2): reciprocal of Lorenz factor
            bpn    double[3][3] bias-precession-nutation matrix
            along  double       longitude + s' (radians)
            xpl    double       polar motion xp wrt local meridian (radians)
            ypl    double       polar motion yp wrt local meridian (radians)
            sphi   double       sine of geodetic latitude
            cphi   double       cosine of geodetic latitude
            diurab double       magnitude of diurnal aberration vector
            eral   double       "local" Earth rotation angle (radians)
            refa   double       refraction constant A (radians)
            refb   double       refraction constant B (radians)

        Returned:
           ri     double          CIRS right ascension (CIO-based, radians)
           di     double          CIRS declination (radians)

        Notes:

        1) "Observed" Az,El means the position that would be seen by a
           perfect geodetically aligned theodolite.  This is related to
           the observed HA,Dec via the standard rotation, using the geodetic
           latitude (corrected for polar motion), while the observed HA and
           RA are related simply through the Earth rotation angle and the
           site longitude.  "Observed" RA,Dec or HA,Dec thus means the
           position that would be seen by a perfect equatorial with its
           polar axis aligned to the Earth's axis of rotation.  By removing
           from the observed place the effects of atmospheric refraction and
           diurnal aberration, the CIRS RA,Dec is obtained.

        2) Only the first character of the type argument is significant.
           "R" or "r" indicates that ob1 and ob2 are the observed right
           ascension and declination;  "H" or "h" indicates that they are
           hour angle (west +ve) and declination;  anything else ("A" or
           "a" is recommended) indicates that ob1 and ob2 are azimuth (north
           zero, east 90 deg) and zenith distance.  (Zenith distance is used
           rather than altitude in order to reflect the fact that no
           allowance is made for depression of the horizon.)

        3) The accuracy of the result is limited by the corrections for
           refraction, which use a simple A*tan(z) + B*tan^3(z) model.
           Providing the meteorological parameters are known accurately and
           there are no gross local effects, the predicted intermediate
           coordinates should be within 0.05 arcsec (optical) or 1 arcsec
           (radio) for a zenith distance of less than 70 degrees, better
           than 30 arcsec (optical or radio) at 85 degrees and better than
           20 arcmin (optical) or 25 arcmin (radio) at the horizon.

           Without refraction, the complementary functions eraAtioq and
           eraAtoiq are self-consistent to better than 1 microarcsecond all
           over the celestial sphere.  With refraction included, consistency
           falls off at high zenith distances, but is still better than
           0.05 arcsec at 85 degrees.

        4) It is advisable to take great care with units, as even unlikely
           values of the input parameters are accepted and processed in
           accordance with the models used.

        Called:
           eraS2c       spherical coordinates to unit vector
           eraC2s       p-vector to spherical
           eraAnp       normalize angle into range 0 to 2pi

        This revision:   2020 December 7

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    ri, di = ufunc.atoiq(type, ob1, ob2, astrom)
    return ri, di


def ld(bm, p, q, e, em, dlim):
    """
    Apply light deflection by a solar-system body, as part of
    transforming coordinate direction into natural direction.

    Parameters
    ----------
    bm : double array
    p : double array
    q : double array
    e : double array
    em : double array
    dlim : double array

    Returns
    -------
    p1 : double array

    Notes
    -----
    Wraps ERFA function ``eraLd``. The ERFA documentation is::

        - - - - - -
         e r a L d
        - - - - - -

        Apply light deflection by a solar-system body, as part of
        transforming coordinate direction into natural direction.

        Given:
           bm     double     mass of the gravitating body (solar masses)
           p      double[3]  direction from observer to source (unit vector)
           q      double[3]  direction from body to source (unit vector)
           e      double[3]  direction from body to observer (unit vector)
           em     double     distance from body to observer (au)
           dlim   double     deflection limiter (Note 4)

        Returned:
           p1     double[3]  observer to deflected source (unit vector)

        Notes:

        1) The algorithm is based on Expr. (70) in Klioner (2003) and
           Expr. (7.63) in the Explanatory Supplement (Urban & Seidelmann
           2013), with some rearrangement to minimize the effects of machine
           precision.

        2) The mass parameter bm can, as required, be adjusted in order to
           allow for such effects as quadrupole field.

        3) The barycentric position of the deflecting body should ideally
           correspond to the time of closest approach of the light ray to
           the body.

        4) The deflection limiter parameter dlim is phi^2/2, where phi is
           the angular separation (in radians) between source and body at
           which limiting is applied.  As phi shrinks below the chosen
           threshold, the deflection is artificially reduced, reaching zero
           for phi = 0.

        5) The returned vector p1 is not normalized, but the consequential
           departure from unit magnitude is always negligible.

        6) The arguments p and p1 can be the same array.

        7) To accumulate total light deflection taking into account the
           contributions from several bodies, call the present function for
           each body in succession, in decreasing order of distance from the
           observer.

        8) For efficiency, validation is omitted.  The supplied vectors must
           be of unit magnitude, and the deflection limiter non-zero and
           positive.

        References:

           Urban, S. & Seidelmann, P. K. (eds), Explanatory Supplement to
           the Astronomical Almanac, 3rd ed., University Science Books
           (2013).

           Klioner, Sergei A., "A practical relativistic model for micro-
           arcsecond astrometry in space", Astr. J. 125, 1580-1597 (2003).

        Called:
           eraPdp       scalar product of two p-vectors
           eraPxp       vector product of two p-vectors

        This revision:   2013 October 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    p1 = ufunc.ld(bm, p, q, e, em, dlim)
    return p1


def ldn(b, ob, sc):
    """
    For a star, apply light deflection by multiple solar-system bodies,
    as part of transforming coordinate direction into natural direction.

    Parameters
    ----------
    b : eraLDBODY array
    ob : double array
    sc : double array

    Returns
    -------
    sn : double array

    Notes
    -----
    Wraps ERFA function ``eraLdn``. The ERFA documentation is::

        - - - - - - -
         e r a L d n
        - - - - - - -

        For a star, apply light deflection by multiple solar-system bodies,
        as part of transforming coordinate direction into natural direction.

        Given:
           n    int           number of bodies (note 1)
           b    eraLDBODY[n]  data for each of the n bodies (Notes 1,2):
            bm   double         mass of the body (solar masses, Note 3)
            dl   double         deflection limiter (Note 4)
            pv   [2][3]         barycentric PV of the body (au, au/day)
           ob   double[3]     barycentric position of the observer (au)
           sc   double[3]     observer to star coord direction (unit vector)

        Returned:
           sn    double[3]      observer to deflected star (unit vector)

        1) The array b contains n entries, one for each body to be
           considered.  If n = 0, no gravitational light deflection will be
           applied, not even for the Sun.

        2) The array b should include an entry for the Sun as well as for
           any planet or other body to be taken into account.  The entries
           should be in the order in which the light passes the body.

        3) In the entry in the b array for body i, the mass parameter
           b[i].bm can, as required, be adjusted in order to allow for such
           effects as quadrupole field.

        4) The deflection limiter parameter b[i].dl is phi^2/2, where phi is
           the angular separation (in radians) between star and body at
           which limiting is applied.  As phi shrinks below the chosen
           threshold, the deflection is artificially reduced, reaching zero
           for phi = 0.   Example values suitable for a terrestrial
           observer, together with masses, are as follows:

              body i     b[i].bm        b[i].dl

              Sun        1.0            6e-6
              Jupiter    0.00095435     3e-9
              Saturn     0.00028574     3e-10

        5) For cases where the starlight passes the body before reaching the
           observer, the body is placed back along its barycentric track by
           the light time from that point to the observer.  For cases where
           the body is "behind" the observer no such shift is applied.  If
           a different treatment is preferred, the user has the option of
           instead using the eraLd function.  Similarly, eraLd can be used
           for cases where the source is nearby, not a star.

        6) The returned vector sn is not normalized, but the consequential
           departure from unit magnitude is always negligible.

        7) The arguments sc and sn can be the same array.

        8) For efficiency, validation is omitted.  The supplied masses must
           be greater than zero, the position and velocity vectors must be
           right, and the deflection limiter greater than zero.

        Reference:

           Urban, S. & Seidelmann, P. K. (eds), Explanatory Supplement to
           the Astronomical Almanac, 3rd ed., University Science Books
           (2013), Section 7.2.4.

        Called:
           eraCp        copy p-vector
           eraPdp       scalar product of two p-vectors
           eraPmp       p-vector minus p-vector
           eraPpsp      p-vector plus scaled p-vector
           eraPn        decompose p-vector into modulus and direction
           eraLd        light deflection by a solar-system body

        This revision:   2017 March 16

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    sn = ufunc.ldn(b, ob, sc)
    return sn


def ldsun(p, e, em):
    """
    Deflection of starlight by the Sun.

    Parameters
    ----------
    p : double array
    e : double array
    em : double array

    Returns
    -------
    p1 : double array

    Notes
    -----
    Wraps ERFA function ``eraLdsun``. The ERFA documentation is::

        - - - - - - - - -
         e r a L d s u n
        - - - - - - - - -

        Deflection of starlight by the Sun.

        Given:
           p      double[3]  direction from observer to star (unit vector)
           e      double[3]  direction from Sun to observer (unit vector)
           em     double     distance from Sun to observer (au)

        Returned:
           p1     double[3]  observer to deflected star (unit vector)

        Notes:

        1) The source is presumed to be sufficiently distant that its
           directions seen from the Sun and the observer are essentially
           the same.

        2) The deflection is restrained when the angle between the star and
           the center of the Sun is less than a threshold value, falling to
           zero deflection for zero separation.  The chosen threshold value
           is within the solar limb for all solar-system applications, and
           is about 5 arcminutes for the case of a terrestrial observer.

        3) The arguments p and p1 can be the same array.

        Called:
           eraLd        light deflection by a solar-system body

        This revision:   2016 June 16

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    p1 = ufunc.ldsun(p, e, em)
    return p1


def pmpx(rc, dc, pr, pd, px, rv, pmt, pob):
    """
    Proper motion and parallax.

    Parameters
    ----------
    rc : double array
    dc : double array
    pr : double array
    pd : double array
    px : double array
    rv : double array
    pmt : double array
    pob : double array

    Returns
    -------
    pco : double array

    Notes
    -----
    Wraps ERFA function ``eraPmpx``. The ERFA documentation is::

        - - - - - - - -
         e r a P m p x
        - - - - - - - -

        Proper motion and parallax.

        Given:
           rc,dc  double     ICRS RA,Dec at catalog epoch (radians)
           pr     double     RA proper motion (radians/year; Note 1)
           pd     double     Dec proper motion (radians/year)
           px     double     parallax (arcsec)
           rv     double     radial velocity (km/s, +ve if receding)
           pmt    double     proper motion time interval (SSB, Julian years)
           pob    double[3]  SSB to observer vector (au)

        Returned:
           pco    double[3]  coordinate direction (BCRS unit vector)

        Notes:

        1) The proper motion in RA is dRA/dt rather than cos(Dec)*dRA/dt.

        2) The proper motion time interval is for when the starlight
           reaches the solar system barycenter.

        3) To avoid the need for iteration, the Roemer effect (i.e. the
           small annual modulation of the proper motion coming from the
           changing light time) is applied approximately, using the
           direction of the star at the catalog epoch.

        References:

           1984 Astronomical Almanac, pp B39-B41.

           Urban, S. & Seidelmann, P. K. (eds), Explanatory Supplement to
           the Astronomical Almanac, 3rd ed., University Science Books
           (2013), Section 7.2.

        Called:
           eraPdp       scalar product of two p-vectors
           eraPn        decompose p-vector into modulus and direction

        This revision:   2013 October 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    pco = ufunc.pmpx(rc, dc, pr, pd, px, rv, pmt, pob)
    return pco


def pmsafe(ra1, dec1, pmr1, pmd1, px1, rv1, ep1a, ep1b, ep2a, ep2b):
    """
    Star proper motion:  update star catalog data for space motion, with
    special handling to handle the zero parallax case.

    Parameters
    ----------
    ra1 : double array
    dec1 : double array
    pmr1 : double array
    pmd1 : double array
    px1 : double array
    rv1 : double array
    ep1a : double array
    ep1b : double array
    ep2a : double array
    ep2b : double array

    Returns
    -------
    ra2 : double array
    dec2 : double array
    pmr2 : double array
    pmd2 : double array
    px2 : double array
    rv2 : double array

    Notes
    -----
    Wraps ERFA function ``eraPmsafe``. The ERFA documentation is::

        - - - - - - - - - -
         e r a P m s a f e
        - - - - - - - - - -

        Star proper motion:  update star catalog data for space motion, with
        special handling to handle the zero parallax case.

        Given:
           ra1    double      right ascension (radians), before
           dec1   double      declination (radians), before
           pmr1   double      RA proper motion (radians/year), before
           pmd1   double      Dec proper motion (radians/year), before
           px1    double      parallax (arcseconds), before
           rv1    double      radial velocity (km/s, +ve = receding), before
           ep1a   double      "before" epoch, part A (Note 1)
           ep1b   double      "before" epoch, part B (Note 1)
           ep2a   double      "after" epoch, part A (Note 1)
           ep2b   double      "after" epoch, part B (Note 1)

        Returned:
           ra2    double      right ascension (radians), after
           dec2   double      declination (radians), after
           pmr2   double      RA proper motion (radians/year), after
           pmd2   double      Dec proper motion (radians/year), after
           px2    double      parallax (arcseconds), after
           rv2    double      radial velocity (km/s, +ve = receding), after

        Returned (function value):
                  int         status:
                               -1 = system error (should not occur)
                                0 = no warnings or errors
                                1 = distance overridden (Note 6)
                                2 = excessive velocity (Note 7)
                                4 = solution didn't converge (Note 8)
                             else = binary logical OR of the above warnings

        Notes:

        1) The starting and ending TDB epochs ep1a+ep1b and ep2a+ep2b are
           Julian Dates, apportioned in any convenient way between the two
           parts (A and B).  For example, JD(TDB)=2450123.7 could be
           expressed in any of these ways, among others:

                  epNa            epNb

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in cases
           where the loss of several decimal digits of resolution is
           acceptable.  The J2000 method is best matched to the way the
           argument is handled internally and will deliver the optimum
           resolution.  The MJD method and the date & time methods are both
           good compromises between resolution and convenience.

        2) In accordance with normal star-catalog conventions, the object's
           right ascension and declination are freed from the effects of
           secular aberration.  The frame, which is aligned to the catalog
           equator and equinox, is Lorentzian and centered on the SSB.

           The proper motions are the rate of change of the right ascension
           and declination at the catalog epoch and are in radians per TDB
           Julian year.

           The parallax and radial velocity are in the same frame.

        3) Care is needed with units.  The star coordinates are in radians
           and the proper motions in radians per Julian year, but the
           parallax is in arcseconds.

        4) The RA proper motion is in terms of coordinate angle, not true
           angle.  If the catalog uses arcseconds for both RA and Dec proper
           motions, the RA proper motion will need to be divided by cos(Dec)
           before use.

        5) Straight-line motion at constant speed, in the inertial frame, is
           assumed.

        6) An extremely small (or zero or negative) parallax is overridden
           to ensure that the object is at a finite but very large distance,
           but not so large that the proper motion is equivalent to a large
           but safe speed (about 0.1c using the chosen constant).  A warning
           status of 1 is added to the status if this action has been taken.

        7) If the space velocity is a significant fraction of c (see the
           constant VMAX in the function eraStarpv), it is arbitrarily set
           to zero.  When this action occurs, 2 is added to the status.

        8) The relativistic adjustment carried out in the eraStarpv function
           involves an iterative calculation.  If the process fails to
           converge within a set number of iterations, 4 is added to the
           status.

        Called:
           eraSeps      angle between two points
           eraStarpm    update star catalog data for space motion

        This revision:   2014 July 1

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    ra2, dec2, pmr2, pmd2, px2, rv2, c_retval = ufunc.pmsafe(
        ra1, dec1, pmr1, pmd1, px1, rv1, ep1a, ep1b, ep2a, ep2b)
    check_errwarn(c_retval, 'pmsafe')
    return ra2, dec2, pmr2, pmd2, px2, rv2


STATUS_CODES['pmsafe'] = {
    -1: 'system error (should not occur)',
    0: 'no warnings or errors',
    1: 'distance overridden (Note 6)',
    2: 'excessive velocity (Note 7)',
    4: "solution didn't converge (Note 8)",
    'else': 'binary logical OR of the above warnings',
}


def pvtob(elong, phi, hm, xp, yp, sp, theta):
    """
    Position and velocity of a terrestrial observing station.

    Parameters
    ----------
    elong : double array
    phi : double array
    hm : double array
    xp : double array
    yp : double array
    sp : double array
    theta : double array

    Returns
    -------
    pv : double array

    Notes
    -----
    Wraps ERFA function ``eraPvtob``. The ERFA documentation is::

        - - - - - - - - -
         e r a P v t o b
        - - - - - - - - -

        Position and velocity of a terrestrial observing station.

        Given:
           elong   double       longitude (radians, east +ve, Note 1)
           phi     double       latitude (geodetic, radians, Note 1)
           hm      double       height above ref. ellipsoid (geodetic, m)
           xp,yp   double       coordinates of the pole (radians, Note 2)
           sp      double       the TIO locator s' (radians, Note 2)
           theta   double       Earth rotation angle (radians, Note 3)

        Returned:
           pv      double[2][3] position/velocity vector (m, m/s, CIRS)

        Notes:

        1) The terrestrial coordinates are with respect to the ERFA_WGS84
           reference ellipsoid.

        2) xp and yp are the coordinates (in radians) of the Celestial
           Intermediate Pole with respect to the International Terrestrial
           Reference System (see IERS Conventions), measured along the
           meridians 0 and 90 deg west respectively.  sp is the TIO locator
           s', in radians, which positions the Terrestrial Intermediate
           Origin on the equator.  For many applications, xp, yp and
           (especially) sp can be set to zero.

        3) If theta is Greenwich apparent sidereal time instead of Earth
           rotation angle, the result is with respect to the true equator
           and equinox of date, i.e. with the x-axis at the equinox rather
           than the celestial intermediate origin.

        4) The velocity units are meters per UT1 second, not per SI second.
           This is unlikely to have any practical consequences in the modern
           era.

        5) No validation is performed on the arguments.  Error cases that
           could lead to arithmetic exceptions are trapped by the eraGd2gc
           function, and the result set to zeros.

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Urban, S. & Seidelmann, P. K. (eds), Explanatory Supplement to
           the Astronomical Almanac, 3rd ed., University Science Books
           (2013), Section 7.4.3.3.

        Called:
           eraGd2gc     geodetic to geocentric transformation
           eraPom00     polar motion matrix
           eraTrxp      product of transpose of r-matrix and p-vector

        This revision:   2013 October 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    pv = ufunc.pvtob(elong, phi, hm, xp, yp, sp, theta)
    return pv


def refco(phpa, tc, rh, wl):
    """
    Determine the constants A and B in the atmospheric refraction model
    dZ = A tan Z + B tan^3 Z.

    Parameters
    ----------
    phpa : double array
    tc : double array
    rh : double array
    wl : double array

    Returns
    -------
    refa : double array
    refb : double array

    Notes
    -----
    Wraps ERFA function ``eraRefco``. The ERFA documentation is::

        - - - - - - - - -
         e r a R e f c o
        - - - - - - - - -

        Determine the constants A and B in the atmospheric refraction model
        dZ = A tan Z + B tan^3 Z.

        Z is the "observed" zenith distance (i.e. affected by refraction)
        and dZ is what to add to Z to give the "topocentric" (i.e. in vacuo)
        zenith distance.

        Given:
          phpa   double    pressure at the observer (hPa = millibar)
          tc     double    ambient temperature at the observer (deg C)
          rh     double    relative humidity at the observer (range 0-1)
          wl     double    wavelength (micrometers)

        Returned:
          refa   double         tan Z coefficient (radians)
          refb   double         tan^3 Z coefficient (radians)

        Notes:

        1) The model balances speed and accuracy to give good results in
           applications where performance at low altitudes is not paramount.
           Performance is maintained across a range of conditions, and
           applies to both optical/IR and radio.

        2) The model omits the effects of (i) height above sea level (apart
           from the reduced pressure itself), (ii) latitude (i.e. the
           flattening of the Earth), (iii) variations in tropospheric lapse
           rate and (iv) dispersive effects in the radio.

           The model was tested using the following range of conditions:

             lapse rates 0.0055, 0.0065, 0.0075 deg/meter
             latitudes 0, 25, 50, 75 degrees
             heights 0, 2500, 5000 meters ASL
             pressures mean for height -10% to +5% in steps of 5%
             temperatures -10 deg to +20 deg with respect to 280 deg at SL
             relative humidity 0, 0.5, 1
             wavelengths 0.4, 0.6, ... 2 micron, + radio
             zenith distances 15, 45, 75 degrees

           The accuracy with respect to raytracing through a model
           atmosphere was as follows:

                                  worst         RMS

             optical/IR           62 mas       8 mas
             radio               319 mas      49 mas

           For this particular set of conditions:

             lapse rate 0.0065 K/meter
             latitude 50 degrees
             sea level
             pressure 1005 mb
             temperature 280.15 K
             humidity 80%
             wavelength 5740 Angstroms

           the results were as follows:

             ZD       raytrace     eraRefco   Saastamoinen

             10         10.27        10.27        10.27
             20         21.19        21.20        21.19
             30         33.61        33.61        33.60
             40         48.82        48.83        48.81
             45         58.16        58.18        58.16
             50         69.28        69.30        69.27
             55         82.97        82.99        82.95
             60        100.51       100.54       100.50
             65        124.23       124.26       124.20
             70        158.63       158.68       158.61
             72        177.32       177.37       177.31
             74        200.35       200.38       200.32
             76        229.45       229.43       229.42
             78        267.44       267.29       267.41
             80        319.13       318.55       319.10

            deg        arcsec       arcsec       arcsec

           The values for Saastamoinen's formula (which includes terms
           up to tan^5) are taken from Hohenkerk and Sinclair (1985).

        3) A wl value in the range 0-100 selects the optical/IR case and is
           wavelength in micrometers.  Any value outside this range selects
           the radio case.

        4) Outlandish input parameters are silently limited to
           mathematically safe values.  Zero pressure is permissible, and
           causes zeroes to be returned.

        5) The algorithm draws on several sources, as follows:

           a) The formula for the saturation vapour pressure of water as
              a function of temperature and temperature is taken from
              Equations (A4.5-A4.7) of Gill (1982).

           b) The formula for the water vapour pressure, given the
              saturation pressure and the relative humidity, is from
              Crane (1976), Equation (2.5.5).

           c) The refractivity of air is a function of temperature,
              total pressure, water-vapour pressure and, in the case
              of optical/IR, wavelength.  The formulae for the two cases are
              developed from Hohenkerk & Sinclair (1985) and Rueger (2002).
              The IAG (1999) optical refractivity for dry air is used.

           d) The formula for beta, the ratio of the scale height of the
              atmosphere to the geocentric distance of the observer, is
              an adaption of Equation (9) from Stone (1996).  The
              adaptations, arrived at empirically, consist of (i) a small
              adjustment to the coefficient and (ii) a humidity term for the
              radio case only.

           e) The formulae for the refraction constants as a function of
              n-1 and beta are from Green (1987), Equation (4.31).

        References:

           Crane, R.K., Meeks, M.L. (ed), "Refraction Effects in the Neutral
           Atmosphere", Methods of Experimental Physics: Astrophysics 12B,
           Academic Press, 1976.

           Gill, Adrian E., "Atmosphere-Ocean Dynamics", Academic Press,
           1982.

           Green, R.M., "Spherical Astronomy", Cambridge University Press,
           1987.

           Hohenkerk, C.Y., & Sinclair, A.T., NAO Technical Note No. 63,
           1985.

           IAG Resolutions adopted at the XXIIth General Assembly in
           Birmingham, 1999, Resolution 3.

           Rueger, J.M., "Refractive Index Formulae for Electronic Distance
           Measurement with Radio and Millimetre Waves", in Unisurv Report
           S-68, School of Surveying and Spatial Information Systems,
           University of New South Wales, Sydney, Australia, 2002.

           Stone, Ronald C., P.A.S.P. 108, 1051-1058, 1996.

        This revision:   2020 August 17

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    refa, refb = ufunc.refco(phpa, tc, rh, wl)
    return refa, refb


def epv00(date1, date2):
    """
    Earth position and velocity, heliocentric and barycentric, with
    respect to the Barycentric Celestial Reference System.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    pvh : double array
    pvb : double array

    Notes
    -----
    Wraps ERFA function ``eraEpv00``. The ERFA documentation is::

        - - - - - - - - -
         e r a E p v 0 0
        - - - - - - - - -

        Earth position and velocity, heliocentric and barycentric, with
        respect to the Barycentric Celestial Reference System.

        Given:
           date1,date2  double        TDB date (Note 1)

        Returned:
           pvh          double[2][3]  heliocentric Earth position/velocity
           pvb          double[2][3]  barycentric Earth position/velocity

        Returned (function value):
                        int           status: 0 = OK
                                             +1 = warning: date outside
                                                  the range 1900-2100 AD

        Notes:

        1) The TDB date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TDB)=2450123.7 could be expressed in any of these ways, among
           others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in cases
           where the loss of several decimal digits of resolution is
           acceptable.  The J2000 method is best matched to the way the
           argument is handled internally and will deliver the optimum
           resolution.  The MJD method and the date & time methods are both
           good compromises between resolution and convenience.  However,
           the accuracy of the result is more likely to be limited by the
           algorithm itself than the way the date has been expressed.

           n.b. TT can be used instead of TDB in most applications.

        2) On return, the arrays pvh and pvb contain the following:

              pvh[0][0]  x       }
              pvh[0][1]  y       } heliocentric position, au
              pvh[0][2]  z       }

              pvh[1][0]  xdot    }
              pvh[1][1]  ydot    } heliocentric velocity, au/d
              pvh[1][2]  zdot    }

              pvb[0][0]  x       }
              pvb[0][1]  y       } barycentric position, au
              pvb[0][2]  z       }

              pvb[1][0]  xdot    }
              pvb[1][1]  ydot    } barycentric velocity, au/d
              pvb[1][2]  zdot    }

           The vectors are with respect to the Barycentric Celestial
           Reference System.  The time unit is one day in TDB.

        3) The function is a SIMPLIFIED SOLUTION from the planetary theory
           VSOP2000 (X. Moisson, P. Bretagnon, 2001, Celes. Mechanics &
           Dyn. Astron., 80, 3/4, 205-213) and is an adaptation of original
           Fortran code supplied by P. Bretagnon (private comm., 2000).

        4) Comparisons over the time span 1900-2100 with this simplified
           solution and the JPL DE405 ephemeris give the following results:

                                      RMS    max
                 Heliocentric:
                    position error    3.7   11.2   km
                    velocity error    1.4    5.0   mm/s

                 Barycentric:
                    position error    4.6   13.4   km
                    velocity error    1.4    4.9   mm/s

           Comparisons with the JPL DE406 ephemeris show that by 1800 and
           2200 the position errors are approximately double their 1900-2100
           size.  By 1500 and 2500 the deterioration is a factor of 10 and
           by 1000 and 3000 a factor of 60.  The velocity accuracy falls off
           at about half that rate.

        5) It is permissible to use the same array for pvh and pvb, which
           will receive the barycentric values.

        This revision:  2019 June 23

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    pvh, pvb, c_retval = ufunc.epv00(date1, date2)
    check_errwarn(c_retval, 'epv00')
    return pvh, pvb


STATUS_CODES['epv00'] = {
    0: 'OK',
    1: 'warning: date outsidethe range 1900-2100 AD',
}


def plan94(date1, date2, np):
    """
    Approximate heliocentric position and velocity of a nominated major
    planet:  Mercury, Venus, EMB, Mars, Jupiter, Saturn, Uranus or
    Neptune (but not the Earth itself).

    Parameters
    ----------
    date1 : double array
    date2 : double array
    np : int array

    Returns
    -------
    pv : double array

    Notes
    -----
    Wraps ERFA function ``eraPlan94``. The ERFA documentation is::

        - - - - - - - - - -
         e r a P l a n 9 4
        - - - - - - - - - -

        Approximate heliocentric position and velocity of a nominated major
        planet:  Mercury, Venus, EMB, Mars, Jupiter, Saturn, Uranus or
        Neptune (but not the Earth itself).

        Given:
           date1  double       TDB date part A (Note 1)
           date2  double       TDB date part B (Note 1)
           np     int          planet (1=Mercury, 2=Venus, 3=EMB, 4=Mars,
                                   5=Jupiter, 6=Saturn, 7=Uranus, 8=Neptune)

        Returned (argument):
           pv     double[2][3] planet p,v (heliocentric, J2000.0, au,au/d)

        Returned (function value):
                  int          status: -1 = illegal NP (outside 1-8)
                                        0 = OK
                                       +1 = warning: year outside 1000-3000
                                       +2 = warning: failed to converge

        Notes:

        1) The date date1+date2 is in the TDB time scale (in practice TT can
           be used) and is a Julian Date, apportioned in any convenient way
           between the two arguments.  For example, JD(TDB)=2450123.7 could
           be expressed in any of these ways, among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in cases
           where the loss of several decimal digits of resolution is
           acceptable.  The J2000 method is best matched to the way the
           argument is handled internally and will deliver the optimum
           resolution.  The MJD method and the date & time methods are both
           good compromises between resolution and convenience.  The limited
           accuracy of the present algorithm is such that any of the methods
           is satisfactory.

        2) If an np value outside the range 1-8 is supplied, an error status
           (function value -1) is returned and the pv vector set to zeroes.

        3) For np=3 the result is for the Earth-Moon Barycenter.  To obtain
           the heliocentric position and velocity of the Earth, use instead
           the ERFA function eraEpv00.

        4) On successful return, the array pv contains the following:

              pv[0][0]   x      }
              pv[0][1]   y      } heliocentric position, au
              pv[0][2]   z      }

              pv[1][0]   xdot   }
              pv[1][1]   ydot   } heliocentric velocity, au/d
              pv[1][2]   zdot   }

           The reference frame is equatorial and is with respect to the
           mean equator and equinox of epoch J2000.0.

        5) The algorithm is due to J.L. Simon, P. Bretagnon, J. Chapront,
           M. Chapront-Touze, G. Francou and J. Laskar (Bureau des
           Longitudes, Paris, France).  From comparisons with JPL
           ephemeris DE102, they quote the following maximum errors
           over the interval 1800-2050:

                           L (arcsec)    B (arcsec)      R (km)

              Mercury          4             1             300
              Venus            5             1             800
              EMB              6             1            1000
              Mars            17             1            7700
              Jupiter         71             5           76000
              Saturn          81            13          267000
              Uranus          86             7          712000
              Neptune         11             1          253000

           Over the interval 1000-3000, they report that the accuracy is no
           worse than 1.5 times that over 1800-2050.  Outside 1000-3000 the
           accuracy declines.

           Comparisons of the present function with the JPL DE200 ephemeris
           give the following RMS errors over the interval 1960-2025:

                            position (km)     velocity (m/s)

              Mercury            334               0.437
              Venus             1060               0.855
              EMB               2010               0.815
              Mars              7690               1.98
              Jupiter          71700               7.70
              Saturn          199000              19.4
              Uranus          564000              16.4
              Neptune         158000              14.4

           Comparisons against DE200 over the interval 1800-2100 gave the
           following maximum absolute differences.  (The results using
           DE406 were essentially the same.)

                         L (arcsec)   B (arcsec)     R (km)   Rdot (m/s)

              Mercury        7            1            500       0.7
              Venus          7            1           1100       0.9
              EMB            9            1           1300       1.0
              Mars          26            1           9000       2.5
              Jupiter       78            6          82000       8.2
              Saturn        87           14         263000      24.6
              Uranus        86            7         661000      27.4
              Neptune       11            2         248000      21.4

        6) The present ERFA re-implementation of the original Simon et al.
           Fortran code differs from the original in the following respects:

                     C instead of Fortran.

                     The date is supplied in two parts.

                     The result is returned only in equatorial Cartesian form;
                the ecliptic longitude, latitude and radius vector are not
                returned.

                     The result is in the J2000.0 equatorial frame, not ecliptic.

                     More is done in-line: there are fewer calls to subroutines.

                     Different error/warning status values are used.

                     A different Kepler's-equation-solver is used (avoiding
                use of double precision complex).

                     Polynomials in t are nested to minimize rounding errors.

                     Explicit double constants are used to avoid mixed-mode
                expressions.

           None of the above changes affects the result significantly.

        7) The returned status indicates the most serious condition
           encountered during execution of the function.  Illegal np is
           considered the most serious, overriding failure to converge,
           which in turn takes precedence over the remote date warning.

        Called:
           eraAnp       normalize angle into range 0 to 2pi

        Reference:  Simon, J.L, Bretagnon, P., Chapront, J.,
                    Chapront-Touze, M., Francou, G., and Laskar, J.,
                    Astron.Astrophys., 282, 663 (1994).

        This revision:  2019 June 23

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    pv, c_retval = ufunc.plan94(date1, date2, np)
    check_errwarn(c_retval, 'plan94')
    return pv


STATUS_CODES['plan94'] = {
    -1: 'illegal NP (outside 1-8)',
    0: 'OK',
    1: 'warning: year outside 1000-3000',
    2: 'warning: failed to converge',
}


def fad03(t):
    """
    Fundamental argument, IERS Conventions (2003):
    mean elongation of the Moon from the Sun.

    Parameters
    ----------
    t : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraFad03``. The ERFA documentation is::

        - - - - - - - - -
         e r a F a d 0 3
        - - - - - - - - -

        Fundamental argument, IERS Conventions (2003):
        mean elongation of the Moon from the Sun.

        Given:
           t     double    TDB, Julian centuries since J2000.0 (Note 1)

        Returned (function value):
                 double    D, radians (Note 2)

        Notes:

        1) Though t is strictly TDB, it is usually more convenient to use
           TT, which makes no significant difference.

        2) The expression used is as adopted in IERS Conventions (2003) and
           is from Simon et al. (1994).

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
           Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.fad03(t)
    return c_retval


def fae03(t):
    """
    Fundamental argument, IERS Conventions (2003):
    mean longitude of Earth.

    Parameters
    ----------
    t : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraFae03``. The ERFA documentation is::

        - - - - - - - - -
         e r a F a e 0 3
        - - - - - - - - -

        Fundamental argument, IERS Conventions (2003):
        mean longitude of Earth.

        Given:
           t     double    TDB, Julian centuries since J2000.0 (Note 1)

        Returned (function value):
                 double    mean longitude of Earth, radians (Note 2)

        Notes:

        1) Though t is strictly TDB, it is usually more convenient to use
           TT, which makes no significant difference.

        2) The expression used is as adopted in IERS Conventions (2003) and
           comes from Souchay et al. (1999) after Simon et al. (1994).

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
           Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683

           Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999,
           Astron.Astrophys.Supp.Ser. 135, 111

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.fae03(t)
    return c_retval


def faf03(t):
    """
    Fundamental argument, IERS Conventions (2003):
    mean longitude of the Moon minus mean longitude of the ascending
    node.

    Parameters
    ----------
    t : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraFaf03``. The ERFA documentation is::

        - - - - - - - - -
         e r a F a f 0 3
        - - - - - - - - -

        Fundamental argument, IERS Conventions (2003):
        mean longitude of the Moon minus mean longitude of the ascending
        node.

        Given:
           t     double    TDB, Julian centuries since J2000.0 (Note 1)

        Returned (function value):
                 double    F, radians (Note 2)

        Notes:

        1) Though t is strictly TDB, it is usually more convenient to use
           TT, which makes no significant difference.

        2) The expression used is as adopted in IERS Conventions (2003) and
           is from Simon et al. (1994).

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
           Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.faf03(t)
    return c_retval


def faju03(t):
    """
    Fundamental argument, IERS Conventions (2003):
    mean longitude of Jupiter.

    Parameters
    ----------
    t : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraFaju03``. The ERFA documentation is::

        - - - - - - - - - -
         e r a F a j u 0 3
        - - - - - - - - - -

        Fundamental argument, IERS Conventions (2003):
        mean longitude of Jupiter.

        Given:
           t     double    TDB, Julian centuries since J2000.0 (Note 1)

        Returned (function value):
                 double    mean longitude of Jupiter, radians (Note 2)

        Notes:

        1) Though t is strictly TDB, it is usually more convenient to use
           TT, which makes no significant difference.

        2) The expression used is as adopted in IERS Conventions (2003) and
           comes from Souchay et al. (1999) after Simon et al. (1994).

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
           Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683

           Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999,
           Astron.Astrophys.Supp.Ser. 135, 111

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.faju03(t)
    return c_retval


def fal03(t):
    """
    Fundamental argument, IERS Conventions (2003):
    mean anomaly of the Moon.

    Parameters
    ----------
    t : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraFal03``. The ERFA documentation is::

        - - - - - - - - -
         e r a F a l 0 3
        - - - - - - - - -

        Fundamental argument, IERS Conventions (2003):
        mean anomaly of the Moon.

        Given:
           t     double    TDB, Julian centuries since J2000.0 (Note 1)

        Returned (function value):
                 double    l, radians (Note 2)

        Notes:

        1) Though t is strictly TDB, it is usually more convenient to use
           TT, which makes no significant difference.

        2) The expression used is as adopted in IERS Conventions (2003) and
           is from Simon et al. (1994).

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
           Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.fal03(t)
    return c_retval


def falp03(t):
    """
    Fundamental argument, IERS Conventions (2003):
    mean anomaly of the Sun.

    Parameters
    ----------
    t : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraFalp03``. The ERFA documentation is::

        - - - - - - - - - -
         e r a F a l p 0 3
        - - - - - - - - - -

        Fundamental argument, IERS Conventions (2003):
        mean anomaly of the Sun.

        Given:
           t     double    TDB, Julian centuries since J2000.0 (Note 1)

        Returned (function value):
                 double    l', radians (Note 2)

        Notes:

        1) Though t is strictly TDB, it is usually more convenient to use
           TT, which makes no significant difference.

        2) The expression used is as adopted in IERS Conventions (2003) and
           is from Simon et al. (1994).

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
           Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.falp03(t)
    return c_retval


def fama03(t):
    """
    Fundamental argument, IERS Conventions (2003):
    mean longitude of Mars.

    Parameters
    ----------
    t : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraFama03``. The ERFA documentation is::

        - - - - - - - - - -
         e r a F a m a 0 3
        - - - - - - - - - -

        Fundamental argument, IERS Conventions (2003):
        mean longitude of Mars.

        Given:
           t     double    TDB, Julian centuries since J2000.0 (Note 1)

        Returned (function value):
                 double    mean longitude of Mars, radians (Note 2)

        Notes:

        1) Though t is strictly TDB, it is usually more convenient to use
           TT, which makes no significant difference.

        2) The expression used is as adopted in IERS Conventions (2003) and
           comes from Souchay et al. (1999) after Simon et al. (1994).

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
           Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683

           Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999,
           Astron.Astrophys.Supp.Ser. 135, 111

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.fama03(t)
    return c_retval


def fame03(t):
    """
    Fundamental argument, IERS Conventions (2003):
    mean longitude of Mercury.

    Parameters
    ----------
    t : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraFame03``. The ERFA documentation is::

        - - - - - - - - - -
         e r a F a m e 0 3
        - - - - - - - - - -

        Fundamental argument, IERS Conventions (2003):
        mean longitude of Mercury.

        Given:
           t     double    TDB, Julian centuries since J2000.0 (Note 1)

        Returned (function value):
                 double    mean longitude of Mercury, radians (Note 2)

        Notes:

        1) Though t is strictly TDB, it is usually more convenient to use
           TT, which makes no significant difference.

        2) The expression used is as adopted in IERS Conventions (2003) and
           comes from Souchay et al. (1999) after Simon et al. (1994).

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
           Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683

           Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999,
           Astron.Astrophys.Supp.Ser. 135, 111

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.fame03(t)
    return c_retval


def fane03(t):
    """
    Fundamental argument, IERS Conventions (2003):
    mean longitude of Neptune.

    Parameters
    ----------
    t : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraFane03``. The ERFA documentation is::

        - - - - - - - - - -
         e r a F a n e 0 3
        - - - - - - - - - -

        Fundamental argument, IERS Conventions (2003):
        mean longitude of Neptune.

        Given:
           t     double    TDB, Julian centuries since J2000.0 (Note 1)

        Returned (function value):
                 double    mean longitude of Neptune, radians (Note 2)

        Notes:

        1) Though t is strictly TDB, it is usually more convenient to use
           TT, which makes no significant difference.

        2) The expression used is as adopted in IERS Conventions (2003) and
           is adapted from Simon et al. (1994).

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
           Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.fane03(t)
    return c_retval


def faom03(t):
    """
    Fundamental argument, IERS Conventions (2003):
    mean longitude of the Moon's ascending node.

    Parameters
    ----------
    t : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraFaom03``. The ERFA documentation is::

        - - - - - - - - - -
         e r a F a o m 0 3
        - - - - - - - - - -

        Fundamental argument, IERS Conventions (2003):
        mean longitude of the Moon's ascending node.

        Given:
           t     double    TDB, Julian centuries since J2000.0 (Note 1)

        Returned (function value):
                 double    Omega, radians (Note 2)

        Notes:

        1) Though t is strictly TDB, it is usually more convenient to use
           TT, which makes no significant difference.

        2) The expression used is as adopted in IERS Conventions (2003) and
           is from Simon et al. (1994).

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
           Francou, G., Laskar, J., 1994, Astron.Astrophys. 282, 663-683.

        This revision:  2020 November 16

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.faom03(t)
    return c_retval


def fapa03(t):
    """
    Fundamental argument, IERS Conventions (2003):
    general accumulated precession in longitude.

    Parameters
    ----------
    t : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraFapa03``. The ERFA documentation is::

        - - - - - - - - - -
         e r a F a p a 0 3
        - - - - - - - - - -

        Fundamental argument, IERS Conventions (2003):
        general accumulated precession in longitude.

        Given:
           t     double    TDB, Julian centuries since J2000.0 (Note 1)

        Returned (function value):
                 double    general precession in longitude, radians (Note 2)

        Notes:

        1) Though t is strictly TDB, it is usually more convenient to use
           TT, which makes no significant difference.

        2) The expression used is as adopted in IERS Conventions (2003).  It
           is taken from Kinoshita & Souchay (1990) and comes originally
           from Lieske et al. (1977).

        References:

           Kinoshita, H. and Souchay J. 1990, Celest.Mech. and Dyn.Astron.
           48, 187

           Lieske, J.H., Lederle, T., Fricke, W. & Morando, B. 1977,
           Astron.Astrophys. 58, 1-16

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.fapa03(t)
    return c_retval


def fasa03(t):
    """
    Fundamental argument, IERS Conventions (2003):
    mean longitude of Saturn.

    Parameters
    ----------
    t : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraFasa03``. The ERFA documentation is::

        - - - - - - - - - -
         e r a F a s a 0 3
        - - - - - - - - - -

        Fundamental argument, IERS Conventions (2003):
        mean longitude of Saturn.

        Given:
           t     double    TDB, Julian centuries since J2000.0 (Note 1)

        Returned (function value):
                 double    mean longitude of Saturn, radians (Note 2)

        Notes:

        1) Though t is strictly TDB, it is usually more convenient to use
           TT, which makes no significant difference.

        2) The expression used is as adopted in IERS Conventions (2003) and
           comes from Souchay et al. (1999) after Simon et al. (1994).

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
           Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683

           Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999,
           Astron.Astrophys.Supp.Ser. 135, 111

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.fasa03(t)
    return c_retval


def faur03(t):
    """
    Fundamental argument, IERS Conventions (2003):
    mean longitude of Uranus.

    Parameters
    ----------
    t : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraFaur03``. The ERFA documentation is::

        - - - - - - - - - -
         e r a F a u r 0 3
        - - - - - - - - - -

        Fundamental argument, IERS Conventions (2003):
        mean longitude of Uranus.

        Given:
           t     double    TDB, Julian centuries since J2000.0 (Note 1)

        Returned  (function value):
                 double    mean longitude of Uranus, radians (Note 2)

        Notes:

        1) Though t is strictly TDB, it is usually more convenient to use
           TT, which makes no significant difference.

        2) The expression used is as adopted in IERS Conventions (2003) and
           is adapted from Simon et al. (1994).

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
           Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.faur03(t)
    return c_retval


def fave03(t):
    """
    Fundamental argument, IERS Conventions (2003):
    mean longitude of Venus.

    Parameters
    ----------
    t : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraFave03``. The ERFA documentation is::

        - - - - - - - - - -
         e r a F a v e 0 3
        - - - - - - - - - -

        Fundamental argument, IERS Conventions (2003):
        mean longitude of Venus.

        Given:
           t     double    TDB, Julian centuries since J2000.0 (Note 1)

        Returned (function value):
                 double    mean longitude of Venus, radians (Note 2)

        Notes:

        1) Though t is strictly TDB, it is usually more convenient to use
           TT, which makes no significant difference.

        2) The expression used is as adopted in IERS Conventions (2003) and
           comes from Souchay et al. (1999) after Simon et al. (1994).

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
           Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683

           Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999,
           Astron.Astrophys.Supp.Ser. 135, 111

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.fave03(t)
    return c_retval


def bi00():
    """
    Frame bias components of IAU 2000 precession-nutation models;  part
    of the Mathews-Herring-Buffett (MHB2000) nutation series, with
    additions.

    Parameters
    ----------

    Returns
    -------
    dpsibi : double array
    depsbi : double array
    dra : double array

    Notes
    -----
    Wraps ERFA function ``eraBi00``. The ERFA documentation is::

        - - - - - - - -
         e r a B i 0 0
        - - - - - - - -

        Frame bias components of IAU 2000 precession-nutation models;  part
        of the Mathews-Herring-Buffett (MHB2000) nutation series, with
        additions.

        Returned:
           dpsibi,depsbi  double  longitude and obliquity corrections
           dra            double  the ICRS RA of the J2000.0 mean equinox

        Notes:

        1) The frame bias corrections in longitude and obliquity (radians)
           are required in order to correct for the offset between the GCRS
           pole and the mean J2000.0 pole.  They define, with respect to the
           GCRS frame, a J2000.0 mean pole that is consistent with the rest
           of the IAU 2000A precession-nutation model.

        2) In addition to the displacement of the pole, the complete
           description of the frame bias requires also an offset in right
           ascension.  This is not part of the IAU 2000A model, and is from
           Chapront et al. (2002).  It is returned in radians.

        3) This is a supplemented implementation of one aspect of the IAU
           2000A nutation model, formally adopted by the IAU General
           Assembly in 2000, namely MHB2000 (Mathews et al. 2002).

        References:

           Chapront, J., Chapront-Touze, M. & Francou, G., Astron.
           Astrophys., 387, 700, 2002.

           Mathews, P.M., Herring, T.A., Buffet, B.A., "Modeling of nutation
           and precession:  New nutation series for nonrigid Earth and
           insights into the Earth's interior", J.Geophys.Res., 107, B4,
           2002.  The MHB2000 code itself was obtained on 2002 September 9
           from ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000A.

        This revision:  2020 October 29

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    dpsibi, depsbi, dra = ufunc.bi00()
    return dpsibi, depsbi, dra


def bp00(date1, date2):
    """
    Frame bias and precession, IAU 2000.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    rb : double array
    rp : double array
    rbp : double array

    Notes
    -----
    Wraps ERFA function ``eraBp00``. The ERFA documentation is::

        - - - - - - - -
         e r a B p 0 0
        - - - - - - - -

        Frame bias and precession, IAU 2000.

        Given:
           date1,date2  double         TT as a 2-part Julian Date (Note 1)

        Returned:
           rb           double[3][3]   frame bias matrix (Note 2)
           rp           double[3][3]   precession matrix (Note 3)
           rbp          double[3][3]   bias-precession matrix (Note 4)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                   date1         date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The matrix rb transforms vectors from GCRS to mean J2000.0 by
           applying frame bias.

        3) The matrix rp transforms vectors from J2000.0 mean equator and
           equinox to mean equator and equinox of date by applying
           precession.

        4) The matrix rbp transforms vectors from GCRS to mean equator and
           equinox of date by applying frame bias then precession.  It is
           the product rp x rb.

        5) It is permissible to re-use the same array in the returned
           arguments.  The arrays are filled in the order given.

        Called:
           eraBi00      frame bias components, IAU 2000
           eraPr00      IAU 2000 precession adjustments
           eraIr        initialize r-matrix to identity
           eraRx        rotate around X-axis
           eraRy        rotate around Y-axis
           eraRz        rotate around Z-axis
           eraCr        copy r-matrix
           eraRxr       product of two r-matrices

        Reference:
           "Expressions for the Celestial Intermediate Pole and Celestial
           Ephemeris Origin consistent with the IAU 2000A precession-
           nutation model", Astron.Astrophys. 400, 1145-1154 (2003)

           n.b. The celestial ephemeris origin (CEO) was renamed "celestial
                intermediate origin" (CIO) by IAU 2006 Resolution 2.

        This revision:  2013 August 21

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rb, rp, rbp = ufunc.bp00(date1, date2)
    return rb, rp, rbp


def bp06(date1, date2):
    """
    Frame bias and precession, IAU 2006.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    rb : double array
    rp : double array
    rbp : double array

    Notes
    -----
    Wraps ERFA function ``eraBp06``. The ERFA documentation is::

        - - - - - - - -
         e r a B p 0 6
        - - - - - - - -

        Frame bias and precession, IAU 2006.

        Given:
           date1,date2  double         TT as a 2-part Julian Date (Note 1)

        Returned:
           rb           double[3][3]   frame bias matrix (Note 2)
           rp           double[3][3]   precession matrix (Note 3)
           rbp          double[3][3]   bias-precession matrix (Note 4)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                   date1         date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The matrix rb transforms vectors from GCRS to mean J2000.0 by
           applying frame bias.

        3) The matrix rp transforms vectors from mean J2000.0 to mean of
           date by applying precession.

        4) The matrix rbp transforms vectors from GCRS to mean of date by
           applying frame bias then precession.  It is the product rp x rb.

        5) It is permissible to re-use the same array in the returned
           arguments.  The arrays are filled in the order given.

        Called:
           eraPfw06     bias-precession F-W angles, IAU 2006
           eraFw2m      F-W angles to r-matrix
           eraPmat06    PB matrix, IAU 2006
           eraTr        transpose r-matrix
           eraRxr       product of two r-matrices
           eraCr        copy r-matrix

        References:

           Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855

           Wallace, P.T. & Capitaine, N., 2006, Astron.Astrophys. 459, 981

        This revision:  2013 August 21

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rb, rp, rbp = ufunc.bp06(date1, date2)
    return rb, rp, rbp


def bpn2xy(rbpn):
    """
    Extract from the bias-precession-nutation matrix the X,Y coordinates
    of the Celestial Intermediate Pole.

    Parameters
    ----------
    rbpn : double array

    Returns
    -------
    x : double array
    y : double array

    Notes
    -----
    Wraps ERFA function ``eraBpn2xy``. The ERFA documentation is::

        - - - - - - - - - -
         e r a B p n 2 x y
        - - - - - - - - - -

        Extract from the bias-precession-nutation matrix the X,Y coordinates
        of the Celestial Intermediate Pole.

        Given:
           rbpn      double[3][3]  celestial-to-true matrix (Note 1)

        Returned:
           x,y       double        Celestial Intermediate Pole (Note 2)

        Notes:

        1) The matrix rbpn transforms vectors from GCRS to true equator (and
           CIO or equinox) of date, and therefore the Celestial Intermediate
           Pole unit vector is the bottom row of the matrix.

        2) The arguments x,y are components of the Celestial Intermediate
           Pole unit vector in the Geocentric Celestial Reference System.

        Reference:

           "Expressions for the Celestial Intermediate Pole and Celestial
           Ephemeris Origin consistent with the IAU 2000A precession-
           nutation model", Astron.Astrophys. 400, 1145-1154
           (2003)

           n.b. The celestial ephemeris origin (CEO) was renamed "celestial
                intermediate origin" (CIO) by IAU 2006 Resolution 2.

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    x, y = ufunc.bpn2xy(rbpn)
    return x, y


def c2i00a(date1, date2):
    """
    Form the celestial-to-intermediate matrix for a given date using the
    IAU 2000A precession-nutation model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    rc2i : double array

    Notes
    -----
    Wraps ERFA function ``eraC2i00a``. The ERFA documentation is::

        - - - - - - - - - -
         e r a C 2 i 0 0 a
        - - - - - - - - - -

        Form the celestial-to-intermediate matrix for a given date using the
        IAU 2000A precession-nutation model.

        Given:
           date1,date2 double       TT as a 2-part Julian Date (Note 1)

        Returned:
           rc2i        double[3][3] celestial-to-intermediate matrix (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The matrix rc2i is the first stage in the transformation from
           celestial to terrestrial coordinates:

              [TRS]  =  RPOM * R_3(ERA) * rc2i * [CRS]

                     =  rc2t * [CRS]

           where [CRS] is a vector in the Geocentric Celestial Reference
           System and [TRS] is a vector in the International Terrestrial
           Reference System (see IERS Conventions 2003), ERA is the Earth
           Rotation Angle and RPOM is the polar motion matrix.

        3) A faster, but slightly less accurate, result (about 1 mas) can be
           obtained by using instead the eraC2i00b function.

        Called:
           eraPnm00a    classical NPB matrix, IAU 2000A
           eraC2ibpn    celestial-to-intermediate matrix, given NPB matrix

        References:

           "Expressions for the Celestial Intermediate Pole and Celestial
           Ephemeris Origin consistent with the IAU 2000A precession-
           nutation model", Astron.Astrophys. 400, 1145-1154
           (2003)

           n.b. The celestial ephemeris origin (CEO) was renamed "celestial
                intermediate origin" (CIO) by IAU 2006 Resolution 2.

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2020 November 27

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rc2i = ufunc.c2i00a(date1, date2)
    return rc2i


def c2i00b(date1, date2):
    """
    Form the celestial-to-intermediate matrix for a given date using the
    IAU 2000B precession-nutation model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    rc2i : double array

    Notes
    -----
    Wraps ERFA function ``eraC2i00b``. The ERFA documentation is::

        - - - - - - - - - -
         e r a C 2 i 0 0 b
        - - - - - - - - - -

        Form the celestial-to-intermediate matrix for a given date using the
        IAU 2000B precession-nutation model.

        Given:
           date1,date2 double       TT as a 2-part Julian Date (Note 1)

        Returned:
           rc2i        double[3][3] celestial-to-intermediate matrix (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The matrix rc2i is the first stage in the transformation from
           celestial to terrestrial coordinates:

              [TRS]  =  RPOM * R_3(ERA) * rc2i * [CRS]

                     =  rc2t * [CRS]

           where [CRS] is a vector in the Geocentric Celestial Reference
           System and [TRS] is a vector in the International Terrestrial
           Reference System (see IERS Conventions 2003), ERA is the Earth
           Rotation Angle and RPOM is the polar motion matrix.

        3) The present function is faster, but slightly less accurate (about
           1 mas), than the eraC2i00a function.

        Called:
           eraPnm00b    classical NPB matrix, IAU 2000B
           eraC2ibpn    celestial-to-intermediate matrix, given NPB matrix

        References:

           "Expressions for the Celestial Intermediate Pole and Celestial
           Ephemeris Origin consistent with the IAU 2000A precession-
           nutation model", Astron.Astrophys. 400, 1145-1154
           (2003)

           n.b. The celestial ephemeris origin (CEO) was renamed "celestial
                intermediate origin" (CIO) by IAU 2006 Resolution 2.

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rc2i = ufunc.c2i00b(date1, date2)
    return rc2i


def c2i06a(date1, date2):
    """
    Form the celestial-to-intermediate matrix for a given date using the
    IAU 2006 precession and IAU 2000A nutation models.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    rc2i : double array

    Notes
    -----
    Wraps ERFA function ``eraC2i06a``. The ERFA documentation is::

        - - - - - - - - - -
         e r a C 2 i 0 6 a
        - - - - - - - - - -

        Form the celestial-to-intermediate matrix for a given date using the
        IAU 2006 precession and IAU 2000A nutation models.

        Given:
           date1,date2 double       TT as a 2-part Julian Date (Note 1)

        Returned:
           rc2i        double[3][3] celestial-to-intermediate matrix (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The matrix rc2i is the first stage in the transformation from
           celestial to terrestrial coordinates:

              [TRS]  =  RPOM * R_3(ERA) * rc2i * [CRS]

                     =  RC2T * [CRS]

           where [CRS] is a vector in the Geocentric Celestial Reference
           System and [TRS] is a vector in the International Terrestrial
           Reference System (see IERS Conventions 2003), ERA is the Earth
           Rotation Angle and RPOM is the polar motion matrix.

        Called:
           eraPnm06a    classical NPB matrix, IAU 2006/2000A
           eraBpn2xy    extract CIP X,Y coordinates from NPB matrix
           eraS06       the CIO locator s, given X,Y, IAU 2006
           eraC2ixys    celestial-to-intermediate matrix, given X,Y and s

        References:

           McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003),
           IERS Technical Note No. 32, BKG

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rc2i = ufunc.c2i06a(date1, date2)
    return rc2i


def c2ibpn(date1, date2, rbpn):
    """
    Form the celestial-to-intermediate matrix for a given date given
    the bias-precession-nutation matrix.

    Parameters
    ----------
    date1 : double array
    date2 : double array
    rbpn : double array

    Returns
    -------
    rc2i : double array

    Notes
    -----
    Wraps ERFA function ``eraC2ibpn``. The ERFA documentation is::

        - - - - - - - - - -
         e r a C 2 i b p n
        - - - - - - - - - -

        Form the celestial-to-intermediate matrix for a given date given
        the bias-precession-nutation matrix.  IAU 2000.

        Given:
           date1,date2 double       TT as a 2-part Julian Date (Note 1)
           rbpn        double[3][3] celestial-to-true matrix (Note 2)

        Returned:
           rc2i        double[3][3] celestial-to-intermediate matrix (Note 3)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The matrix rbpn transforms vectors from GCRS to true equator (and
           CIO or equinox) of date.  Only the CIP (bottom row) is used.

        3) The matrix rc2i is the first stage in the transformation from
           celestial to terrestrial coordinates:

              [TRS] = RPOM * R_3(ERA) * rc2i * [CRS]

                    = RC2T * [CRS]

           where [CRS] is a vector in the Geocentric Celestial Reference
           System and [TRS] is a vector in the International Terrestrial
           Reference System (see IERS Conventions 2003), ERA is the Earth
           Rotation Angle and RPOM is the polar motion matrix.

        4) Although its name does not include "00", This function is in fact
           specific to the IAU 2000 models.

        Called:
           eraBpn2xy    extract CIP X,Y coordinates from NPB matrix
           eraC2ixy     celestial-to-intermediate matrix, given X,Y

        References:
           "Expressions for the Celestial Intermediate Pole and Celestial
           Ephemeris Origin consistent with the IAU 2000A precession-
           nutation model", Astron.Astrophys. 400, 1145-1154 (2003)

           n.b. The celestial ephemeris origin (CEO) was renamed "celestial
                intermediate origin" (CIO) by IAU 2006 Resolution 2.

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rc2i = ufunc.c2ibpn(date1, date2, rbpn)
    return rc2i


def c2ixy(date1, date2, x, y):
    """
    Form the celestial to intermediate-frame-of-date matrix for a given
    date when the CIP X,Y coordinates are known.

    Parameters
    ----------
    date1 : double array
    date2 : double array
    x : double array
    y : double array

    Returns
    -------
    rc2i : double array

    Notes
    -----
    Wraps ERFA function ``eraC2ixy``. The ERFA documentation is::

        - - - - - - - - -
         e r a C 2 i x y
        - - - - - - - - -

        Form the celestial to intermediate-frame-of-date matrix for a given
        date when the CIP X,Y coordinates are known.  IAU 2000.

        Given:
           date1,date2 double       TT as a 2-part Julian Date (Note 1)
           x,y         double       Celestial Intermediate Pole (Note 2)

        Returned:
           rc2i        double[3][3] celestial-to-intermediate matrix (Note 3)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The Celestial Intermediate Pole coordinates are the x,y components
           of the unit vector in the Geocentric Celestial Reference System.

        3) The matrix rc2i is the first stage in the transformation from
           celestial to terrestrial coordinates:

              [TRS] = RPOM * R_3(ERA) * rc2i * [CRS]

                    = RC2T * [CRS]

           where [CRS] is a vector in the Geocentric Celestial Reference
           System and [TRS] is a vector in the International Terrestrial
           Reference System (see IERS Conventions 2003), ERA is the Earth
           Rotation Angle and RPOM is the polar motion matrix.

        4) Although its name does not include "00", This function is in fact
           specific to the IAU 2000 models.

        Called:
           eraC2ixys    celestial-to-intermediate matrix, given X,Y and s
           eraS00       the CIO locator s, given X,Y, IAU 2000A

        Reference:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rc2i = ufunc.c2ixy(date1, date2, x, y)
    return rc2i


def c2ixys(x, y, s):
    """
    Form the celestial to intermediate-frame-of-date matrix given the CIP
    X,Y and the CIO locator s.

    Parameters
    ----------
    x : double array
    y : double array
    s : double array

    Returns
    -------
    rc2i : double array

    Notes
    -----
    Wraps ERFA function ``eraC2ixys``. The ERFA documentation is::

        - - - - - - - - - -
         e r a C 2 i x y s
        - - - - - - - - - -

        Form the celestial to intermediate-frame-of-date matrix given the CIP
        X,Y and the CIO locator s.

        Given:
           x,y      double         Celestial Intermediate Pole (Note 1)
           s        double         the CIO locator s (Note 2)

        Returned:
           rc2i     double[3][3]   celestial-to-intermediate matrix (Note 3)

        Notes:

        1) The Celestial Intermediate Pole coordinates are the x,y
           components of the unit vector in the Geocentric Celestial
           Reference System.

        2) The CIO locator s (in radians) positions the Celestial
           Intermediate Origin on the equator of the CIP.

        3) The matrix rc2i is the first stage in the transformation from
           celestial to terrestrial coordinates:

              [TRS] = RPOM * R_3(ERA) * rc2i * [CRS]

                    = RC2T * [CRS]

           where [CRS] is a vector in the Geocentric Celestial Reference
           System and [TRS] is a vector in the International Terrestrial
           Reference System (see IERS Conventions 2003), ERA is the Earth
           Rotation Angle and RPOM is the polar motion matrix.

        Called:
           eraIr        initialize r-matrix to identity
           eraRz        rotate around Z-axis
           eraRy        rotate around Y-axis

        Reference:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2014 November 7

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rc2i = ufunc.c2ixys(x, y, s)
    return rc2i


def c2t00a(tta, ttb, uta, utb, xp, yp):
    """
    Form the celestial to terrestrial matrix given the date, the UT1 and
    the polar motion, using the IAU 2000A precession-nutation model.

    Parameters
    ----------
    tta : double array
    ttb : double array
    uta : double array
    utb : double array
    xp : double array
    yp : double array

    Returns
    -------
    rc2t : double array

    Notes
    -----
    Wraps ERFA function ``eraC2t00a``. The ERFA documentation is::

        - - - - - - - - - -
         e r a C 2 t 0 0 a
        - - - - - - - - - -

        Form the celestial to terrestrial matrix given the date, the UT1 and
        the polar motion, using the IAU 2000A precession-nutation model.

        Given:
           tta,ttb  double         TT as a 2-part Julian Date (Note 1)
           uta,utb  double         UT1 as a 2-part Julian Date (Note 1)
           xp,yp    double         CIP coordinates (radians, Note 2)

        Returned:
           rc2t     double[3][3]   celestial-to-terrestrial matrix (Note 3)

        Notes:

        1) The TT and UT1 dates tta+ttb and uta+utb are Julian Dates,
           apportioned in any convenient way between the arguments uta and
           utb.  For example, JD(UT1)=2450123.7 could be expressed in any of
           these ways, among others:

                   uta            utb

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution is
           acceptable.  The J2000 and MJD methods are good compromises
           between resolution and convenience.  In the case of uta,utb, the
           date & time method is best matched to the Earth rotation angle
           algorithm used:  maximum precision is delivered when the uta
           argument is for 0hrs UT1 on the day in question and the utb
           argument lies in the range 0 to 1, or vice versa.

        2) The arguments xp and yp are the coordinates (in radians) of the
           Celestial Intermediate Pole with respect to the International
           Terrestrial Reference System (see IERS Conventions 2003),
           measured along the meridians 0 and 90 deg west respectively.

        3) The matrix rc2t transforms from celestial to terrestrial
           coordinates:

              [TRS] = RPOM * R_3(ERA) * RC2I * [CRS]

                    = rc2t * [CRS]

           where [CRS] is a vector in the Geocentric Celestial Reference
           System and [TRS] is a vector in the International Terrestrial
           Reference System (see IERS Conventions 2003), RC2I is the
           celestial-to-intermediate matrix, ERA is the Earth rotation
           angle and RPOM is the polar motion matrix.

        4) A faster, but slightly less accurate, result (about 1 mas) can
           be obtained by using instead the eraC2t00b function.

        Called:
           eraC2i00a    celestial-to-intermediate matrix, IAU 2000A
           eraEra00     Earth rotation angle, IAU 2000
           eraSp00      the TIO locator s', IERS 2000
           eraPom00     polar motion matrix
           eraC2tcio    form CIO-based celestial-to-terrestrial matrix

        Reference:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2020 November 27

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rc2t = ufunc.c2t00a(tta, ttb, uta, utb, xp, yp)
    return rc2t


def c2t00b(tta, ttb, uta, utb, xp, yp):
    """
    Form the celestial to terrestrial matrix given the date, the UT1 and
    the polar motion, using the IAU 2000B precession-nutation model.

    Parameters
    ----------
    tta : double array
    ttb : double array
    uta : double array
    utb : double array
    xp : double array
    yp : double array

    Returns
    -------
    rc2t : double array

    Notes
    -----
    Wraps ERFA function ``eraC2t00b``. The ERFA documentation is::

        - - - - - - - - - -
         e r a C 2 t 0 0 b
        - - - - - - - - - -

        Form the celestial to terrestrial matrix given the date, the UT1 and
        the polar motion, using the IAU 2000B precession-nutation model.

        Given:
           tta,ttb  double         TT as a 2-part Julian Date (Note 1)
           uta,utb  double         UT1 as a 2-part Julian Date (Note 1)
           xp,yp    double         coordinates of the pole (radians, Note 2)

        Returned:
           rc2t     double[3][3]   celestial-to-terrestrial matrix (Note 3)

        Notes:

        1) The TT and UT1 dates tta+ttb and uta+utb are Julian Dates,
           apportioned in any convenient way between the arguments uta and
           utb.  For example, JD(UT1)=2450123.7 could be expressed in any of
           these ways, among others:

                   uta            utb

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution is
           acceptable.  The J2000 and MJD methods are good compromises
           between resolution and convenience.  In the case of uta,utb, the
           date & time method is best matched to the Earth rotation angle
           algorithm used:  maximum precision is delivered when the uta
           argument is for 0hrs UT1 on the day in question and the utb
           argument lies in the range 0 to 1, or vice versa.

        2) The arguments xp and yp are the coordinates (in radians) of the
           Celestial Intermediate Pole with respect to the International
           Terrestrial Reference System (see IERS Conventions 2003),
           measured along the meridians 0 and 90 deg west respectively.

        3) The matrix rc2t transforms from celestial to terrestrial
           coordinates:

              [TRS] = RPOM * R_3(ERA) * RC2I * [CRS]

                    = rc2t * [CRS]

           where [CRS] is a vector in the Geocentric Celestial Reference
           System and [TRS] is a vector in the International Terrestrial
           Reference System (see IERS Conventions 2003), RC2I is the
           celestial-to-intermediate matrix, ERA is the Earth rotation
           angle and RPOM is the polar motion matrix.

        4) The present function is faster, but slightly less accurate (about
           1 mas), than the eraC2t00a function.

        Called:
           eraC2i00b    celestial-to-intermediate matrix, IAU 2000B
           eraEra00     Earth rotation angle, IAU 2000
           eraPom00     polar motion matrix
           eraC2tcio    form CIO-based celestial-to-terrestrial matrix

        Reference:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2020 October 31

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rc2t = ufunc.c2t00b(tta, ttb, uta, utb, xp, yp)
    return rc2t


def c2t06a(tta, ttb, uta, utb, xp, yp):
    """
    Form the celestial to terrestrial matrix given the date, the UT1 and
    the polar motion, using the IAU 2006/2000A precession-nutation
    model.

    Parameters
    ----------
    tta : double array
    ttb : double array
    uta : double array
    utb : double array
    xp : double array
    yp : double array

    Returns
    -------
    rc2t : double array

    Notes
    -----
    Wraps ERFA function ``eraC2t06a``. The ERFA documentation is::

        - - - - - - - - - -
         e r a C 2 t 0 6 a
        - - - - - - - - - -

        Form the celestial to terrestrial matrix given the date, the UT1 and
        the polar motion, using the IAU 2006/2000A precession-nutation
        model.

        Given:
           tta,ttb  double         TT as a 2-part Julian Date (Note 1)
           uta,utb  double         UT1 as a 2-part Julian Date (Note 1)
           xp,yp    double         coordinates of the pole (radians, Note 2)

        Returned:
           rc2t     double[3][3]   celestial-to-terrestrial matrix (Note 3)

        Notes:

        1) The TT and UT1 dates tta+ttb and uta+utb are Julian Dates,
           apportioned in any convenient way between the arguments uta and
           utb.  For example, JD(UT1)=2450123.7 could be expressed in any of
           these ways, among others:

                   uta            utb

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution is
           acceptable.  The J2000 and MJD methods are good compromises
           between resolution and convenience.  In the case of uta,utb, the
           date & time method is best matched to the Earth rotation angle
           algorithm used:  maximum precision is delivered when the uta
           argument is for 0hrs UT1 on the day in question and the utb
           argument lies in the range 0 to 1, or vice versa.

        2) The arguments xp and yp are the coordinates (in radians) of the
           Celestial Intermediate Pole with respect to the International
           Terrestrial Reference System (see IERS Conventions 2003),
           measured along the meridians 0 and 90 deg west respectively.

        3) The matrix rc2t transforms from celestial to terrestrial
           coordinates:

              [TRS] = RPOM * R_3(ERA) * RC2I * [CRS]

                    = rc2t * [CRS]

           where [CRS] is a vector in the Geocentric Celestial Reference
           System and [TRS] is a vector in the International Terrestrial
           Reference System (see IERS Conventions 2003), RC2I is the
           celestial-to-intermediate matrix, ERA is the Earth rotation
           angle and RPOM is the polar motion matrix.

        Called:
           eraC2i06a    celestial-to-intermediate matrix, IAU 2006/2000A
           eraEra00     Earth rotation angle, IAU 2000
           eraSp00      the TIO locator s', IERS 2000
           eraPom00     polar motion matrix
           eraC2tcio    form CIO-based celestial-to-terrestrial matrix

        Reference:

           McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003),
           IERS Technical Note No. 32, BKG

        This revision:  2020 October 31

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rc2t = ufunc.c2t06a(tta, ttb, uta, utb, xp, yp)
    return rc2t


def c2tcio(rc2i, era, rpom):
    """
    Assemble the celestial to terrestrial matrix from CIO-based
    components (the celestial-to-intermediate matrix, the Earth Rotation
    Angle and the polar motion matrix).

    Parameters
    ----------
    rc2i : double array
    era : double array
    rpom : double array

    Returns
    -------
    rc2t : double array

    Notes
    -----
    Wraps ERFA function ``eraC2tcio``. The ERFA documentation is::

        - - - - - - - - - -
         e r a C 2 t c i o
        - - - - - - - - - -

        Assemble the celestial to terrestrial matrix from CIO-based
        components (the celestial-to-intermediate matrix, the Earth Rotation
        Angle and the polar motion matrix).

        Given:
           rc2i     double[3][3]    celestial-to-intermediate matrix
           era      double          Earth rotation angle (radians)
           rpom     double[3][3]    polar-motion matrix

        Returned:
           rc2t     double[3][3]    celestial-to-terrestrial matrix

        Notes:

        1) This function constructs the rotation matrix that transforms
           vectors in the celestial system into vectors in the terrestrial
           system.  It does so starting from precomputed components, namely
           the matrix which rotates from celestial coordinates to the
           intermediate frame, the Earth rotation angle and the polar motion
           matrix.  One use of the present function is when generating a
           series of celestial-to-terrestrial matrices where only the Earth
           Rotation Angle changes, avoiding the considerable overhead of
           recomputing the precession-nutation more often than necessary to
           achieve given accuracy objectives.

        2) The relationship between the arguments is as follows:

              [TRS] = RPOM * R_3(ERA) * rc2i * [CRS]

                    = rc2t * [CRS]

           where [CRS] is a vector in the Geocentric Celestial Reference
           System and [TRS] is a vector in the International Terrestrial
           Reference System (see IERS Conventions 2003).

        Called:
           eraCr        copy r-matrix
           eraRz        rotate around Z-axis
           eraRxr       product of two r-matrices

        Reference:

           McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003),
           IERS Technical Note No. 32, BKG

        This revision:  2013 August 24

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rc2t = ufunc.c2tcio(rc2i, era, rpom)
    return rc2t


def c2teqx(rbpn, gst, rpom):
    """
    Assemble the celestial to terrestrial matrix from equinox-based
    components (the celestial-to-true matrix, the Greenwich Apparent
    Sidereal Time and the polar motion matrix).

    Parameters
    ----------
    rbpn : double array
    gst : double array
    rpom : double array

    Returns
    -------
    rc2t : double array

    Notes
    -----
    Wraps ERFA function ``eraC2teqx``. The ERFA documentation is::

        - - - - - - - - - -
         e r a C 2 t e q x
        - - - - - - - - - -

        Assemble the celestial to terrestrial matrix from equinox-based
        components (the celestial-to-true matrix, the Greenwich Apparent
        Sidereal Time and the polar motion matrix).

        Given:
           rbpn   double[3][3]  celestial-to-true matrix
           gst    double        Greenwich (apparent) Sidereal Time (radians)
           rpom   double[3][3]  polar-motion matrix

        Returned:
           rc2t   double[3][3]  celestial-to-terrestrial matrix (Note 2)

        Notes:

        1) This function constructs the rotation matrix that transforms
           vectors in the celestial system into vectors in the terrestrial
           system.  It does so starting from precomputed components, namely
           the matrix which rotates from celestial coordinates to the
           true equator and equinox of date, the Greenwich Apparent Sidereal
           Time and the polar motion matrix.  One use of the present function
           is when generating a series of celestial-to-terrestrial matrices
           where only the Sidereal Time changes, avoiding the considerable
           overhead of recomputing the precession-nutation more often than
           necessary to achieve given accuracy objectives.

        2) The relationship between the arguments is as follows:

              [TRS] = rpom * R_3(gst) * rbpn * [CRS]

                    = rc2t * [CRS]

           where [CRS] is a vector in the Geocentric Celestial Reference
           System and [TRS] is a vector in the International Terrestrial
           Reference System (see IERS Conventions 2003).

        Called:
           eraCr        copy r-matrix
           eraRz        rotate around Z-axis
           eraRxr       product of two r-matrices

        Reference:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2013 August 24

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rc2t = ufunc.c2teqx(rbpn, gst, rpom)
    return rc2t


def c2tpe(tta, ttb, uta, utb, dpsi, deps, xp, yp):
    """
    Form the celestial to terrestrial matrix given the date, the UT1,
    the nutation and the polar motion.

    Parameters
    ----------
    tta : double array
    ttb : double array
    uta : double array
    utb : double array
    dpsi : double array
    deps : double array
    xp : double array
    yp : double array

    Returns
    -------
    rc2t : double array

    Notes
    -----
    Wraps ERFA function ``eraC2tpe``. The ERFA documentation is::

        - - - - - - - - -
         e r a C 2 t p e
        - - - - - - - - -

        Form the celestial to terrestrial matrix given the date, the UT1,
        the nutation and the polar motion.  IAU 2000.

        Given:
           tta,ttb    double        TT as a 2-part Julian Date (Note 1)
           uta,utb    double        UT1 as a 2-part Julian Date (Note 1)
           dpsi,deps  double        nutation (Note 2)
           xp,yp      double        coordinates of the pole (radians, Note 3)

        Returned:
           rc2t       double[3][3]  celestial-to-terrestrial matrix (Note 4)

        Notes:

        1) The TT and UT1 dates tta+ttb and uta+utb are Julian Dates,
           apportioned in any convenient way between the arguments uta and
           utb.  For example, JD(UT1)=2450123.7 could be expressed in any of
           these ways, among others:

                   uta            utb

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution is
           acceptable.  The J2000 and MJD methods are good compromises
           between resolution and convenience.  In the case of uta,utb, the
           date & time method is best matched to the Earth rotation angle
           algorithm used:  maximum precision is delivered when the uta
           argument is for 0hrs UT1 on the day in question and the utb
           argument lies in the range 0 to 1, or vice versa.

        2) The caller is responsible for providing the nutation components;
           they are in longitude and obliquity, in radians and are with
           respect to the equinox and ecliptic of date.  For high-accuracy
           applications, free core nutation should be included as well as
           any other relevant corrections to the position of the CIP.

        3) The arguments xp and yp are the coordinates (in radians) of the
           Celestial Intermediate Pole with respect to the International
           Terrestrial Reference System (see IERS Conventions 2003),
           measured along the meridians 0 and 90 deg west respectively.

        4) The matrix rc2t transforms from celestial to terrestrial
           coordinates:

              [TRS] = RPOM * R_3(GST) * RBPN * [CRS]

                    = rc2t * [CRS]

           where [CRS] is a vector in the Geocentric Celestial Reference
           System and [TRS] is a vector in the International Terrestrial
           Reference System (see IERS Conventions 2003), RBPN is the
           bias-precession-nutation matrix, GST is the Greenwich (apparent)
           Sidereal Time and RPOM is the polar motion matrix.

        5) Although its name does not include "00", This function is in fact
           specific to the IAU 2000 models.

        Called:
           eraPn00      bias/precession/nutation results, IAU 2000
           eraGmst00    Greenwich mean sidereal time, IAU 2000
           eraSp00      the TIO locator s', IERS 2000
           eraEe00      equation of the equinoxes, IAU 2000
           eraPom00     polar motion matrix
           eraC2teqx    form equinox-based celestial-to-terrestrial matrix

        Reference:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2020 October 31

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rc2t = ufunc.c2tpe(tta, ttb, uta, utb, dpsi, deps, xp, yp)
    return rc2t


def c2txy(tta, ttb, uta, utb, x, y, xp, yp):
    """
    Form the celestial to terrestrial matrix given the date, the UT1,
    the CIP coordinates and the polar motion.

    Parameters
    ----------
    tta : double array
    ttb : double array
    uta : double array
    utb : double array
    x : double array
    y : double array
    xp : double array
    yp : double array

    Returns
    -------
    rc2t : double array

    Notes
    -----
    Wraps ERFA function ``eraC2txy``. The ERFA documentation is::

        - - - - - - - - -
         e r a C 2 t x y
        - - - - - - - - -

        Form the celestial to terrestrial matrix given the date, the UT1,
        the CIP coordinates and the polar motion.  IAU 2000.

        Given:
           tta,ttb  double         TT as a 2-part Julian Date (Note 1)
           uta,utb  double         UT1 as a 2-part Julian Date (Note 1)
           x,y      double         Celestial Intermediate Pole (Note 2)
           xp,yp    double         coordinates of the pole (radians, Note 3)

        Returned:
           rc2t     double[3][3]   celestial-to-terrestrial matrix (Note 4)

        Notes:

        1) The TT and UT1 dates tta+ttb and uta+utb are Julian Dates,
           apportioned in any convenient way between the arguments uta and
           utb.  For example, JD(UT1)=2450123.7 could be expressed in any o
           these ways, among others:

                   uta            utb

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution is
           acceptable.  The J2000 and MJD methods are good compromises
           between resolution and convenience.  In the case of uta,utb, the
           date & time method is best matched to the Earth rotation angle
           algorithm used:  maximum precision is delivered when the uta
           argument is for 0hrs UT1 on the day in question and the utb
           argument lies in the range 0 to 1, or vice versa.

        2) The Celestial Intermediate Pole coordinates are the x,y
           components of the unit vector in the Geocentric Celestial
           Reference System.

        3) The arguments xp and yp are the coordinates (in radians) of the
           Celestial Intermediate Pole with respect to the International
           Terrestrial Reference System (see IERS Conventions 2003),
           measured along the meridians 0 and 90 deg west respectively.

        4) The matrix rc2t transforms from celestial to terrestrial
           coordinates:

              [TRS] = RPOM * R_3(ERA) * RC2I * [CRS]

                    = rc2t * [CRS]

           where [CRS] is a vector in the Geocentric Celestial Reference
           System and [TRS] is a vector in the International Terrestrial
           Reference System (see IERS Conventions 2003), ERA is the Earth
           Rotation Angle and RPOM is the polar motion matrix.

        5) Although its name does not include "00", This function is in fact
           specific to the IAU 2000 models.

        Called:
           eraC2ixy     celestial-to-intermediate matrix, given X,Y
           eraEra00     Earth rotation angle, IAU 2000
           eraSp00      the TIO locator s', IERS 2000
           eraPom00     polar motion matrix
           eraC2tcio    form CIO-based celestial-to-terrestrial matrix

       Reference:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2020 October 31

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rc2t = ufunc.c2txy(tta, ttb, uta, utb, x, y, xp, yp)
    return rc2t


def eo06a(date1, date2):
    """
    Equation of the origins, IAU 2006 precession and IAU 2000A nutation.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraEo06a``. The ERFA documentation is::

        - - - - - - - - -
         e r a E o 0 6 a
        - - - - - - - - -

        Equation of the origins, IAU 2006 precession and IAU 2000A nutation.

        Given:
           date1,date2  double    TT as a 2-part Julian Date (Note 1)

        Returned (function value):
                        double    the equation of the origins in radians

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The equation of the origins is the distance between the true
           equinox and the celestial intermediate origin and, equivalently,
           the difference between Earth rotation angle and Greenwich
           apparent sidereal time (ERA-GST).  It comprises the precession
           (since J2000.0) in right ascension plus the equation of the
           equinoxes (including the small correction terms).

        Called:
           eraPnm06a    classical NPB matrix, IAU 2006/2000A
           eraBpn2xy    extract CIP X,Y coordinates from NPB matrix
           eraS06       the CIO locator s, given X,Y, IAU 2006
           eraEors      equation of the origins, given NPB matrix and s

        References:

           Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855

           Wallace, P.T. & Capitaine, N., 2006, Astron.Astrophys. 459, 981

        This revision:  2020 November 14

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.eo06a(date1, date2)
    return c_retval


def eors(rnpb, s):
    """
    Equation of the origins, given the classical NPB matrix and the
    quantity s.

    Parameters
    ----------
    rnpb : double array
    s : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraEors``. The ERFA documentation is::

        - - - - - - - -
         e r a E o r s
        - - - - - - - -

        Equation of the origins, given the classical NPB matrix and the
        quantity s.

        Given:
           rnpb  double[3][3]  classical nutation x precession x bias matrix
           s     double        the quantity s (the CIO locator) in radians

        Returned (function value):
                 double        the equation of the origins in radians

        Notes:

        1)  The equation of the origins is the distance between the true
            equinox and the celestial intermediate origin and, equivalently,
            the difference between Earth rotation angle and Greenwich
            apparent sidereal time (ERA-GST).  It comprises the precession
            (since J2000.0) in right ascension plus the equation of the
            equinoxes (including the small correction terms).

        2)  The algorithm is from Wallace & Capitaine (2006).

       References:

           Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855

           Wallace, P. & Capitaine, N., 2006, Astron.Astrophys. 459, 981

        This revision:  2020 November 14

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.eors(rnpb, s)
    return c_retval


def fw2m(gamb, phib, psi, eps):
    """
    Form rotation matrix given the Fukushima-Williams angles.

    Parameters
    ----------
    gamb : double array
    phib : double array
    psi : double array
    eps : double array

    Returns
    -------
    r : double array

    Notes
    -----
    Wraps ERFA function ``eraFw2m``. The ERFA documentation is::

        - - - - - - - -
         e r a F w 2 m
        - - - - - - - -

        Form rotation matrix given the Fukushima-Williams angles.

        Given:
           gamb     double         F-W angle gamma_bar (radians)
           phib     double         F-W angle phi_bar (radians)
           psi      double         F-W angle psi (radians)
           eps      double         F-W angle epsilon (radians)

        Returned:
           r        double[3][3]   rotation matrix

        Notes:

        1) Naming the following points:

                 e = J2000.0 ecliptic pole,
                 p = GCRS pole,
                 E = ecliptic pole of date,
           and   P = CIP,

           the four Fukushima-Williams angles are as follows:

              gamb = gamma = epE
              phib = phi = pE
              psi = psi = pEP
              eps = epsilon = EP

        2) The matrix representing the combined effects of frame bias,
           precession and nutation is:

              NxPxB = R_1(-eps).R_3(-psi).R_1(phib).R_3(gamb)

        3) The present function can construct three different matrices,
           depending on which angles are supplied as the arguments gamb,
           phib, psi and eps:

           o  To obtain the nutation x precession x frame bias matrix,
              first generate the four precession angles known conventionally
              as gamma_bar, phi_bar, psi_bar and epsilon_A, then generate
              the nutation components Dpsi and Depsilon and add them to
              psi_bar and epsilon_A, and finally call the present function
              using those four angles as arguments.

           o  To obtain the precession x frame bias matrix, generate the
              four precession angles and call the present function.

           o  To obtain the frame bias matrix, generate the four precession
              angles for date J2000.0 and call the present function.

           The nutation-only and precession-only matrices can if necessary
           be obtained by combining these three appropriately.

        Called:
           eraIr        initialize r-matrix to identity
           eraRz        rotate around Z-axis
           eraRx        rotate around X-axis

        References:

           Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855

           Hilton, J. et al., 2006, Celest.Mech.Dyn.Astron. 94, 351

        This revision:  2020 November 17

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    r = ufunc.fw2m(gamb, phib, psi, eps)
    return r


def fw2xy(gamb, phib, psi, eps):
    """
    CIP X,Y given Fukushima-Williams bias-precession-nutation angles.

    Parameters
    ----------
    gamb : double array
    phib : double array
    psi : double array
    eps : double array

    Returns
    -------
    x : double array
    y : double array

    Notes
    -----
    Wraps ERFA function ``eraFw2xy``. The ERFA documentation is::

        - - - - - - - - -
         e r a F w 2 x y
        - - - - - - - - -

        CIP X,Y given Fukushima-Williams bias-precession-nutation angles.

        Given:
           gamb     double    F-W angle gamma_bar (radians)
           phib     double    F-W angle phi_bar (radians)
           psi      double    F-W angle psi (radians)
           eps      double    F-W angle epsilon (radians)

        Returned:
           x,y      double    CIP unit vector X,Y

        Notes:

        1) Naming the following points:

                 e = J2000.0 ecliptic pole,
                 p = GCRS pole
                 E = ecliptic pole of date,
           and   P = CIP,

           the four Fukushima-Williams angles are as follows:

              gamb = gamma = epE
              phib = phi = pE
              psi = psi = pEP
              eps = epsilon = EP

        2) The matrix representing the combined effects of frame bias,
           precession and nutation is:

              NxPxB = R_1(-epsA).R_3(-psi).R_1(phib).R_3(gamb)

           The returned values x,y are elements [2][0] and [2][1] of the
           matrix.  Near J2000.0, they are essentially angles in radians.

        Called:
           eraFw2m      F-W angles to r-matrix
           eraBpn2xy    extract CIP X,Y coordinates from NPB matrix

        Reference:

           Hilton, J. et al., 2006, Celest.Mech.Dyn.Astron. 94, 351

        This revision:  2013 September 2

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    x, y = ufunc.fw2xy(gamb, phib, psi, eps)
    return x, y


def ltp(epj):
    """
    Long-term precession matrix.

    Parameters
    ----------
    epj : double array

    Returns
    -------
    rp : double array

    Notes
    -----
    Wraps ERFA function ``eraLtp``. The ERFA documentation is::

        - - - - - - -
         e r a L t p
        - - - - - - -

        Long-term precession matrix.

        Given:
           epj     double         Julian epoch (TT)

        Returned:
           rp      double[3][3]   precession matrix, J2000.0 to date

        Notes:

        1) The matrix is in the sense

              P_date = rp x P_J2000,

           where P_J2000 is a vector with respect to the J2000.0 mean
           equator and equinox and P_date is the same vector with respect to
           the equator and equinox of epoch epj.

        2) The Vondrak et al. (2011, 2012) 400 millennia precession model
           agrees with the IAU 2006 precession at J2000.0 and stays within
           100 microarcseconds during the 20th and 21st centuries.  It is
           accurate to a few arcseconds throughout the historical period,
           worsening to a few tenths of a degree at the end of the
           +/- 200,000 year time span.

        Called:
           eraLtpequ    equator pole, long term
           eraLtpecl    ecliptic pole, long term
           eraPxp       vector product
           eraPn        normalize vector

        References:

          Vondrak, J., Capitaine, N. and Wallace, P., 2011, New precession
          expressions, valid for long time intervals, Astron.Astrophys. 534,
          A22

          Vondrak, J., Capitaine, N. and Wallace, P., 2012, New precession
          expressions, valid for long time intervals (Corrigendum),
          Astron.Astrophys. 541, C1

        This revision:  2015 December 6

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rp = ufunc.ltp(epj)
    return rp


def ltpb(epj):
    """
    Long-term precession matrix, including ICRS frame bias.

    Parameters
    ----------
    epj : double array

    Returns
    -------
    rpb : double array

    Notes
    -----
    Wraps ERFA function ``eraLtpb``. The ERFA documentation is::

        - - - - - - - -
         e r a L t p b
        - - - - - - - -

        Long-term precession matrix, including ICRS frame bias.

        Given:
           epj     double         Julian epoch (TT)

        Returned:
           rpb     double[3][3]   precession-bias matrix, J2000.0 to date

        Notes:

        1) The matrix is in the sense

              P_date = rpb x P_ICRS,

           where P_ICRS is a vector in the Geocentric Celestial Reference
           System, and P_date is the vector with respect to the Celestial
           Intermediate Reference System at that date but with nutation
           neglected.

        2) A first order frame bias formulation is used, of sub-
           microarcsecond accuracy compared with a full 3D rotation.

        3) The Vondrak et al. (2011, 2012) 400 millennia precession model
           agrees with the IAU 2006 precession at J2000.0 and stays within
           100 microarcseconds during the 20th and 21st centuries.  It is
           accurate to a few arcseconds throughout the historical period,
           worsening to a few tenths of a degree at the end of the
           +/- 200,000 year time span.

        References:

          Vondrak, J., Capitaine, N. and Wallace, P., 2011, New precession
          expressions, valid for long time intervals, Astron.Astrophys. 534,
          A22

          Vondrak, J., Capitaine, N. and Wallace, P., 2012, New precession
          expressions, valid for long time intervals (Corrigendum),
          Astron.Astrophys. 541, C1

        This revision:  2015 December 6

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rpb = ufunc.ltpb(epj)
    return rpb


def ltpecl(epj):
    """
    Long-term precession of the ecliptic.

    Parameters
    ----------
    epj : double array

    Returns
    -------
    vec : double array

    Notes
    -----
    Wraps ERFA function ``eraLtpecl``. The ERFA documentation is::

        - - - - - - - - - -
         e r a L t p e c l
        - - - - - - - - - -

        Long-term precession of the ecliptic.

        Given:
           epj     double         Julian epoch (TT)

        Returned:
           vec     double[3]      ecliptic pole unit vector

        Notes:

        1) The returned vector is with respect to the J2000.0 mean equator
           and equinox.

        2) The Vondrak et al. (2011, 2012) 400 millennia precession model
           agrees with the IAU 2006 precession at J2000.0 and stays within
           100 microarcseconds during the 20th and 21st centuries.  It is
           accurate to a few arcseconds throughout the historical period,
           worsening to a few tenths of a degree at the end of the
           +/- 200,000 year time span.

        References:

          Vondrak, J., Capitaine, N. and Wallace, P., 2011, New precession
          expressions, valid for long time intervals, Astron.Astrophys. 534,
          A22

          Vondrak, J., Capitaine, N. and Wallace, P., 2012, New precession
          expressions, valid for long time intervals (Corrigendum),
          Astron.Astrophys. 541, C1

        This revision:  2016 February 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    vec = ufunc.ltpecl(epj)
    return vec


def ltpequ(epj):
    """
    Long-term precession of the equator.

    Parameters
    ----------
    epj : double array

    Returns
    -------
    veq : double array

    Notes
    -----
    Wraps ERFA function ``eraLtpequ``. The ERFA documentation is::

        - - - - - - - - - -
         e r a L t p e q u
        - - - - - - - - - -

        Long-term precession of the equator.

        Given:
           epj     double         Julian epoch (TT)

        Returned:
           veq     double[3]      equator pole unit vector

        Notes:

        1) The returned vector is with respect to the J2000.0 mean equator
           and equinox.

        2) The Vondrak et al. (2011, 2012) 400 millennia precession model
           agrees with the IAU 2006 precession at J2000.0 and stays within
           100 microarcseconds during the 20th and 21st centuries.  It is
           accurate to a few arcseconds throughout the historical period,
           worsening to a few tenths of a degree at the end of the
           +/- 200,000 year time span.

        References:

          Vondrak, J., Capitaine, N. and Wallace, P., 2011, New precession
          expressions, valid for long time intervals, Astron.Astrophys. 534,
          A22

          Vondrak, J., Capitaine, N. and Wallace, P., 2012, New precession
          expressions, valid for long time intervals (Corrigendum),
          Astron.Astrophys. 541, C1

        This revision:  2016 February 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    veq = ufunc.ltpequ(epj)
    return veq


def num00a(date1, date2):
    """
    Form the matrix of nutation for a given date, IAU 2000A model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    rmatn : double array

    Notes
    -----
    Wraps ERFA function ``eraNum00a``. The ERFA documentation is::

        - - - - - - - - - -
         e r a N u m 0 0 a
        - - - - - - - - - -

        Form the matrix of nutation for a given date, IAU 2000A model.

        Given:
           date1,date2  double          TT as a 2-part Julian Date (Note 1)

        Returned:
           rmatn        double[3][3]    nutation matrix

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The matrix operates in the sense V(true) = rmatn * V(mean), where
           the p-vector V(true) is with respect to the true equatorial triad
           of date and the p-vector V(mean) is with respect to the mean
           equatorial triad of date.

        3) A faster, but slightly less accurate, result (about 1 mas) can be
           obtained by using instead the eraNum00b function.

        Called:
           eraPn00a     bias/precession/nutation, IAU 2000A

        Reference:

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992),
           Section 3.222-3 (p114).

        This revision:  2020 November 27

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rmatn = ufunc.num00a(date1, date2)
    return rmatn


def num00b(date1, date2):
    """
    Form the matrix of nutation for a given date, IAU 2000B model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    rmatn : double array

    Notes
    -----
    Wraps ERFA function ``eraNum00b``. The ERFA documentation is::

        - - - - - - - - - -
         e r a N u m 0 0 b
        - - - - - - - - - -

        Form the matrix of nutation for a given date, IAU 2000B model.

        Given:
           date1,date2  double         TT as a 2-part Julian Date (Note 1)

        Returned:
           rmatn        double[3][3]   nutation matrix

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The matrix operates in the sense V(true) = rmatn * V(mean), where
           the p-vector V(true) is with respect to the true equatorial triad
           of date and the p-vector V(mean) is with respect to the mean
           equatorial triad of date.

        3) The present function is faster, but slightly less accurate (about
           1 mas), than the eraNum00a function.

        Called:
           eraPn00b     bias/precession/nutation, IAU 2000B

        Reference:

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992),
           Section 3.222-3 (p114).

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rmatn = ufunc.num00b(date1, date2)
    return rmatn


def num06a(date1, date2):
    """
    Form the matrix of nutation for a given date, IAU 2006/2000A model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    rmatn : double array

    Notes
    -----
    Wraps ERFA function ``eraNum06a``. The ERFA documentation is::

        - - - - - - - - - -
         e r a N u m 0 6 a
        - - - - - - - - - -

        Form the matrix of nutation for a given date, IAU 2006/2000A model.

        Given:
           date1,date2   double          TT as a 2-part Julian Date (Note 1)

        Returned:
           rmatn         double[3][3]    nutation matrix

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The matrix operates in the sense V(true) = rmatn * V(mean), where
           the p-vector V(true) is with respect to the true equatorial triad
           of date and the p-vector V(mean) is with respect to the mean
           equatorial triad of date.

        Called:
           eraObl06     mean obliquity, IAU 2006
           eraNut06a    nutation, IAU 2006/2000A
           eraNumat     form nutation matrix

        Reference:

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992),
           Section 3.222-3 (p114).

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rmatn = ufunc.num06a(date1, date2)
    return rmatn


def numat(epsa, dpsi, deps):
    """
    Form the matrix of nutation.

    Parameters
    ----------
    epsa : double array
    dpsi : double array
    deps : double array

    Returns
    -------
    rmatn : double array

    Notes
    -----
    Wraps ERFA function ``eraNumat``. The ERFA documentation is::

        - - - - - - - - -
         e r a N u m a t
        - - - - - - - - -

        Form the matrix of nutation.

        Given:
           epsa        double         mean obliquity of date (Note 1)
           dpsi,deps   double         nutation (Note 2)

        Returned:
           rmatn       double[3][3]   nutation matrix (Note 3)

        Notes:


        1) The supplied mean obliquity epsa, must be consistent with the
           precession-nutation models from which dpsi and deps were obtained.

        2) The caller is responsible for providing the nutation components;
           they are in longitude and obliquity, in radians and are with
           respect to the equinox and ecliptic of date.

        3) The matrix operates in the sense V(true) = rmatn * V(mean),
           where the p-vector V(true) is with respect to the true
           equatorial triad of date and the p-vector V(mean) is with
           respect to the mean equatorial triad of date.

        Called:
           eraIr        initialize r-matrix to identity
           eraRx        rotate around X-axis
           eraRz        rotate around Z-axis

        Reference:

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992),
           Section 3.222-3 (p114).

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rmatn = ufunc.numat(epsa, dpsi, deps)
    return rmatn


def nut00a(date1, date2):
    """
    Nutation, IAU 2000A model (MHB2000 luni-solar and planetary nutation
    with free core nutation omitted).

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    dpsi : double array
    deps : double array

    Notes
    -----
    Wraps ERFA function ``eraNut00a``. The ERFA documentation is::

        - - - - - - - - - -
         e r a N u t 0 0 a
        - - - - - - - - - -

        Nutation, IAU 2000A model (MHB2000 luni-solar and planetary nutation
        with free core nutation omitted).

        Given:
           date1,date2   double   TT as a 2-part Julian Date (Note 1)

        Returned:
           dpsi,deps     double   nutation, luni-solar + planetary (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The nutation components in longitude and obliquity are in radians
           and with respect to the equinox and ecliptic of date.  The
           obliquity at J2000.0 is assumed to be the Lieske et al. (1977)
           value of 84381.448 arcsec.

           Both the luni-solar and planetary nutations are included.  The
           latter are due to direct planetary nutations and the
           perturbations of the lunar and terrestrial orbits.

        3) The function computes the MHB2000 nutation series with the
           associated corrections for planetary nutations.  It is an
           implementation of the nutation part of the IAU 2000A precession-
           nutation model, formally adopted by the IAU General Assembly in
           2000, namely MHB2000 (Mathews et al. 2002), but with the free
           core nutation (FCN - see Note 4) omitted.

        4) The full MHB2000 model also contains contributions to the
           nutations in longitude and obliquity due to the free-excitation
           of the free-core-nutation during the period 1979-2000.  These FCN
           terms, which are time-dependent and unpredictable, are NOT
           included in the present function and, if required, must be
           independently computed.  With the FCN corrections included, the
           present function delivers a pole which is at current epochs
           accurate to a few hundred microarcseconds.  The omission of FCN
           introduces further errors of about that size.

        5) The present function provides classical nutation.  The MHB2000
           algorithm, from which it is adapted, deals also with (i) the
           offsets between the GCRS and mean poles and (ii) the adjustments
           in longitude and obliquity due to the changed precession rates.
           These additional functions, namely frame bias and precession
           adjustments, are supported by the ERFA functions eraBi00  and
           eraPr00.

        6) The MHB2000 algorithm also provides "total" nutations, comprising
           the arithmetic sum of the frame bias, precession adjustments,
           luni-solar nutation and planetary nutation.  These total
           nutations can be used in combination with an existing IAU 1976
           precession implementation, such as eraPmat76,  to deliver GCRS-
           to-true predictions of sub-mas accuracy at current dates.
           However, there are three shortcomings in the MHB2000 model that
           must be taken into account if more accurate or definitive results
           are required (see Wallace 2002):

             (i) The MHB2000 total nutations are simply arithmetic sums,
                 yet in reality the various components are successive Euler
                 rotations.  This slight lack of rigor leads to cross terms
                 that exceed 1 mas after a century.  The rigorous procedure
                 is to form the GCRS-to-true rotation matrix by applying the
                 bias, precession and nutation in that order.

            (ii) Although the precession adjustments are stated to be with
                 respect to Lieske et al. (1977), the MHB2000 model does
                 not specify which set of Euler angles are to be used and
                 how the adjustments are to be applied.  The most literal
                 and straightforward procedure is to adopt the 4-rotation
                 epsilon_0, psi_A, omega_A, xi_A option, and to add DPSIPR
                 to psi_A and DEPSPR to both omega_A and eps_A.

           (iii) The MHB2000 model predates the determination by Chapront
                 et al. (2002) of a 14.6 mas displacement between the
                 J2000.0 mean equinox and the origin of the ICRS frame.  It
                 should, however, be noted that neglecting this displacement
                 when calculating star coordinates does not lead to a
                 14.6 mas change in right ascension, only a small second-
                 order distortion in the pattern of the precession-nutation
                 effect.

           For these reasons, the ERFA functions do not generate the "total
           nutations" directly, though they can of course easily be
           generated by calling eraBi00, eraPr00 and the present function
           and adding the results.

        7) The MHB2000 model contains 41 instances where the same frequency
           appears multiple times, of which 38 are duplicates and three are
           triplicates.  To keep the present code close to the original MHB
           algorithm, this small inefficiency has not been corrected.

        Called:
           eraFal03     mean anomaly of the Moon
           eraFaf03     mean argument of the latitude of the Moon
           eraFaom03    mean longitude of the Moon's ascending node
           eraFame03    mean longitude of Mercury
           eraFave03    mean longitude of Venus
           eraFae03     mean longitude of Earth
           eraFama03    mean longitude of Mars
           eraFaju03    mean longitude of Jupiter
           eraFasa03    mean longitude of Saturn
           eraFaur03    mean longitude of Uranus
           eraFapa03    general accumulated precession in longitude

        References:

           Chapront, J., Chapront-Touze, M. & Francou, G. 2002,
           Astron.Astrophys. 387, 700

           Lieske, J.H., Lederle, T., Fricke, W. & Morando, B. 1977,
           Astron.Astrophys. 58, 1-16

           Mathews, P.M., Herring, T.A., Buffet, B.A. 2002, J.Geophys.Res.
           107, B4.  The MHB_2000 code itself was obtained on 9th September
           2002 from ftp//maia.usno.navy.mil/conv2000/chapter5/IAU2000A.

           Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
           Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683

           Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999,
           Astron.Astrophys.Supp.Ser. 135, 111

           Wallace, P.T., "Software for Implementing the IAU 2000
           Resolutions", in IERS Workshop 5.1 (2002)

        This revision:  2019 June 23

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    dpsi, deps = ufunc.nut00a(date1, date2)
    return dpsi, deps


def nut00b(date1, date2):
    """
    Nutation, IAU 2000B model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    dpsi : double array
    deps : double array

    Notes
    -----
    Wraps ERFA function ``eraNut00b``. The ERFA documentation is::

        - - - - - - - - - -
         e r a N u t 0 0 b
        - - - - - - - - - -

        Nutation, IAU 2000B model.

        Given:
           date1,date2   double    TT as a 2-part Julian Date (Note 1)

        Returned:
           dpsi,deps     double    nutation, luni-solar + planetary (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The nutation components in longitude and obliquity are in radians
           and with respect to the equinox and ecliptic of date.  The
           obliquity at J2000.0 is assumed to be the Lieske et al. (1977)
           value of 84381.448 arcsec.  (The errors that result from using
           this function with the IAU 2006 value of 84381.406 arcsec can be
           neglected.)

           The nutation model consists only of luni-solar terms, but
           includes also a fixed offset which compensates for certain long-
           period planetary terms (Note 7).

        3) This function is an implementation of the IAU 2000B abridged
           nutation model formally adopted by the IAU General Assembly in
           2000.  The function computes the MHB_2000_SHORT luni-solar
           nutation series (Luzum 2001), but without the associated
           corrections for the precession rate adjustments and the offset
           between the GCRS and J2000.0 mean poles.

        4) The full IAU 2000A (MHB2000) nutation model contains nearly 1400
           terms.  The IAU 2000B model (McCarthy & Luzum 2003) contains only
           77 terms, plus additional simplifications, yet still delivers
           results of 1 mas accuracy at present epochs.  This combination of
           accuracy and size makes the IAU 2000B abridged nutation model
           suitable for most practical applications.

           The function delivers a pole accurate to 1 mas from 1900 to 2100
           (usually better than 1 mas, very occasionally just outside
           1 mas).  The full IAU 2000A model, which is implemented in the
           function eraNut00a (q.v.), delivers considerably greater accuracy
           at current dates;  however, to realize this improved accuracy,
           corrections for the essentially unpredictable free-core-nutation
           (FCN) must also be included.

        5) The present function provides classical nutation.  The
           MHB_2000_SHORT algorithm, from which it is adapted, deals also
           with (i) the offsets between the GCRS and mean poles and (ii) the
           adjustments in longitude and obliquity due to the changed
           precession rates.  These additional functions, namely frame bias
           and precession adjustments, are supported by the ERFA functions
           eraBi00  and eraPr00.

        6) The MHB_2000_SHORT algorithm also provides "total" nutations,
           comprising the arithmetic sum of the frame bias, precession
           adjustments, and nutation (luni-solar + planetary).  These total
           nutations can be used in combination with an existing IAU 1976
           precession implementation, such as eraPmat76,  to deliver GCRS-
           to-true predictions of mas accuracy at current epochs.  However,
           for symmetry with the eraNut00a  function (q.v. for the reasons),
           the ERFA functions do not generate the "total nutations"
           directly.  Should they be required, they could of course easily
           be generated by calling eraBi00, eraPr00 and the present function
           and adding the results.

        7) The IAU 2000B model includes "planetary bias" terms that are
           fixed in size but compensate for long-period nutations.  The
           amplitudes quoted in McCarthy & Luzum (2003), namely
           Dpsi = -1.5835 mas and Depsilon = +1.6339 mas, are optimized for
           the "total nutations" method described in Note 6.  The Luzum
           (2001) values used in this ERFA implementation, namely -0.135 mas
           and +0.388 mas, are optimized for the "rigorous" method, where
           frame bias, precession and nutation are applied separately and in
           that order.  During the interval 1995-2050, the ERFA
           implementation delivers a maximum error of 1.001 mas (not
           including FCN).

        References:

           Lieske, J.H., Lederle, T., Fricke, W., Morando, B., "Expressions
           for the precession quantities based upon the IAU /1976/ system of
           astronomical constants", Astron.Astrophys. 58, 1-2, 1-16. (1977)

           Luzum, B., private communication, 2001 (Fortran code
           MHB_2000_SHORT)

           McCarthy, D.D. & Luzum, B.J., "An abridged model of the
           precession-nutation of the celestial pole", Cel.Mech.Dyn.Astron.
           85, 37-49 (2003)

           Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
           Francou, G., Laskar, J., Astron.Astrophys. 282, 663-683 (1994)

        This revision:  2019 June 23

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    dpsi, deps = ufunc.nut00b(date1, date2)
    return dpsi, deps


def nut06a(date1, date2):
    """
    IAU 2000A nutation with adjustments to match the IAU 2006
    precession.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    dpsi : double array
    deps : double array

    Notes
    -----
    Wraps ERFA function ``eraNut06a``. The ERFA documentation is::

        - - - - - - - - - -
         e r a N u t 0 6 a
        - - - - - - - - - -

        IAU 2000A nutation with adjustments to match the IAU 2006
        precession.

        Given:
           date1,date2   double   TT as a 2-part Julian Date (Note 1)

        Returned:
           dpsi,deps     double   nutation, luni-solar + planetary (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The nutation components in longitude and obliquity are in radians
           and with respect to the mean equinox and ecliptic of date,
           IAU 2006 precession model (Hilton et al. 2006, Capitaine et al.
           2005).

        3) The function first computes the IAU 2000A nutation, then applies
           adjustments for (i) the consequences of the change in obliquity
           from the IAU 1980 ecliptic to the IAU 2006 ecliptic and (ii) the
           secular variation in the Earth's dynamical form factor J2.

        4) The present function provides classical nutation, complementing
           the IAU 2000 frame bias and IAU 2006 precession.  It delivers a
           pole which is at current epochs accurate to a few tens of
           microarcseconds, apart from the free core nutation.

        Called:
           eraNut00a    nutation, IAU 2000A

        References:

           Chapront, J., Chapront-Touze, M. & Francou, G. 2002,
           Astron.Astrophys. 387, 700

           Lieske, J.H., Lederle, T., Fricke, W. & Morando, B. 1977,
           Astron.Astrophys. 58, 1-16

           Mathews, P.M., Herring, T.A., Buffet, B.A. 2002, J.Geophys.Res.
           107, B4.  The MHB_2000 code itself was obtained on 9th September
           2002 from ftp//maia.usno.navy.mil/conv2000/chapter5/IAU2000A.

           Simon, J.-L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
           Francou, G., Laskar, J. 1994, Astron.Astrophys. 282, 663-683

           Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M. 1999,
           Astron.Astrophys.Supp.Ser. 135, 111

           Wallace, P.T., "Software for Implementing the IAU 2000
           Resolutions", in IERS Workshop 5.1 (2002)

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    dpsi, deps = ufunc.nut06a(date1, date2)
    return dpsi, deps


def nut80(date1, date2):
    """
    Nutation, IAU 1980 model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    dpsi : double array
    deps : double array

    Notes
    -----
    Wraps ERFA function ``eraNut80``. The ERFA documentation is::

        - - - - - - - - -
         e r a N u t 8 0
        - - - - - - - - -

        Nutation, IAU 1980 model.

        Given:
           date1,date2   double    TT as a 2-part Julian Date (Note 1)

        Returned:
           dpsi          double    nutation in longitude (radians)
           deps          double    nutation in obliquity (radians)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The nutation components are with respect to the ecliptic of
           date.

        Called:
           eraAnpm      normalize angle into range +/- pi

        Reference:

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992),
           Section 3.222 (p111).

        This revision:  2019 June 23

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    dpsi, deps = ufunc.nut80(date1, date2)
    return dpsi, deps


def nutm80(date1, date2):
    """
    Form the matrix of nutation for a given date, IAU 1980 model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    rmatn : double array

    Notes
    -----
    Wraps ERFA function ``eraNutm80``. The ERFA documentation is::

        - - - - - - - - - -
         e r a N u t m 8 0
        - - - - - - - - - -

        Form the matrix of nutation for a given date, IAU 1980 model.

        Given:
           date1,date2    double          TDB date (Note 1)

        Returned:
           rmatn          double[3][3]    nutation matrix

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The matrix operates in the sense V(true) = rmatn * V(mean),
           where the p-vector V(true) is with respect to the true
           equatorial triad of date and the p-vector V(mean) is with
           respect to the mean equatorial triad of date.

        Called:
           eraNut80     nutation, IAU 1980
           eraObl80     mean obliquity, IAU 1980
           eraNumat     form nutation matrix

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rmatn = ufunc.nutm80(date1, date2)
    return rmatn


def obl06(date1, date2):
    """
    Mean obliquity of the ecliptic, IAU 2006 precession model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraObl06``. The ERFA documentation is::

        - - - - - - - - -
         e r a O b l 0 6
        - - - - - - - - -

        Mean obliquity of the ecliptic, IAU 2006 precession model.

        Given:
           date1,date2  double   TT as a 2-part Julian Date (Note 1)

        Returned (function value):
                        double   obliquity of the ecliptic (radians, Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The result is the angle between the ecliptic and mean equator of
           date date1+date2.

        Reference:

           Hilton, J. et al., 2006, Celest.Mech.Dyn.Astron. 94, 351

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.obl06(date1, date2)
    return c_retval


def obl80(date1, date2):
    """
    Mean obliquity of the ecliptic, IAU 1980 model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraObl80``. The ERFA documentation is::

        - - - - - - - - -
         e r a O b l 8 0
        - - - - - - - - -

        Mean obliquity of the ecliptic, IAU 1980 model.

        Given:
           date1,date2   double    TT as a 2-part Julian Date (Note 1)

        Returned (function value):
                         double    obliquity of the ecliptic (radians, Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The result is the angle between the ecliptic and mean equator of
           date date1+date2.

        Reference:

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992),
           Expression 3.222-1 (p114).

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.obl80(date1, date2)
    return c_retval


def p06e(date1, date2):
    """
    Precession angles, IAU 2006, equinox based.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    eps0 : double array
    psia : double array
    oma : double array
    bpa : double array
    bqa : double array
    pia : double array
    bpia : double array
    epsa : double array
    chia : double array
    za : double array
    zetaa : double array
    thetaa : double array
    pa : double array
    gam : double array
    phi : double array
    psi : double array

    Notes
    -----
    Wraps ERFA function ``eraP06e``. The ERFA documentation is::

        - - - - - - - -
         e r a P 0 6 e
        - - - - - - - -

        Precession angles, IAU 2006, equinox based.

        Given:
           date1,date2   double   TT as a 2-part Julian Date (Note 1)

        Returned (see Note 2):
           eps0          double   epsilon_0
           psia          double   psi_A
           oma           double   omega_A
           bpa           double   P_A
           bqa           double   Q_A
           pia           double   pi_A
           bpia          double   Pi_A
           epsa          double   obliquity epsilon_A
           chia          double   chi_A
           za            double   z_A
           zetaa         double   zeta_A
           thetaa        double   theta_A
           pa            double   p_A
           gam           double   F-W angle gamma_J2000
           phi           double   F-W angle phi_J2000
           psi           double   F-W angle psi_J2000

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) This function returns the set of equinox based angles for the
           Capitaine et al. "P03" precession theory, adopted by the IAU in
           2006.  The angles are set out in Table 1 of Hilton et al. (2006):

           eps0   epsilon_0   obliquity at J2000.0
           psia   psi_A       luni-solar precession
           oma    omega_A     inclination of equator wrt J2000.0 ecliptic
           bpa    P_A         ecliptic pole x, J2000.0 ecliptic triad
           bqa    Q_A         ecliptic pole -y, J2000.0 ecliptic triad
           pia    pi_A        angle between moving and J2000.0 ecliptics
           bpia   Pi_A        longitude of ascending node of the ecliptic
           epsa   epsilon_A   obliquity of the ecliptic
           chia   chi_A       planetary precession
           za     z_A         equatorial precession: -3rd 323 Euler angle
           zetaa  zeta_A      equatorial precession: -1st 323 Euler angle
           thetaa theta_A     equatorial precession: 2nd 323 Euler angle
           pa     p_A         general precession (n.b. see below)
           gam    gamma_J2000 J2000.0 RA difference of ecliptic poles
           phi    phi_J2000   J2000.0 codeclination of ecliptic pole
           psi    psi_J2000   longitude difference of equator poles, J2000.0

           The returned values are all radians.

           Note that the t^5 coefficient in the series for p_A from
           Capitaine et al. (2003) is incorrectly signed in Hilton et al.
           (2006).

        3) Hilton et al. (2006) Table 1 also contains angles that depend on
           models distinct from the P03 precession theory itself, namely the
           IAU 2000A frame bias and nutation.  The quoted polynomials are
           used in other ERFA functions:

           . eraXy06  contains the polynomial parts of the X and Y series.

           . eraS06  contains the polynomial part of the s+XY/2 series.

           . eraPfw06  implements the series for the Fukushima-Williams
             angles that are with respect to the GCRS pole (i.e. the variants
             that include frame bias).

        4) The IAU resolution stipulated that the choice of parameterization
           was left to the user, and so an IAU compliant precession
           implementation can be constructed using various combinations of
           the angles returned by the present function.

        5) The parameterization used by ERFA is the version of the Fukushima-
           Williams angles that refers directly to the GCRS pole.  These
           angles may be calculated by calling the function eraPfw06.  ERFA
           also supports the direct computation of the CIP GCRS X,Y by
           series, available by calling eraXy06.

        6) The agreement between the different parameterizations is at the
           1 microarcsecond level in the present era.

        7) When constructing a precession formulation that refers to the GCRS
           pole rather than the dynamical pole, it may (depending on the
           choice of angles) be necessary to introduce the frame bias
           explicitly.

        8) It is permissible to re-use the same variable in the returned
           arguments.  The quantities are stored in the stated order.

        References:

           Capitaine, N., Wallace, P.T. & Chapront, J., 2003,
           Astron.Astrophys., 412, 567

           Hilton, J. et al., 2006, Celest.Mech.Dyn.Astron. 94, 351

        Called:
           eraObl06     mean obliquity, IAU 2006

        This revision:  2020 June 2

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    (eps0, psia, oma, bpa, bqa, pia, bpia, epsa, chia, za, zetaa, thetaa, pa,
     gam, phi, psi) = ufunc.p06e(date1, date2)
    return eps0, psia, oma, bpa, bqa, pia, bpia, epsa, chia, za, zetaa, thetaa, pa, gam, phi, psi


def pb06(date1, date2):
    """
    This function forms three Euler angles which implement general
    precession from epoch J2000.0, using the IAU 2006 model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    bzeta : double array
    bz : double array
    btheta : double array

    Notes
    -----
    Wraps ERFA function ``eraPb06``. The ERFA documentation is::

        - - - - - - - -
         e r a P b 0 6
        - - - - - - - -

        This function forms three Euler angles which implement general
        precession from epoch J2000.0, using the IAU 2006 model.  Frame
        bias (the offset between ICRS and mean J2000.0) is included.

        Given:
           date1,date2  double   TT as a 2-part Julian Date (Note 1)

        Returned:
           bzeta        double   1st rotation: radians cw around z
           bz           double   3rd rotation: radians cw around z
           btheta       double   2nd rotation: radians ccw around y

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The traditional accumulated precession angles zeta_A, z_A,
           theta_A cannot be obtained in the usual way, namely through
           polynomial expressions, because of the frame bias.  The latter
           means that two of the angles undergo rapid changes near this
           date.  They are instead the results of decomposing the
           precession-bias matrix obtained by using the Fukushima-Williams
           method, which does not suffer from the problem.  The
           decomposition returns values which can be used in the
           conventional formulation and which include frame bias.

        3) The three angles are returned in the conventional order, which
           is not the same as the order of the corresponding Euler
           rotations.  The precession-bias matrix is
           R_3(-z) x R_2(+theta) x R_3(-zeta).

        4) Should zeta_A, z_A, theta_A angles be required that do not
           contain frame bias, they are available by calling the ERFA
           function eraP06e.

        Called:
           eraPmat06    PB matrix, IAU 2006
           eraRz        rotate around Z-axis

        This revision:  2020 May 27

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    bzeta, bz, btheta = ufunc.pb06(date1, date2)
    return bzeta, bz, btheta


def pfw06(date1, date2):
    """
    Precession angles, IAU 2006 (Fukushima-Williams 4-angle formulation).

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    gamb : double array
    phib : double array
    psib : double array
    epsa : double array

    Notes
    -----
    Wraps ERFA function ``eraPfw06``. The ERFA documentation is::

        - - - - - - - - -
         e r a P f w 0 6
        - - - - - - - - -

        Precession angles, IAU 2006 (Fukushima-Williams 4-angle formulation).

        Given:
           date1,date2  double   TT as a 2-part Julian Date (Note 1)

        Returned:
           gamb         double   F-W angle gamma_bar (radians)
           phib         double   F-W angle phi_bar (radians)
           psib         double   F-W angle psi_bar (radians)
           epsa         double   F-W angle epsilon_A (radians)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) Naming the following points:

                 e = J2000.0 ecliptic pole,
                 p = GCRS pole,
                 E = mean ecliptic pole of date,
           and   P = mean pole of date,

           the four Fukushima-Williams angles are as follows:

              gamb = gamma_bar = epE
              phib = phi_bar = pE
              psib = psi_bar = pEP
              epsa = epsilon_A = EP

        3) The matrix representing the combined effects of frame bias and
           precession is:

              PxB = R_1(-epsa).R_3(-psib).R_1(phib).R_3(gamb)

        4) The matrix representing the combined effects of frame bias,
           precession and nutation is simply:

              NxPxB = R_1(-epsa-dE).R_3(-psib-dP).R_1(phib).R_3(gamb)

           where dP and dE are the nutation components with respect to the
           ecliptic of date.

        Reference:

           Hilton, J. et al., 2006, Celest.Mech.Dyn.Astron. 94, 351

        Called:
           eraObl06     mean obliquity, IAU 2006

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    gamb, phib, psib, epsa = ufunc.pfw06(date1, date2)
    return gamb, phib, psib, epsa


def pmat00(date1, date2):
    """
    Precession matrix (including frame bias) from GCRS to a specified
    date, IAU 2000 model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    rbp : double array

    Notes
    -----
    Wraps ERFA function ``eraPmat00``. The ERFA documentation is::

        - - - - - - - - - -
         e r a P m a t 0 0
        - - - - - - - - - -

        Precession matrix (including frame bias) from GCRS to a specified
        date, IAU 2000 model.

        Given:
           date1,date2  double          TT as a 2-part Julian Date (Note 1)

        Returned:
           rbp          double[3][3]    bias-precession matrix (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The matrix operates in the sense V(date) = rbp * V(GCRS), where
           the p-vector V(GCRS) is with respect to the Geocentric Celestial
           Reference System (IAU, 2000) and the p-vector V(date) is with
           respect to the mean equatorial triad of the given date.

        Called:
           eraBp00      frame bias and precession matrices, IAU 2000

        Reference:

           IAU: Trans. International Astronomical Union, Vol. XXIVB;  Proc.
           24th General Assembly, Manchester, UK.  Resolutions B1.3, B1.6.
           (2000)

        This revision:  2020 November 24

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rbp = ufunc.pmat00(date1, date2)
    return rbp


def pmat06(date1, date2):
    """
    Precession matrix (including frame bias) from GCRS to a specified
    date, IAU 2006 model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    rbp : double array

    Notes
    -----
    Wraps ERFA function ``eraPmat06``. The ERFA documentation is::

        - - - - - - - - - -
         e r a P m a t 0 6
        - - - - - - - - - -

        Precession matrix (including frame bias) from GCRS to a specified
        date, IAU 2006 model.

        Given:
           date1,date2  double          TT as a 2-part Julian Date (Note 1)

        Returned:
           rbp          double[3][3]    bias-precession matrix (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The matrix operates in the sense V(date) = rbp * V(GCRS), where
           the p-vector V(GCRS) is with respect to the Geocentric Celestial
           Reference System (IAU, 2000) and the p-vector V(date) is with
           respect to the mean equatorial triad of the given date.

        Called:
           eraPfw06     bias-precession F-W angles, IAU 2006
           eraFw2m      F-W angles to r-matrix

        References:

           Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855

           IAU: Trans. International Astronomical Union, Vol. XXIVB;  Proc.
           24th General Assembly, Manchester, UK.  Resolutions B1.3, B1.6.
           (2000)

           Wallace, P.T. & Capitaine, N., 2006, Astron.Astrophys. 459, 981

        This revision:  2020 November 24

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rbp = ufunc.pmat06(date1, date2)
    return rbp


def pmat76(date1, date2):
    """
    Precession matrix from J2000.0 to a specified date, IAU 1976 model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    rmatp : double array

    Notes
    -----
    Wraps ERFA function ``eraPmat76``. The ERFA documentation is::

        - - - - - - - - - -
         e r a P m a t 7 6
        - - - - - - - - - -

        Precession matrix from J2000.0 to a specified date, IAU 1976 model.

        Given:
           date1,date2 double       ending date, TT (Note 1)

        Returned:
           rmatp       double[3][3] precession matrix, J2000.0 -> date1+date2

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The matrix operates in the sense V(date) = RMATP * V(J2000),
           where the p-vector V(J2000) is with respect to the mean
           equatorial triad of epoch J2000.0 and the p-vector V(date)
           is with respect to the mean equatorial triad of the given
           date.

        3) Though the matrix method itself is rigorous, the precession
           angles are expressed through canonical polynomials which are
           valid only for a limited time span.  In addition, the IAU 1976
           precession rate is known to be imperfect.  The absolute accuracy
           of the present formulation is better than 0.1 arcsec from
           1960AD to 2040AD, better than 1 arcsec from 1640AD to 2360AD,
           and remains below 3 arcsec for the whole of the period
           500BC to 3000AD.  The errors exceed 10 arcsec outside the
           range 1200BC to 3900AD, exceed 100 arcsec outside 4200BC to
           5600AD and exceed 1000 arcsec outside 6800BC to 8200AD.

        Called:
           eraPrec76    accumulated precession angles, IAU 1976
           eraIr        initialize r-matrix to identity
           eraRz        rotate around Z-axis
           eraRy        rotate around Y-axis
           eraCr        copy r-matrix

        References:

           Lieske, J.H., 1979, Astron.Astrophys. 73, 282.
            equations (6) & (7), p283.

           Kaplan,G.H., 1981. USNO circular no. 163, pA2.

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rmatp = ufunc.pmat76(date1, date2)
    return rmatp


def pn00(date1, date2, dpsi, deps):
    """
    Precession-nutation, IAU 2000 model:  a multi-purpose function,
    supporting classical (equinox-based) use directly and CIO-based
    use indirectly.

    Parameters
    ----------
    date1 : double array
    date2 : double array
    dpsi : double array
    deps : double array

    Returns
    -------
    epsa : double array
    rb : double array
    rp : double array
    rbp : double array
    rn : double array
    rbpn : double array

    Notes
    -----
    Wraps ERFA function ``eraPn00``. The ERFA documentation is::

        - - - - - - - -
         e r a P n 0 0
        - - - - - - - -

        Precession-nutation, IAU 2000 model:  a multi-purpose function,
        supporting classical (equinox-based) use directly and CIO-based
        use indirectly.

        Given:
           date1,date2  double          TT as a 2-part Julian Date (Note 1)
           dpsi,deps    double          nutation (Note 2)

        Returned:
           epsa         double          mean obliquity (Note 3)
           rb           double[3][3]    frame bias matrix (Note 4)
           rp           double[3][3]    precession matrix (Note 5)
           rbp          double[3][3]    bias-precession matrix (Note 6)
           rn           double[3][3]    nutation matrix (Note 7)
           rbpn         double[3][3]    GCRS-to-true matrix (Note 8)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The caller is responsible for providing the nutation components;
           they are in longitude and obliquity, in radians and are with
           respect to the equinox and ecliptic of date.  For high-accuracy
           applications, free core nutation should be included as well as
           any other relevant corrections to the position of the CIP.

        3) The returned mean obliquity is consistent with the IAU 2000
           precession-nutation models.

        4) The matrix rb transforms vectors from GCRS to J2000.0 mean
           equator and equinox by applying frame bias.

        5) The matrix rp transforms vectors from J2000.0 mean equator and
           equinox to mean equator and equinox of date by applying
           precession.

        6) The matrix rbp transforms vectors from GCRS to mean equator and
           equinox of date by applying frame bias then precession.  It is
           the product rp x rb.

        7) The matrix rn transforms vectors from mean equator and equinox of
           date to true equator and equinox of date by applying the nutation
           (luni-solar + planetary).

        8) The matrix rbpn transforms vectors from GCRS to true equator and
           equinox of date.  It is the product rn x rbp, applying frame
           bias, precession and nutation in that order.

        9) It is permissible to re-use the same array in the returned
           arguments.  The arrays are filled in the order given.

        Called:
           eraPr00      IAU 2000 precession adjustments
           eraObl80     mean obliquity, IAU 1980
           eraBp00      frame bias and precession matrices, IAU 2000
           eraCr        copy r-matrix
           eraNumat     form nutation matrix
           eraRxr       product of two r-matrices

        Reference:

           Capitaine, N., Chapront, J., Lambert, S. and Wallace, P.,
           "Expressions for the Celestial Intermediate Pole and Celestial
           Ephemeris Origin consistent with the IAU 2000A precession-
           nutation model", Astron.Astrophys. 400, 1145-1154 (2003)

           n.b. The celestial ephemeris origin (CEO) was renamed "celestial
                intermediate origin" (CIO) by IAU 2006 Resolution 2.

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    epsa, rb, rp, rbp, rn, rbpn = ufunc.pn00(date1, date2, dpsi, deps)
    return epsa, rb, rp, rbp, rn, rbpn


def pn00a(date1, date2):
    """
    Precession-nutation, IAU 2000A model:  a multi-purpose function,
    supporting classical (equinox-based) use directly and CIO-based
    use indirectly.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    dpsi : double array
    deps : double array
    epsa : double array
    rb : double array
    rp : double array
    rbp : double array
    rn : double array
    rbpn : double array

    Notes
    -----
    Wraps ERFA function ``eraPn00a``. The ERFA documentation is::

        - - - - - - - - -
         e r a P n 0 0 a
        - - - - - - - - -

        Precession-nutation, IAU 2000A model:  a multi-purpose function,
        supporting classical (equinox-based) use directly and CIO-based
        use indirectly.

        Given:
           date1,date2  double          TT as a 2-part Julian Date (Note 1)

        Returned:
           dpsi,deps    double          nutation (Note 2)
           epsa         double          mean obliquity (Note 3)
           rb           double[3][3]    frame bias matrix (Note 4)
           rp           double[3][3]    precession matrix (Note 5)
           rbp          double[3][3]    bias-precession matrix (Note 6)
           rn           double[3][3]    nutation matrix (Note 7)
           rbpn         double[3][3]    GCRS-to-true matrix (Notes 8,9)

        Notes:

        1)  The TT date date1+date2 is a Julian Date, apportioned in any
            convenient way between the two arguments.  For example,
            JD(TT)=2450123.7 could be expressed in any of these ways,
            among others:

                   date1          date2

                2450123.7           0.0       (JD method)
                2451545.0       -1421.3       (J2000 method)
                2400000.5       50123.2       (MJD method)
                2450123.5           0.2       (date & time method)

            The JD method is the most natural and convenient to use in
            cases where the loss of several decimal digits of resolution
            is acceptable.  The J2000 method is best matched to the way
            the argument is handled internally and will deliver the
            optimum resolution.  The MJD method and the date & time methods
            are both good compromises between resolution and convenience.

        2)  The nutation components (luni-solar + planetary, IAU 2000A) in
            longitude and obliquity are in radians and with respect to the
            equinox and ecliptic of date.  Free core nutation is omitted;
            for the utmost accuracy, use the eraPn00 function, where the
            nutation components are caller-specified.  For faster but
            slightly less accurate results, use the eraPn00b function.

        3)  The mean obliquity is consistent with the IAU 2000 precession.

        4)  The matrix rb transforms vectors from GCRS to J2000.0 mean
            equator and equinox by applying frame bias.

        5)  The matrix rp transforms vectors from J2000.0 mean equator and
            equinox to mean equator and equinox of date by applying
            precession.

        6)  The matrix rbp transforms vectors from GCRS to mean equator and
            equinox of date by applying frame bias then precession.  It is
            the product rp x rb.

        7)  The matrix rn transforms vectors from mean equator and equinox
            of date to true equator and equinox of date by applying the
            nutation (luni-solar + planetary).

        8)  The matrix rbpn transforms vectors from GCRS to true equator and
            equinox of date.  It is the product rn x rbp, applying frame
            bias, precession and nutation in that order.

        9)  The X,Y,Z coordinates of the IAU 2000A Celestial Intermediate
            Pole are elements (3,1-3) of the GCRS-to-true matrix,
            i.e. rbpn[2][0-2].

        10) It is permissible to re-use the same array in the returned
            arguments.  The arrays are filled in the stated order.

        Called:
           eraNut00a    nutation, IAU 2000A
           eraPn00      bias/precession/nutation results, IAU 2000

        Reference:

           Capitaine, N., Chapront, J., Lambert, S. and Wallace, P.,
           "Expressions for the Celestial Intermediate Pole and Celestial
           Ephemeris Origin consistent with the IAU 2000A precession-
           nutation model", Astron.Astrophys. 400, 1145-1154 (2003)

           n.b. The celestial ephemeris origin (CEO) was renamed "celestial
                intermediate origin" (CIO) by IAU 2006 Resolution 2.

        This revision:  2020 November 25

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    dpsi, deps, epsa, rb, rp, rbp, rn, rbpn = ufunc.pn00a(date1, date2)
    return dpsi, deps, epsa, rb, rp, rbp, rn, rbpn


def pn00b(date1, date2):
    """
    Precession-nutation, IAU 2000B model:  a multi-purpose function,
    supporting classical (equinox-based) use directly and CIO-based
    use indirectly.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    dpsi : double array
    deps : double array
    epsa : double array
    rb : double array
    rp : double array
    rbp : double array
    rn : double array
    rbpn : double array

    Notes
    -----
    Wraps ERFA function ``eraPn00b``. The ERFA documentation is::

        - - - - - - - - -
         e r a P n 0 0 b
        - - - - - - - - -

        Precession-nutation, IAU 2000B model:  a multi-purpose function,
        supporting classical (equinox-based) use directly and CIO-based
        use indirectly.

        Given:
           date1,date2  double          TT as a 2-part Julian Date (Note 1)

        Returned:
           dpsi,deps    double          nutation (Note 2)
           epsa         double          mean obliquity (Note 3)
           rb           double[3][3]    frame bias matrix (Note 4)
           rp           double[3][3]    precession matrix (Note 5)
           rbp          double[3][3]    bias-precession matrix (Note 6)
           rn           double[3][3]    nutation matrix (Note 7)
           rbpn         double[3][3]    GCRS-to-true matrix (Notes 8,9)

        Notes:

        1)  The TT date date1+date2 is a Julian Date, apportioned in any
            convenient way between the two arguments.  For example,
            JD(TT)=2450123.7 could be expressed in any of these ways,
            among others:

                   date1          date2

                2450123.7           0.0       (JD method)
                2451545.0       -1421.3       (J2000 method)
                2400000.5       50123.2       (MJD method)
                2450123.5           0.2       (date & time method)

            The JD method is the most natural and convenient to use in
            cases where the loss of several decimal digits of resolution
            is acceptable.  The J2000 method is best matched to the way
            the argument is handled internally and will deliver the
            optimum resolution.  The MJD method and the date & time methods
            are both good compromises between resolution and convenience.

        2)  The nutation components (luni-solar + planetary, IAU 2000B) in
            longitude and obliquity are in radians and with respect to the
            equinox and ecliptic of date.  For more accurate results, but
            at the cost of increased computation, use the eraPn00a function.
            For the utmost accuracy, use the eraPn00 function, where the
            nutation components are caller-specified.

        3)  The mean obliquity is consistent with the IAU 2000 precession.

        4)  The matrix rb transforms vectors from GCRS to J2000.0 mean
            equator and equinox by applying frame bias.

        5)  The matrix rp transforms vectors from J2000.0 mean equator and
            equinox to mean equator and equinox of date by applying
            precession.

        6)  The matrix rbp transforms vectors from GCRS to mean equator and
            equinox of date by applying frame bias then precession.  It is
            the product rp x rb.

        7)  The matrix rn transforms vectors from mean equator and equinox
            of date to true equator and equinox of date by applying the
            nutation (luni-solar + planetary).

        8)  The matrix rbpn transforms vectors from GCRS to true equator and
            equinox of date.  It is the product rn x rbp, applying frame
            bias, precession and nutation in that order.

        9)  The X,Y,Z coordinates of the IAU 2000B Celestial Intermediate
            Pole are elements (3,1-3) of the GCRS-to-true matrix,
            i.e. rbpn[2][0-2].

        10) It is permissible to re-use the same array in the returned
            arguments.  The arrays are filled in the stated order.

        Called:
           eraNut00b    nutation, IAU 2000B
           eraPn00      bias/precession/nutation results, IAU 2000

        Reference:

           Capitaine, N., Chapront, J., Lambert, S. and Wallace, P.,
           "Expressions for the Celestial Intermediate Pole and Celestial
           Ephemeris Origin consistent with the IAU 2000A precession-
           nutation model", Astron.Astrophys. 400, 1145-1154 (2003).

           n.b. The celestial ephemeris origin (CEO) was renamed "celestial
                intermediate origin" (CIO) by IAU 2006 Resolution 2.

        This revision:  2020 November 25

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    dpsi, deps, epsa, rb, rp, rbp, rn, rbpn = ufunc.pn00b(date1, date2)
    return dpsi, deps, epsa, rb, rp, rbp, rn, rbpn


def pn06(date1, date2, dpsi, deps):
    """
    Precession-nutation, IAU 2006 model:  a multi-purpose function,
    supporting classical (equinox-based) use directly and CIO-based use
    indirectly.

    Parameters
    ----------
    date1 : double array
    date2 : double array
    dpsi : double array
    deps : double array

    Returns
    -------
    epsa : double array
    rb : double array
    rp : double array
    rbp : double array
    rn : double array
    rbpn : double array

    Notes
    -----
    Wraps ERFA function ``eraPn06``. The ERFA documentation is::

        - - - - - - - -
         e r a P n 0 6
        - - - - - - - -

        Precession-nutation, IAU 2006 model:  a multi-purpose function,
        supporting classical (equinox-based) use directly and CIO-based use
        indirectly.

        Given:
           date1,date2  double          TT as a 2-part Julian Date (Note 1)
           dpsi,deps    double          nutation (Note 2)

        Returned:
           epsa         double          mean obliquity (Note 3)
           rb           double[3][3]    frame bias matrix (Note 4)
           rp           double[3][3]    precession matrix (Note 5)
           rbp          double[3][3]    bias-precession matrix (Note 6)
           rn           double[3][3]    nutation matrix (Note 7)
           rbpn         double[3][3]    GCRS-to-true matrix (Notes 8,9)

        Notes:

        1)  The TT date date1+date2 is a Julian Date, apportioned in any
            convenient way between the two arguments.  For example,
            JD(TT)=2450123.7 could be expressed in any of these ways,
            among others:

                   date1          date2

                2450123.7           0.0       (JD method)
                2451545.0       -1421.3       (J2000 method)
                2400000.5       50123.2       (MJD method)
                2450123.5           0.2       (date & time method)

            The JD method is the most natural and convenient to use in
            cases where the loss of several decimal digits of resolution
            is acceptable.  The J2000 method is best matched to the way
            the argument is handled internally and will deliver the
            optimum resolution.  The MJD method and the date & time methods
            are both good compromises between resolution and convenience.

        2)  The caller is responsible for providing the nutation components;
            they are in longitude and obliquity, in radians and are with
            respect to the equinox and ecliptic of date.  For high-accuracy
            applications, free core nutation should be included as well as
            any other relevant corrections to the position of the CIP.

        3)  The returned mean obliquity is consistent with the IAU 2006
            precession.

        4)  The matrix rb transforms vectors from GCRS to J2000.0 mean
            equator and equinox by applying frame bias.

        5)  The matrix rp transforms vectors from J2000.0 mean equator and
            equinox to mean equator and equinox of date by applying
            precession.

        6)  The matrix rbp transforms vectors from GCRS to mean equator and
            equinox of date by applying frame bias then precession.  It is
            the product rp x rb.

        7)  The matrix rn transforms vectors from mean equator and equinox
            of date to true equator and equinox of date by applying the
            nutation (luni-solar + planetary).

        8)  The matrix rbpn transforms vectors from GCRS to true equator and
            equinox of date.  It is the product rn x rbp, applying frame
            bias, precession and nutation in that order.

        9)  The X,Y,Z coordinates of the Celestial Intermediate Pole are
            elements (3,1-3) of the GCRS-to-true matrix, i.e. rbpn[2][0-2].

        10) It is permissible to re-use the same array in the returned
            arguments.  The arrays are filled in the stated order.

        Called:
           eraPfw06     bias-precession F-W angles, IAU 2006
           eraFw2m      F-W angles to r-matrix
           eraCr        copy r-matrix
           eraTr        transpose r-matrix
           eraRxr       product of two r-matrices

        References:

           Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855

           Wallace, P.T. & Capitaine, N., 2006, Astron.Astrophys. 459, 981

        This revision:  2020 November 25

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    epsa, rb, rp, rbp, rn, rbpn = ufunc.pn06(date1, date2, dpsi, deps)
    return epsa, rb, rp, rbp, rn, rbpn


def pn06a(date1, date2):
    """
    Precession-nutation, IAU 2006/2000A models:  a multi-purpose function,
    supporting classical (equinox-based) use directly and CIO-based use
    indirectly.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    dpsi : double array
    deps : double array
    epsa : double array
    rb : double array
    rp : double array
    rbp : double array
    rn : double array
    rbpn : double array

    Notes
    -----
    Wraps ERFA function ``eraPn06a``. The ERFA documentation is::

        - - - - - - - - -
         e r a P n 0 6 a
        - - - - - - - - -

        Precession-nutation, IAU 2006/2000A models:  a multi-purpose function,
        supporting classical (equinox-based) use directly and CIO-based use
        indirectly.

        Given:
           date1,date2  double          TT as a 2-part Julian Date (Note 1)

        Returned:
           dpsi,deps    double          nutation (Note 2)
           epsa         double          mean obliquity (Note 3)
           rb           double[3][3]    frame bias matrix (Note 4)
           rp           double[3][3]    precession matrix (Note 5)
           rbp          double[3][3]    bias-precession matrix (Note 6)
           rn           double[3][3]    nutation matrix (Note 7)
           rbpn         double[3][3]    GCRS-to-true matrix (Notes 8,9)

        Notes:

        1)  The TT date date1+date2 is a Julian Date, apportioned in any
            convenient way between the two arguments.  For example,
            JD(TT)=2450123.7 could be expressed in any of these ways,
            among others:

                   date1          date2

                2450123.7           0.0       (JD method)
                2451545.0       -1421.3       (J2000 method)
                2400000.5       50123.2       (MJD method)
                2450123.5           0.2       (date & time method)

            The JD method is the most natural and convenient to use in
            cases where the loss of several decimal digits of resolution
            is acceptable.  The J2000 method is best matched to the way
            the argument is handled internally and will deliver the
            optimum resolution.  The MJD method and the date & time methods
            are both good compromises between resolution and convenience.

        2)  The nutation components (luni-solar + planetary, IAU 2000A) in
            longitude and obliquity are in radians and with respect to the
            equinox and ecliptic of date.  Free core nutation is omitted;
            for the utmost accuracy, use the eraPn06 function, where the
            nutation components are caller-specified.

        3)  The mean obliquity is consistent with the IAU 2006 precession.

        4)  The matrix rb transforms vectors from GCRS to mean J2000.0 by
            applying frame bias.

        5)  The matrix rp transforms vectors from mean J2000.0 to mean of
            date by applying precession.

        6)  The matrix rbp transforms vectors from GCRS to mean of date by
            applying frame bias then precession.  It is the product rp x rb.

        7)  The matrix rn transforms vectors from mean of date to true of
            date by applying the nutation (luni-solar + planetary).

        8)  The matrix rbpn transforms vectors from GCRS to true of date
            (CIP/equinox).  It is the product rn x rbp, applying frame bias,
            precession and nutation in that order.

        9)  The X,Y,Z coordinates of the IAU 2006/2000A Celestial
            Intermediate Pole are elements (3,1-3) of the GCRS-to-true
            matrix, i.e. rbpn[2][0-2].

        10) It is permissible to re-use the same array in the returned
            arguments.  The arrays are filled in the stated order.

        Called:
           eraNut06a    nutation, IAU 2006/2000A
           eraPn06      bias/precession/nutation results, IAU 2006

        Reference:

           Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855

        This revision:  2013 November 13

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    dpsi, deps, epsa, rb, rp, rbp, rn, rbpn = ufunc.pn06a(date1, date2)
    return dpsi, deps, epsa, rb, rp, rbp, rn, rbpn


def pnm00a(date1, date2):
    """
    Form the matrix of precession-nutation for a given date (including
    frame bias), equinox based, IAU 2000A model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    rbpn : double array

    Notes
    -----
    Wraps ERFA function ``eraPnm00a``. The ERFA documentation is::

        - - - - - - - - - -
         e r a P n m 0 0 a
        - - - - - - - - - -

        Form the matrix of precession-nutation for a given date (including
        frame bias), equinox based, IAU 2000A model.

        Given:
           date1,date2 double       TT as a 2-part Julian Date (Note 1)

        Returned:
           rbpn        double[3][3] bias-precession-nutation matrix (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways, among
           others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The matrix operates in the sense V(date) = rbpn * V(GCRS), where
           the p-vector V(date) is with respect to the true equatorial triad
           of date date1+date2 and the p-vector V(GCRS) is with respect to
           the Geocentric Celestial Reference System (IAU, 2000).

        3) A faster, but slightly less accurate, result (about 1 mas) can be
           obtained by using instead the eraPnm00b function.

        Called:
           eraPn00a     bias/precession/nutation, IAU 2000A

        Reference:

           IAU: Trans. International Astronomical Union, Vol. XXIVB;  Proc.
           24th General Assembly, Manchester, UK.  Resolutions B1.3, B1.6.
           (2000)

        This revision:  2020 November 27

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rbpn = ufunc.pnm00a(date1, date2)
    return rbpn


def pnm00b(date1, date2):
    """
    Form the matrix of precession-nutation for a given date (including
    frame bias), equinox-based, IAU 2000B model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    rbpn : double array

    Notes
    -----
    Wraps ERFA function ``eraPnm00b``. The ERFA documentation is::

        - - - - - - - - - -
         e r a P n m 0 0 b
        - - - - - - - - - -

        Form the matrix of precession-nutation for a given date (including
        frame bias), equinox-based, IAU 2000B model.

        Given:
           date1,date2 double       TT as a 2-part Julian Date (Note 1)

        Returned:
           rbpn        double[3][3] bias-precession-nutation matrix (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways, among
           others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The matrix operates in the sense V(date) = rbpn * V(GCRS), where
           the p-vector V(date) is with respect to the true equatorial triad
           of date date1+date2 and the p-vector V(GCRS) is with respect to
           the Geocentric Celestial Reference System (IAU, 2000).

        3) The present function is faster, but slightly less accurate (about
           1 mas), than the eraPnm00a function.

        Called:
           eraPn00b     bias/precession/nutation, IAU 2000B

        Reference:

           IAU: Trans. International Astronomical Union, Vol. XXIVB;  Proc.
           24th General Assembly, Manchester, UK.  Resolutions B1.3, B1.6.
           (2000)

        This revision:  2020 November 27

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rbpn = ufunc.pnm00b(date1, date2)
    return rbpn


def pnm06a(date1, date2):
    """
    Form the matrix of precession-nutation for a given date (including
    frame bias), equinox based, IAU 2006 precession and IAU 2000A
    nutation models.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    rbpn : double array

    Notes
    -----
    Wraps ERFA function ``eraPnm06a``. The ERFA documentation is::

        - - - - - - - - - -
         e r a P n m 0 6 a
        - - - - - - - - - -

        Form the matrix of precession-nutation for a given date (including
        frame bias), equinox based, IAU 2006 precession and IAU 2000A
        nutation models.

        Given:
           date1,date2 double       TT as a 2-part Julian Date (Note 1)

        Returned:
           rbpn        double[3][3] bias-precession-nutation matrix (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways, among
           others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The matrix operates in the sense V(date) = rbpn * V(GCRS), where
           the p-vector V(date) is with respect to the true equatorial triad
           of date date1+date2 and the p-vector V(GCRS) is with respect to
           the Geocentric Celestial Reference System (IAU, 2000).

        Called:
           eraPfw06     bias-precession F-W angles, IAU 2006
           eraNut06a    nutation, IAU 2006/2000A
           eraFw2m      F-W angles to r-matrix

        Reference:

           Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855.

        This revision:  2020 November 27

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rbpn = ufunc.pnm06a(date1, date2)
    return rbpn


def pnm80(date1, date2):
    """
    Form the matrix of precession/nutation for a given date, IAU 1976
    precession model, IAU 1980 nutation model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    rmatpn : double array

    Notes
    -----
    Wraps ERFA function ``eraPnm80``. The ERFA documentation is::

        - - - - - - - - -
         e r a P n m 8 0
        - - - - - - - - -

        Form the matrix of precession/nutation for a given date, IAU 1976
        precession model, IAU 1980 nutation model.

        Given:
           date1,date2 double       TT as a 2-part Julian Date (Note 1)

        Returned:
           rmatpn         double[3][3]   combined precession/nutation matrix

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The matrix operates in the sense V(date) = rmatpn * V(J2000),
           where the p-vector V(date) is with respect to the true equatorial
           triad of date date1+date2 and the p-vector V(J2000) is with
           respect to the mean equatorial triad of epoch J2000.0.

        Called:
           eraPmat76    precession matrix, IAU 1976
           eraNutm80    nutation matrix, IAU 1980
           eraRxr       product of two r-matrices

        Reference:

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992),
           Section 3.3 (p145).

        This revision:  2020 November 27

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rmatpn = ufunc.pnm80(date1, date2)
    return rmatpn


def pom00(xp, yp, sp):
    """
    Form the matrix of polar motion for a given date, IAU 2000.

    Parameters
    ----------
    xp : double array
    yp : double array
    sp : double array

    Returns
    -------
    rpom : double array

    Notes
    -----
    Wraps ERFA function ``eraPom00``. The ERFA documentation is::

        - - - - - - - - - -
         e r a P o m 0 0
        - - - - - - - - - -

        Form the matrix of polar motion for a given date, IAU 2000.

        Given:
           xp,yp    double    coordinates of the pole (radians, Note 1)
           sp       double    the TIO locator s' (radians, Note 2)

        Returned:
           rpom     double[3][3]   polar-motion matrix (Note 3)

        Notes:

        1) The arguments xp and yp are the coordinates (in radians) of the
           Celestial Intermediate Pole with respect to the International
           Terrestrial Reference System (see IERS Conventions 2003),
           measured along the meridians 0 and 90 deg west respectively.

        2) The argument sp is the TIO locator s', in radians, which
           positions the Terrestrial Intermediate Origin on the equator.  It
           is obtained from polar motion observations by numerical
           integration, and so is in essence unpredictable.  However, it is
           dominated by a secular drift of about 47 microarcseconds per
           century, and so can be taken into account by using s' = -47*t,
           where t is centuries since J2000.0.  The function eraSp00
           implements this approximation.

        3) The matrix operates in the sense V(TRS) = rpom * V(CIP), meaning
           that it is the final rotation when computing the pointing
           direction to a celestial source.

        Called:
           eraIr        initialize r-matrix to identity
           eraRz        rotate around Z-axis
           eraRy        rotate around Y-axis
           eraRx        rotate around X-axis

        Reference:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2020 October 31

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rpom = ufunc.pom00(xp, yp, sp)
    return rpom


def pr00(date1, date2):
    """
    Precession-rate part of the IAU 2000 precession-nutation models
    (part of MHB2000).

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    dpsipr : double array
    depspr : double array

    Notes
    -----
    Wraps ERFA function ``eraPr00``. The ERFA documentation is::

        - - - - - - - -
         e r a P r 0 0
        - - - - - - - -

        Precession-rate part of the IAU 2000 precession-nutation models
        (part of MHB2000).

        Given:
           date1,date2    double  TT as a 2-part Julian Date (Note 1)

        Returned:
           dpsipr,depspr  double  precession corrections (Notes 2,3)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The precession adjustments are expressed as "nutation
           components", corrections in longitude and obliquity with respect
           to the J2000.0 equinox and ecliptic.

        3) Although the precession adjustments are stated to be with respect
           to Lieske et al. (1977), the MHB2000 model does not specify which
           set of Euler angles are to be used and how the adjustments are to
           be applied.  The most literal and straightforward procedure is to
           adopt the 4-rotation epsilon_0, psi_A, omega_A, xi_A option, and
           to add dpsipr to psi_A and depspr to both omega_A and eps_A.

        4) This is an implementation of one aspect of the IAU 2000A nutation
           model, formally adopted by the IAU General Assembly in 2000,
           namely MHB2000 (Mathews et al. 2002).

        References:

           Lieske, J.H., Lederle, T., Fricke, W. & Morando, B., "Expressions
           for the precession quantities based upon the IAU (1976) System of
           Astronomical Constants", Astron.Astrophys., 58, 1-16 (1977)

           Mathews, P.M., Herring, T.A., Buffet, B.A., "Modeling of nutation
           and precession   New nutation series for nonrigid Earth and
           insights into the Earth's interior", J.Geophys.Res., 107, B4,
           2002.  The MHB2000 code itself was obtained on 9th September 2002
           from ftp://maia.usno.navy.mil/conv2000/chapter5/IAU2000A.

           Wallace, P.T., "Software for Implementing the IAU 2000
           Resolutions", in IERS Workshop 5.1 (2002).

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    dpsipr, depspr = ufunc.pr00(date1, date2)
    return dpsipr, depspr


def prec76(date01, date02, date11, date12):
    """
    IAU 1976 precession model.

    Parameters
    ----------
    date01 : double array
    date02 : double array
    date11 : double array
    date12 : double array

    Returns
    -------
    zeta : double array
    z : double array
    theta : double array

    Notes
    -----
    Wraps ERFA function ``eraPrec76``. The ERFA documentation is::

        - - - - - - - - - -
         e r a P r e c 7 6
        - - - - - - - - - -

        IAU 1976 precession model.

        This function forms the three Euler angles which implement general
        precession between two dates, using the IAU 1976 model (as for the
        FK5 catalog).

        Given:
           date01,date02   double    TDB starting date (Note 1)
           date11,date12   double    TDB ending date (Note 1)

        Returned:
           zeta            double    1st rotation: radians cw around z
           z               double    3rd rotation: radians cw around z
           theta           double    2nd rotation: radians ccw around y

        Notes:

        1) The dates date01+date02 and date11+date12 are Julian Dates,
           apportioned in any convenient way between the arguments daten1
           and daten2.  For example, JD(TDB)=2450123.7 could be expressed in
           any of these ways, among others:

                 daten1        daten2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in cases
           where the loss of several decimal digits of resolution is
           acceptable.  The J2000 method is best matched to the way the
           argument is handled internally and will deliver the optimum
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.
           The two dates may be expressed using different methods, but at
           the risk of losing some resolution.

        2) The accumulated precession angles zeta, z, theta are expressed
           through canonical polynomials which are valid only for a limited
           time span.  In addition, the IAU 1976 precession rate is known to
           be imperfect.  The absolute accuracy of the present formulation
           is better than 0.1 arcsec from 1960AD to 2040AD, better than
           1 arcsec from 1640AD to 2360AD, and remains below 3 arcsec for
           the whole of the period 500BC to 3000AD.  The errors exceed
           10 arcsec outside the range 1200BC to 3900AD, exceed 100 arcsec
           outside 4200BC to 5600AD and exceed 1000 arcsec outside 6800BC to
           8200AD.

        3) The three angles are returned in the conventional order, which
           is not the same as the order of the corresponding Euler
           rotations.  The precession matrix is
           R_3(-z) x R_2(+theta) x R_3(-zeta).

        Reference:

           Lieske, J.H., 1979, Astron.Astrophys. 73, 282, equations
           (6) & (7), p283.

        This revision:  2013 November 19

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    zeta, z, theta = ufunc.prec76(date01, date02, date11, date12)
    return zeta, z, theta


def s00(date1, date2, x, y):
    """
    The CIO locator s, positioning the Celestial Intermediate Origin on
    the equator of the Celestial Intermediate Pole, given the CIP's X,Y
    coordinates.

    Parameters
    ----------
    date1 : double array
    date2 : double array
    x : double array
    y : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraS00``. The ERFA documentation is::

        - - - - - - -
         e r a S 0 0
        - - - - - - -

        The CIO locator s, positioning the Celestial Intermediate Origin on
        the equator of the Celestial Intermediate Pole, given the CIP's X,Y
        coordinates.  Compatible with IAU 2000A precession-nutation.

        Given:
           date1,date2   double    TT as a 2-part Julian Date (Note 1)
           x,y           double    CIP coordinates (Note 3)

        Returned (function value):
                         double    the CIO locator s in radians (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The CIO locator s is the difference between the right ascensions
           of the same point in two systems:  the two systems are the GCRS
           and the CIP,CIO, and the point is the ascending node of the
           CIP equator.  The quantity s remains below 0.1 arcsecond
           throughout 1900-2100.

        3) The series used to compute s is in fact for s+XY/2, where X and Y
           are the x and y components of the CIP unit vector;  this series
           is more compact than a direct series for s would be.  This
           function requires X,Y to be supplied by the caller, who is
           responsible for providing values that are consistent with the
           supplied date.

        4) The model is consistent with the IAU 2000A precession-nutation.

        Called:
           eraFal03     mean anomaly of the Moon
           eraFalp03    mean anomaly of the Sun
           eraFaf03     mean argument of the latitude of the Moon
           eraFad03     mean elongation of the Moon from the Sun
           eraFaom03    mean longitude of the Moon's ascending node
           eraFave03    mean longitude of Venus
           eraFae03     mean longitude of Earth
           eraFapa03    general accumulated precession in longitude

        References:

           Capitaine, N., Chapront, J., Lambert, S. and Wallace, P.,
           "Expressions for the Celestial Intermediate Pole and Celestial
           Ephemeris Origin consistent with the IAU 2000A precession-
           nutation model", Astron.Astrophys. 400, 1145-1154 (2003)

           n.b. The celestial ephemeris origin (CEO) was renamed "celestial
                intermediate origin" (CIO) by IAU 2006 Resolution 2.

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2020 November 4

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.s00(date1, date2, x, y)
    return c_retval


def s00a(date1, date2):
    """
    The CIO locator s, positioning the Celestial Intermediate Origin on
    the equator of the Celestial Intermediate Pole, using the IAU 2000A
    precession-nutation model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraS00a``. The ERFA documentation is::

        - - - - - - - -
         e r a S 0 0 a
        - - - - - - - -

        The CIO locator s, positioning the Celestial Intermediate Origin on
        the equator of the Celestial Intermediate Pole, using the IAU 2000A
        precession-nutation model.

        Given:
           date1,date2  double    TT as a 2-part Julian Date (Note 1)

        Returned (function value):
                        double    the CIO locator s in radians (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The CIO locator s is the difference between the right ascensions
           of the same point in two systems.  The two systems are the GCRS
           and the CIP,CIO, and the point is the ascending node of the
           CIP equator.  The CIO locator s remains a small fraction of
           1 arcsecond throughout 1900-2100.

        3) The series used to compute s is in fact for s+XY/2, where X and Y
           are the x and y components of the CIP unit vector;  this series
           is more compact than a direct series for s would be.  The present
           function uses the full IAU 2000A nutation model when predicting
           the CIP position.  Faster results, with no significant loss of
           accuracy, can be obtained via the function eraS00b, which uses
           instead the IAU 2000B truncated model.

        Called:
           eraPnm00a    classical NPB matrix, IAU 2000A
           eraBnp2xy    extract CIP X,Y from the BPN matrix
           eraS00       the CIO locator s, given X,Y, IAU 2000A

        References:

           Capitaine, N., Chapront, J., Lambert, S. and Wallace, P.,
           "Expressions for the Celestial Intermediate Pole and Celestial
           Ephemeris Origin consistent with the IAU 2000A precession-
           nutation model", Astron.Astrophys. 400, 1145-1154 (2003)

           n.b. The celestial ephemeris origin (CEO) was renamed "celestial
                intermediate origin" (CIO) by IAU 2006 Resolution 2.

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.s00a(date1, date2)
    return c_retval


def s00b(date1, date2):
    """
    The CIO locator s, positioning the Celestial Intermediate Origin on
    the equator of the Celestial Intermediate Pole, using the IAU 2000B
    precession-nutation model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraS00b``. The ERFA documentation is::

        - - - - - - - -
         e r a S 0 0 b
        - - - - - - - -

        The CIO locator s, positioning the Celestial Intermediate Origin on
        the equator of the Celestial Intermediate Pole, using the IAU 2000B
        precession-nutation model.

        Given:
           date1,date2  double    TT as a 2-part Julian Date (Note 1)

        Returned (function value):
                        double    the CIO locator s in radians (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The CIO locator s is the difference between the right ascensions
           of the same point in two systems.  The two systems are the GCRS
           and the CIP,CIO, and the point is the ascending node of the
           CIP equator.  The CIO locator s remains a small fraction of
           1 arcsecond throughout 1900-2100.

        3) The series used to compute s is in fact for s+XY/2, where X and Y
           are the x and y components of the CIP unit vector;  this series
           is more compact than a direct series for s would be.  The present
           function uses the IAU 2000B truncated nutation model when
           predicting the CIP position.  The function eraS00a uses instead
           the full IAU 2000A model, but with no significant increase in
           accuracy and at some cost in speed.

        Called:
           eraPnm00b    classical NPB matrix, IAU 2000B
           eraBnp2xy    extract CIP X,Y from the BPN matrix
           eraS00       the CIO locator s, given X,Y, IAU 2000A

        References:

           Capitaine, N., Chapront, J., Lambert, S. and Wallace, P.,
           "Expressions for the Celestial Intermediate Pole and Celestial
           Ephemeris Origin consistent with the IAU 2000A precession-
           nutation model", Astron.Astrophys. 400, 1145-1154 (2003)

           n.b. The celestial ephemeris origin (CEO) was renamed "celestial
                intermediate origin" (CIO) by IAU 2006 Resolution 2.

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.s00b(date1, date2)
    return c_retval


def s06(date1, date2, x, y):
    """
    The CIO locator s, positioning the Celestial Intermediate Origin on
    the equator of the Celestial Intermediate Pole, given the CIP's X,Y
    coordinates.

    Parameters
    ----------
    date1 : double array
    date2 : double array
    x : double array
    y : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraS06``. The ERFA documentation is::

        - - - - - - -
         e r a S 0 6
        - - - - - - -

        The CIO locator s, positioning the Celestial Intermediate Origin on
        the equator of the Celestial Intermediate Pole, given the CIP's X,Y
        coordinates.  Compatible with IAU 2006/2000A precession-nutation.

        Given:
           date1,date2   double    TT as a 2-part Julian Date (Note 1)
           x,y           double    CIP coordinates (Note 3)

        Returned (function value):
                         double    the CIO locator s in radians (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The CIO locator s is the difference between the right ascensions
           of the same point in two systems:  the two systems are the GCRS
           and the CIP,CIO, and the point is the ascending node of the
           CIP equator.  The quantity s remains below 0.1 arcsecond
           throughout 1900-2100.

        3) The series used to compute s is in fact for s+XY/2, where X and Y
           are the x and y components of the CIP unit vector;  this series
           is more compact than a direct series for s would be.  This
           function requires X,Y to be supplied by the caller, who is
           responsible for providing values that are consistent with the
           supplied date.

        4) The model is consistent with the "P03" precession (Capitaine et
           al. 2003), adopted by IAU 2006 Resolution 1, 2006, and the
           IAU 2000A nutation (with P03 adjustments).

        Called:
           eraFal03     mean anomaly of the Moon
           eraFalp03    mean anomaly of the Sun
           eraFaf03     mean argument of the latitude of the Moon
           eraFad03     mean elongation of the Moon from the Sun
           eraFaom03    mean longitude of the Moon's ascending node
           eraFave03    mean longitude of Venus
           eraFae03     mean longitude of Earth
           eraFapa03    general accumulated precession in longitude

        References:

           Capitaine, N., Wallace, P.T. & Chapront, J., 2003, Astron.
           Astrophys. 432, 355

           McCarthy, D.D., Petit, G. (eds.) 2004, IERS Conventions (2003),
           IERS Technical Note No. 32, BKG

        This revision:  2019 June 23

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.s06(date1, date2, x, y)
    return c_retval


def s06a(date1, date2):
    """
    The CIO locator s, positioning the Celestial Intermediate Origin on
    the equator of the Celestial Intermediate Pole, using the IAU 2006
    precession and IAU 2000A nutation models.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraS06a``. The ERFA documentation is::

        - - - - - - - -
         e r a S 0 6 a
        - - - - - - - -

        The CIO locator s, positioning the Celestial Intermediate Origin on
        the equator of the Celestial Intermediate Pole, using the IAU 2006
        precession and IAU 2000A nutation models.

        Given:
           date1,date2  double    TT as a 2-part Julian Date (Note 1)

        Returned (function value):
                        double    the CIO locator s in radians (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The CIO locator s is the difference between the right ascensions
           of the same point in two systems.  The two systems are the GCRS
           and the CIP,CIO, and the point is the ascending node of the
           CIP equator.  The CIO locator s remains a small fraction of
           1 arcsecond throughout 1900-2100.

        3) The series used to compute s is in fact for s+XY/2, where X and Y
           are the x and y components of the CIP unit vector;  this series is
           more compact than a direct series for s would be.  The present
           function uses the full IAU 2000A nutation model when predicting
           the CIP position.

        Called:
           eraPnm06a    classical NPB matrix, IAU 2006/2000A
           eraBpn2xy    extract CIP X,Y coordinates from NPB matrix
           eraS06       the CIO locator s, given X,Y, IAU 2006

        References:

           Capitaine, N., Chapront, J., Lambert, S. and Wallace, P.,
           "Expressions for the Celestial Intermediate Pole and Celestial
           Ephemeris Origin consistent with the IAU 2000A precession-
           nutation model", Astron.Astrophys. 400, 1145-1154 (2003)

           n.b. The celestial ephemeris origin (CEO) was renamed "celestial
                intermediate origin" (CIO) by IAU 2006 Resolution 2.

           Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855

           McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003),
           IERS Technical Note No. 32, BKG

           Wallace, P.T. & Capitaine, N., 2006, Astron.Astrophys. 459, 981

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.s06a(date1, date2)
    return c_retval


def sp00(date1, date2):
    """
    The TIO locator s', positioning the Terrestrial Intermediate Origin
    on the equator of the Celestial Intermediate Pole.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraSp00``. The ERFA documentation is::

        - - - - - - - -
         e r a S p 0 0
        - - - - - - - -

        The TIO locator s', positioning the Terrestrial Intermediate Origin
        on the equator of the Celestial Intermediate Pole.

        Given:
           date1,date2  double    TT as a 2-part Julian Date (Note 1)

        Returned (function value):
                        double    the TIO locator s' in radians (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The TIO locator s' is obtained from polar motion observations by
           numerical integration, and so is in essence unpredictable.
           However, it is dominated by a secular drift of about
           47 microarcseconds per century, which is the approximation
           evaluated by the present function.

        Reference:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.sp00(date1, date2)
    return c_retval


def xy06(date1, date2):
    """
    X,Y coordinates of celestial intermediate pole from series based
    on IAU 2006 precession and IAU 2000A nutation.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    x : double array
    y : double array

    Notes
    -----
    Wraps ERFA function ``eraXy06``. The ERFA documentation is::

        - - - - - - - -
         e r a X y 0 6
        - - - - - - - -

        X,Y coordinates of celestial intermediate pole from series based
        on IAU 2006 precession and IAU 2000A nutation.

        Given:
           date1,date2  double     TT as a 2-part Julian Date (Note 1)

        Returned:
           x,y          double     CIP X,Y coordinates (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The X,Y coordinates are those of the unit vector towards the
           celestial intermediate pole.  They represent the combined effects
           of frame bias, precession and nutation.

        3) The fundamental arguments used are as adopted in IERS Conventions
           (2003) and are from Simon et al. (1994) and Souchay et al.
           (1999).

        4) This is an alternative to the angles-based method, via the ERFA
           function eraFw2xy and as used in eraXys06a for example.  The two
           methods agree at the 1 microarcsecond level (at present), a
           negligible amount compared with the intrinsic accuracy of the
           models.  However, it would be unwise to mix the two methods
           (angles-based and series-based) in a single application.

        Called:
           eraFal03     mean anomaly of the Moon
           eraFalp03    mean anomaly of the Sun
           eraFaf03     mean argument of the latitude of the Moon
           eraFad03     mean elongation of the Moon from the Sun
           eraFaom03    mean longitude of the Moon's ascending node
           eraFame03    mean longitude of Mercury
           eraFave03    mean longitude of Venus
           eraFae03     mean longitude of Earth
           eraFama03    mean longitude of Mars
           eraFaju03    mean longitude of Jupiter
           eraFasa03    mean longitude of Saturn
           eraFaur03    mean longitude of Uranus
           eraFane03    mean longitude of Neptune
           eraFapa03    general accumulated precession in longitude

        References:

           Capitaine, N., Wallace, P.T. & Chapront, J., 2003,
           Astron.Astrophys., 412, 567

           Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855

           McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003),
           IERS Technical Note No. 32, BKG

           Simon, J.L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
           Francou, G. & Laskar, J., Astron.Astrophys., 1994, 282, 663

           Souchay, J., Loysel, B., Kinoshita, H., Folgueira, M., 1999,
           Astron.Astrophys.Supp.Ser. 135, 111

           Wallace, P.T. & Capitaine, N., 2006, Astron.Astrophys. 459, 981

        This revision:  2019 June 23

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    x, y = ufunc.xy06(date1, date2)
    return x, y


def xys00a(date1, date2):
    """
    For a given TT date, compute the X,Y coordinates of the Celestial
    Intermediate Pole and the CIO locator s, using the IAU 2000A
    precession-nutation model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    x : double array
    y : double array
    s : double array

    Notes
    -----
    Wraps ERFA function ``eraXys00a``. The ERFA documentation is::

        - - - - - - - - - -
         e r a X y s 0 0 a
        - - - - - - - - - -

        For a given TT date, compute the X,Y coordinates of the Celestial
        Intermediate Pole and the CIO locator s, using the IAU 2000A
        precession-nutation model.

        Given:
           date1,date2  double   TT as a 2-part Julian Date (Note 1)

        Returned:
           x,y          double   Celestial Intermediate Pole (Note 2)
           s            double   the CIO locator s (Note 3)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The Celestial Intermediate Pole coordinates are the x,y
           components of the unit vector in the Geocentric Celestial
           Reference System.

        3) The CIO locator s (in radians) positions the Celestial
           Intermediate Origin on the equator of the CIP.

        4) A faster, but slightly less accurate result (about 1 mas for
           X,Y), can be obtained by using instead the eraXys00b function.

        Called:
           eraPnm00a    classical NPB matrix, IAU 2000A
           eraBpn2xy    extract CIP X,Y coordinates from NPB matrix
           eraS00       the CIO locator s, given X,Y, IAU 2000A

        Reference:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2019 November 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    x, y, s = ufunc.xys00a(date1, date2)
    return x, y, s


def xys00b(date1, date2):
    """
    For a given TT date, compute the X,Y coordinates of the Celestial
    Intermediate Pole and the CIO locator s, using the IAU 2000B
    precession-nutation model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    x : double array
    y : double array
    s : double array

    Notes
    -----
    Wraps ERFA function ``eraXys00b``. The ERFA documentation is::

        - - - - - - - - - -
         e r a X y s 0 0 b
        - - - - - - - - - -

        For a given TT date, compute the X,Y coordinates of the Celestial
        Intermediate Pole and the CIO locator s, using the IAU 2000B
        precession-nutation model.

        Given:
           date1,date2  double   TT as a 2-part Julian Date (Note 1)

        Returned:
           x,y          double   Celestial Intermediate Pole (Note 2)
           s            double   the CIO locator s (Note 3)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The Celestial Intermediate Pole coordinates are the x,y
           components of the unit vector in the Geocentric Celestial
           Reference System.

        3) The CIO locator s (in radians) positions the Celestial
           Intermediate Origin on the equator of the CIP.

        4) The present function is faster, but slightly less accurate (about
           1 mas in X,Y), than the eraXys00a function.

        Called:
           eraPnm00b    classical NPB matrix, IAU 2000B
           eraBpn2xy    extract CIP X,Y coordinates from NPB matrix
           eraS00       the CIO locator s, given X,Y, IAU 2000A

        Reference:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2020 December 4

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    x, y, s = ufunc.xys00b(date1, date2)
    return x, y, s


def xys06a(date1, date2):
    """
    For a given TT date, compute the X,Y coordinates of the Celestial
    Intermediate Pole and the CIO locator s, using the IAU 2006
    precession and IAU 2000A nutation models.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    x : double array
    y : double array
    s : double array

    Notes
    -----
    Wraps ERFA function ``eraXys06a``. The ERFA documentation is::

        - - - - - - - - - -
         e r a X y s 0 6 a
        - - - - - - - - - -

        For a given TT date, compute the X,Y coordinates of the Celestial
        Intermediate Pole and the CIO locator s, using the IAU 2006
        precession and IAU 2000A nutation models.

        Given:
           date1,date2  double  TT as a 2-part Julian Date (Note 1)

        Returned:
           x,y          double  Celestial Intermediate Pole (Note 2)
           s            double  the CIO locator s (Note 3)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The Celestial Intermediate Pole coordinates are the x,y components
           of the unit vector in the Geocentric Celestial Reference System.

        3) The CIO locator s (in radians) positions the Celestial
           Intermediate Origin on the equator of the CIP.

        4) Series-based solutions for generating X and Y are also available:
           see Capitaine & Wallace (2006) and eraXy06.

        Called:
           eraPnm06a    classical NPB matrix, IAU 2006/2000A
           eraBpn2xy    extract CIP X,Y coordinates from NPB matrix
           eraS06       the CIO locator s, given X,Y, IAU 2006

        References:

           Capitaine, N. & Wallace, P.T., 2006, Astron.Astrophys. 450, 855

           Wallace, P.T. & Capitaine, N., 2006, Astron.Astrophys. 459, 981

        This revision:  2020 December 4

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    x, y, s = ufunc.xys06a(date1, date2)
    return x, y, s


def ee00(date1, date2, epsa, dpsi):
    """
    The equation of the equinoxes, compatible with IAU 2000 resolutions,
    given the nutation in longitude and the mean obliquity.

    Parameters
    ----------
    date1 : double array
    date2 : double array
    epsa : double array
    dpsi : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraEe00``. The ERFA documentation is::

        - - - - - - - -
         e r a E e 0 0
        - - - - - - - -

        The equation of the equinoxes, compatible with IAU 2000 resolutions,
        given the nutation in longitude and the mean obliquity.

        Given:
           date1,date2  double    TT as a 2-part Julian Date (Note 1)
           epsa         double    mean obliquity (Note 2)
           dpsi         double    nutation in longitude (Note 3)

        Returned (function value):
                        double    equation of the equinoxes (Note 4)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The obliquity, in radians, is mean of date.

        3) The result, which is in radians, operates in the following sense:

              Greenwich apparent ST = GMST + equation of the equinoxes

        4) The result is compatible with the IAU 2000 resolutions.  For
           further details, see IERS Conventions 2003 and Capitaine et al.
           (2002).

        Called:
           eraEect00    equation of the equinoxes complementary terms

        References:

           Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to
           implement the IAU 2000 definition of UT1", Astronomy &
           Astrophysics, 406, 1135-1149 (2003)

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2008 May 16

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.ee00(date1, date2, epsa, dpsi)
    return c_retval


def ee00a(date1, date2):
    """
    Equation of the equinoxes, compatible with IAU 2000 resolutions.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraEe00a``. The ERFA documentation is::

        - - - - - - - - -
         e r a E e 0 0 a
        - - - - - - - - -

        Equation of the equinoxes, compatible with IAU 2000 resolutions.

        Given:
           date1,date2  double    TT as a 2-part Julian Date (Note 1)

        Returned (function value):
                        double    equation of the equinoxes (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The result, which is in radians, operates in the following sense:

              Greenwich apparent ST = GMST + equation of the equinoxes

        3) The result is compatible with the IAU 2000 resolutions.  For
           further details, see IERS Conventions 2003 and Capitaine et al.
           (2002).

        Called:
           eraPr00      IAU 2000 precession adjustments
           eraObl80     mean obliquity, IAU 1980
           eraNut00a    nutation, IAU 2000A
           eraEe00      equation of the equinoxes, IAU 2000

        References:

           Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to
           implement the IAU 2000 definition of UT1", Astronomy &
           Astrophysics, 406, 1135-1149 (2003).

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004).

        This revision:  2008 May 16

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.ee00a(date1, date2)
    return c_retval


def ee00b(date1, date2):
    """
    Equation of the equinoxes, compatible with IAU 2000 resolutions but
    using the truncated nutation model IAU 2000B.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraEe00b``. The ERFA documentation is::

        - - - - - - - - -
         e r a E e 0 0 b
        - - - - - - - - -

        Equation of the equinoxes, compatible with IAU 2000 resolutions but
        using the truncated nutation model IAU 2000B.

        Given:
           date1,date2  double    TT as a 2-part Julian Date (Note 1)

        Returned (function value):
                        double    equation of the equinoxes (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The result, which is in radians, operates in the following sense:

              Greenwich apparent ST = GMST + equation of the equinoxes

        3) The result is compatible with the IAU 2000 resolutions except
           that accuracy has been compromised (1 mas) for the sake of speed.
           For further details, see McCarthy & Luzum (2003), IERS
           Conventions 2003 and Capitaine et al. (2003).

        Called:
           eraPr00      IAU 2000 precession adjustments
           eraObl80     mean obliquity, IAU 1980
           eraNut00b    nutation, IAU 2000B
           eraEe00      equation of the equinoxes, IAU 2000

        References:

           Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to
           implement the IAU 2000 definition of UT1", Astronomy &
           Astrophysics, 406, 1135-1149 (2003)

           McCarthy, D.D. & Luzum, B.J., "An abridged model of the
           precession-nutation of the celestial pole", Celestial Mechanics &
           Dynamical Astronomy, 85, 37-49 (2003)

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2020 November 3

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.ee00b(date1, date2)
    return c_retval


def ee06a(date1, date2):
    """
    Equation of the equinoxes, compatible with IAU 2000 resolutions and
    IAU 2006/2000A precession-nutation.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraEe06a``. The ERFA documentation is::

        - - - - - - - - -
         e r a E e 0 6 a
        - - - - - - - - -

        Equation of the equinoxes, compatible with IAU 2000 resolutions and
        IAU 2006/2000A precession-nutation.

        Given:
           date1,date2  double    TT as a 2-part Julian Date (Note 1)

        Returned (function value):
                        double    equation of the equinoxes (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The result, which is in radians, operates in the following sense:

              Greenwich apparent ST = GMST + equation of the equinoxes

        Called:
           eraAnpm      normalize angle into range +/- pi
           eraGst06a    Greenwich apparent sidereal time, IAU 2006/2000A
           eraGmst06    Greenwich mean sidereal time, IAU 2006

        Reference:

           McCarthy, D. D., Petit, G. (eds.), 2004, IERS Conventions (2003),
           IERS Technical Note No. 32, BKG

        This revision:  2008 May 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.ee06a(date1, date2)
    return c_retval


def eect00(date1, date2):
    """
    Equation of the equinoxes complementary terms, consistent with
    IAU 2000 resolutions.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraEect00``. The ERFA documentation is::

        - - - - - - - - - -
         e r a E e c t 0 0
        - - - - - - - - - -

        Equation of the equinoxes complementary terms, consistent with
        IAU 2000 resolutions.

        Given:
           date1,date2  double   TT as a 2-part Julian Date (Note 1)

        Returned (function value):
                        double   complementary terms (Note 2)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The "complementary terms" are part of the equation of the
           equinoxes (EE), classically the difference between apparent and
           mean Sidereal Time:

              GAST = GMST + EE

           with:

              EE = dpsi * cos(eps)

           where dpsi is the nutation in longitude and eps is the obliquity
           of date.  However, if the rotation of the Earth were constant in
           an inertial frame the classical formulation would lead to
           apparent irregularities in the UT1 timescale traceable to side-
           effects of precession-nutation.  In order to eliminate these
           effects from UT1, "complementary terms" were introduced in 1994
           (IAU, 1994) and took effect from 1997 (Capitaine and Gontier,
           1993):

              GAST = GMST + CT + EE

           By convention, the complementary terms are included as part of
           the equation of the equinoxes rather than as part of the mean
           Sidereal Time.  This slightly compromises the "geometrical"
           interpretation of mean sidereal time but is otherwise
           inconsequential.

           The present function computes CT in the above expression,
           compatible with IAU 2000 resolutions (Capitaine et al., 2002, and
           IERS Conventions 2003).

        Called:
           eraFal03     mean anomaly of the Moon
           eraFalp03    mean anomaly of the Sun
           eraFaf03     mean argument of the latitude of the Moon
           eraFad03     mean elongation of the Moon from the Sun
           eraFaom03    mean longitude of the Moon's ascending node
           eraFave03    mean longitude of Venus
           eraFae03     mean longitude of Earth
           eraFapa03    general accumulated precession in longitude

        References:

           Capitaine, N. & Gontier, A.-M., Astron.Astrophys., 275,
           645-650 (1993)

           Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to
           implement the IAU 2000 definition of UT1", Astron.Astrophys., 406,
           1135-1149 (2003)

           IAU Resolution C7, Recommendation 3 (1994)

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2019 June 23

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.eect00(date1, date2)
    return c_retval


def eqeq94(date1, date2):
    """
    Equation of the equinoxes, IAU 1994 model.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraEqeq94``. The ERFA documentation is::

        - - - - - - - - - -
         e r a E q e q 9 4
        - - - - - - - - - -

        Equation of the equinoxes, IAU 1994 model.

        Given:
           date1,date2   double     TDB date (Note 1)

        Returned (function value):
                         double     equation of the equinoxes (Note 2)

        Notes:

        1) The date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The result, which is in radians, operates in the following sense:

              Greenwich apparent ST = GMST + equation of the equinoxes

        Called:
           eraAnpm      normalize angle into range +/- pi
           eraNut80     nutation, IAU 1980
           eraObl80     mean obliquity, IAU 1980

        References:

           IAU Resolution C7, Recommendation 3 (1994).

           Capitaine, N. & Gontier, A.-M., 1993, Astron.Astrophys., 275,
           645-650.

        This revision:  2017 October 12

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.eqeq94(date1, date2)
    return c_retval


def era00(dj1, dj2):
    """
    Earth rotation angle (IAU 2000 model).

    Parameters
    ----------
    dj1 : double array
    dj2 : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraEra00``. The ERFA documentation is::

        - - - - - - - - -
         e r a E r a 0 0
        - - - - - - - - -

        Earth rotation angle (IAU 2000 model).

        Given:
           dj1,dj2   double    UT1 as a 2-part Julian Date (see note)

        Returned (function value):
                     double    Earth rotation angle (radians), range 0-2pi

        Notes:

        1) The UT1 date dj1+dj2 is a Julian Date, apportioned in any
           convenient way between the arguments dj1 and dj2.  For example,
           JD(UT1)=2450123.7 could be expressed in any of these ways,
           among others:

                   dj1            dj2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 and MJD methods are good compromises
           between resolution and convenience.  The date & time method is
           best matched to the algorithm used:  maximum precision is
           delivered when the dj1 argument is for 0hrs UT1 on the day in
           question and the dj2 argument lies in the range 0 to 1, or vice
           versa.

        2) The algorithm is adapted from Expression 22 of Capitaine et al.
           2000.  The time argument has been expressed in days directly,
           and, to retain precision, integer contributions have been
           eliminated.  The same formulation is given in IERS Conventions
           (2003), Chap. 5, Eq. 14.

        Called:
           eraAnp       normalize angle into range 0 to 2pi

        References:

           Capitaine N., Guinot B. and McCarthy D.D, 2000, Astron.
           Astrophys., 355, 398-405.

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.era00(dj1, dj2)
    return c_retval


def gmst00(uta, utb, tta, ttb):
    """
    Greenwich mean sidereal time (model consistent with IAU 2000
    resolutions).

    Parameters
    ----------
    uta : double array
    utb : double array
    tta : double array
    ttb : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraGmst00``. The ERFA documentation is::

        - - - - - - - - - -
         e r a G m s t 0 0
        - - - - - - - - - -

        Greenwich mean sidereal time (model consistent with IAU 2000
        resolutions).

        Given:
           uta,utb    double    UT1 as a 2-part Julian Date (Notes 1,2)
           tta,ttb    double    TT as a 2-part Julian Date (Notes 1,2)

        Returned (function value):
                      double    Greenwich mean sidereal time (radians)

        Notes:

        1) The UT1 and TT dates uta+utb and tta+ttb respectively, are both
           Julian Dates, apportioned in any convenient way between the
           argument pairs.  For example, JD(UT1)=2450123.7 could be
           expressed in any of these ways, among others:

                  Part A         Part B

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable (in the case of UT;  the TT is not at all critical
           in this respect).  The J2000 and MJD methods are good compromises
           between resolution and convenience.  For UT, the date & time
           method is best matched to the algorithm that is used by the Earth
           Rotation Angle function, called internally:  maximum precision is
           delivered when the uta argument is for 0hrs UT1 on the day in
           question and the utb argument lies in the range 0 to 1, or vice
           versa.

        2) Both UT1 and TT are required, UT1 to predict the Earth rotation
           and TT to predict the effects of precession.  If UT1 is used for
           both purposes, errors of order 100 microarcseconds result.

        3) This GMST is compatible with the IAU 2000 resolutions and must be
           used only in conjunction with other IAU 2000 compatible
           components such as precession-nutation and equation of the
           equinoxes.

        4) The result is returned in the range 0 to 2pi.

        5) The algorithm is from Capitaine et al. (2003) and IERS
           Conventions 2003.

        Called:
           eraEra00     Earth rotation angle, IAU 2000
           eraAnp       normalize angle into range 0 to 2pi

        References:

           Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to
           implement the IAU 2000 definition of UT1", Astronomy &
           Astrophysics, 406, 1135-1149 (2003)

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2020 November 17

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.gmst00(uta, utb, tta, ttb)
    return c_retval


def gmst06(uta, utb, tta, ttb):
    """
    Greenwich mean sidereal time (consistent with IAU 2006 precession).

    Parameters
    ----------
    uta : double array
    utb : double array
    tta : double array
    ttb : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraGmst06``. The ERFA documentation is::

        - - - - - - - - - -
         e r a G m s t 0 6
        - - - - - - - - - -

        Greenwich mean sidereal time (consistent with IAU 2006 precession).

        Given:
           uta,utb    double    UT1 as a 2-part Julian Date (Notes 1,2)
           tta,ttb    double    TT as a 2-part Julian Date (Notes 1,2)

        Returned (function value):
                      double    Greenwich mean sidereal time (radians)

        Notes:

        1) The UT1 and TT dates uta+utb and tta+ttb respectively, are both
           Julian Dates, apportioned in any convenient way between the
           argument pairs.  For example, JD=2450123.7 could be expressed in
           any of these ways, among others:

                  Part A        Part B

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable (in the case of UT;  the TT is not at all critical
           in this respect).  The J2000 and MJD methods are good compromises
           between resolution and convenience.  For UT, the date & time
           method is best matched to the algorithm that is used by the Earth
           rotation angle function, called internally:  maximum precision is
           delivered when the uta argument is for 0hrs UT1 on the day in
           question and the utb argument lies in the range 0 to 1, or vice
           versa.

        2) Both UT1 and TT are required, UT1 to predict the Earth rotation
           and TT to predict the effects of precession.  If UT1 is used for
           both purposes, errors of order 100 microarcseconds result.

        3) This GMST is compatible with the IAU 2006 precession and must not
           be used with other precession models.

        4) The result is returned in the range 0 to 2pi.

        Called:
           eraEra00     Earth rotation angle, IAU 2000
           eraAnp       normalize angle into range 0 to 2pi

        Reference:

           Capitaine, N., Wallace, P.T. & Chapront, J., 2005,
           Astron.Astrophys. 432, 355

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.gmst06(uta, utb, tta, ttb)
    return c_retval


def gmst82(dj1, dj2):
    """
    Universal Time to Greenwich mean sidereal time (IAU 1982 model).

    Parameters
    ----------
    dj1 : double array
    dj2 : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraGmst82``. The ERFA documentation is::

        - - - - - - - - - -
         e r a G m s t 8 2
        - - - - - - - - - -

        Universal Time to Greenwich mean sidereal time (IAU 1982 model).

        Given:
           dj1,dj2    double    UT1 Julian Date (see note)

        Returned (function value):
                      double    Greenwich mean sidereal time (radians)

        Notes:

        1) The UT1 date dj1+dj2 is a Julian Date, apportioned in any
           convenient way between the arguments dj1 and dj2.  For example,
           JD(UT1)=2450123.7 could be expressed in any of these ways,
           among others:

                   dj1            dj2

               2450123.7          0          (JD method)
                2451545        -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5         0.2         (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 and MJD methods are good compromises
           between resolution and convenience.  The date & time method is
           best matched to the algorithm used:  maximum accuracy (or, at
           least, minimum noise) is delivered when the dj1 argument is for
           0hrs UT1 on the day in question and the dj2 argument lies in the
           range 0 to 1, or vice versa.

        2) The algorithm is based on the IAU 1982 expression.  This is
           always described as giving the GMST at 0 hours UT1.  In fact, it
           gives the difference between the GMST and the UT, the steady
           4-minutes-per-day drawing-ahead of ST with respect to UT.  When
           whole days are ignored, the expression happens to equal the GMST
           at 0 hours UT1 each day.

        3) In this function, the entire UT1 (the sum of the two arguments
           dj1 and dj2) is used directly as the argument for the standard
           formula, the constant term of which is adjusted by 12 hours to
           take account of the noon phasing of Julian Date.  The UT1 is then
           added, but omitting whole days to conserve accuracy.

        Called:
           eraAnp       normalize angle into range 0 to 2pi

        References:

           Transactions of the International Astronomical Union,
           XVIII B, 67 (1983).

           Aoki et al., Astron.Astrophys., 105, 359-361 (1982).

        This revision:  2020 January 12

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.gmst82(dj1, dj2)
    return c_retval


def gst00a(uta, utb, tta, ttb):
    """
    Greenwich apparent sidereal time (consistent with IAU 2000
    resolutions).

    Parameters
    ----------
    uta : double array
    utb : double array
    tta : double array
    ttb : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraGst00a``. The ERFA documentation is::

        - - - - - - - - - -
         e r a G s t 0 0 a
        - - - - - - - - - -

        Greenwich apparent sidereal time (consistent with IAU 2000
        resolutions).

        Given:
           uta,utb    double    UT1 as a 2-part Julian Date (Notes 1,2)
           tta,ttb    double    TT as a 2-part Julian Date (Notes 1,2)

        Returned (function value):
                      double    Greenwich apparent sidereal time (radians)

        Notes:

        1) The UT1 and TT dates uta+utb and tta+ttb respectively, are both
           Julian Dates, apportioned in any convenient way between the
           argument pairs.  For example, JD(UT1)=2450123.7 could be
           expressed in any of these ways, among others:

                   uta            utb

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable (in the case of UT;  the TT is not at all critical
           in this respect).  The J2000 and MJD methods are good compromises
           between resolution and convenience.  For UT, the date & time
           method is best matched to the algorithm that is used by the Earth
           Rotation Angle function, called internally:  maximum precision is
           delivered when the uta argument is for 0hrs UT1 on the day in
           question and the utb argument lies in the range 0 to 1, or vice
           versa.

        2) Both UT1 and TT are required, UT1 to predict the Earth rotation
           and TT to predict the effects of precession-nutation.  If UT1 is
           used for both purposes, errors of order 100 microarcseconds
           result.

        3) This GAST is compatible with the IAU 2000 resolutions and must be
           used only in conjunction with other IAU 2000 compatible
           components such as precession-nutation.

        4) The result is returned in the range 0 to 2pi.

        5) The algorithm is from Capitaine et al. (2003) and IERS
           Conventions 2003.

        Called:
           eraGmst00    Greenwich mean sidereal time, IAU 2000
           eraEe00a     equation of the equinoxes, IAU 2000A
           eraAnp       normalize angle into range 0 to 2pi

        References:

           Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to
           implement the IAU 2000 definition of UT1", Astronomy &
           Astrophysics, 406, 1135-1149 (2003)

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2020 November 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.gst00a(uta, utb, tta, ttb)
    return c_retval


def gst00b(uta, utb):
    """
    Greenwich apparent sidereal time (consistent with IAU 2000
    resolutions but using the truncated nutation model IAU 2000B).

    Parameters
    ----------
    uta : double array
    utb : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraGst00b``. The ERFA documentation is::

        - - - - - - - - - -
         e r a G s t 0 0 b
        - - - - - - - - - -

        Greenwich apparent sidereal time (consistent with IAU 2000
        resolutions but using the truncated nutation model IAU 2000B).

        Given:
           uta,utb    double    UT1 as a 2-part Julian Date (Notes 1,2)

        Returned (function value):
                      double    Greenwich apparent sidereal time (radians)

        Notes:

        1) The UT1 date uta+utb is a Julian Date, apportioned in any
           convenient way between the argument pair.  For example,
           JD(UT1)=2450123.7 could be expressed in any of these ways,
           among others:

                   uta            utb

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in cases
           where the loss of several decimal digits of resolution is
           acceptable.  The J2000 and MJD methods are good compromises
           between resolution and convenience.  For UT, the date & time
           method is best matched to the algorithm that is used by the Earth
           Rotation Angle function, called internally:  maximum precision is
           delivered when the uta argument is for 0hrs UT1 on the day in
           question and the utb argument lies in the range 0 to 1, or vice
           versa.

        2) The result is compatible with the IAU 2000 resolutions, except
           that accuracy has been compromised for the sake of speed and
           convenience in two respects:

           . UT is used instead of TDB (or TT) to compute the precession
             component of GMST and the equation of the equinoxes.  This
             results in errors of order 0.1 mas at present.

           . The IAU 2000B abridged nutation model (McCarthy & Luzum, 2003)
             is used, introducing errors of up to 1 mas.

        3) This GAST is compatible with the IAU 2000 resolutions and must be
           used only in conjunction with other IAU 2000 compatible
           components such as precession-nutation.

        4) The result is returned in the range 0 to 2pi.

        5) The algorithm is from Capitaine et al. (2003) and IERS
           Conventions 2003.

        Called:
           eraGmst00    Greenwich mean sidereal time, IAU 2000
           eraEe00b     equation of the equinoxes, IAU 2000B
           eraAnp       normalize angle into range 0 to 2pi

        References:

           Capitaine, N., Wallace, P.T. and McCarthy, D.D., "Expressions to
           implement the IAU 2000 definition of UT1", Astronomy &
           Astrophysics, 406, 1135-1149 (2003)

           McCarthy, D.D. & Luzum, B.J., "An abridged model of the
           precession-nutation of the celestial pole", Celestial Mechanics &
           Dynamical Astronomy, 85, 37-49 (2003)

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

        This revision:  2020 November 19

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.gst00b(uta, utb)
    return c_retval


def gst06(uta, utb, tta, ttb, rnpb):
    """
    Greenwich apparent sidereal time, IAU 2006, given the NPB matrix.

    Parameters
    ----------
    uta : double array
    utb : double array
    tta : double array
    ttb : double array
    rnpb : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraGst06``. The ERFA documentation is::

        - - - - - - - - -
         e r a G s t 0 6
        - - - - - - - - -

        Greenwich apparent sidereal time, IAU 2006, given the NPB matrix.

        Given:
           uta,utb  double        UT1 as a 2-part Julian Date (Notes 1,2)
           tta,ttb  double        TT as a 2-part Julian Date (Notes 1,2)
           rnpb     double[3][3]  nutation x precession x bias matrix

        Returned (function value):
                    double        Greenwich apparent sidereal time (radians)

        Notes:

        1) The UT1 and TT dates uta+utb and tta+ttb respectively, are both
           Julian Dates, apportioned in any convenient way between the
           argument pairs.  For example, JD(UT1)=2450123.7 could be
           expressed in any of these ways, among others:

                   uta            utb

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable (in the case of UT;  the TT is not at all critical
           in this respect).  The J2000 and MJD methods are good compromises
           between resolution and convenience.  For UT, the date & time
           method is best matched to the algorithm that is used by the Earth
           rotation angle function, called internally:  maximum precision is
           delivered when the uta argument is for 0hrs UT1 on the day in
           question and the utb argument lies in the range 0 to 1, or vice
           versa.

        2) Both UT1 and TT are required, UT1 to predict the Earth rotation
           and TT to predict the effects of precession-nutation.  If UT1 is
           used for both purposes, errors of order 100 microarcseconds
           result.

        3) Although the function uses the IAU 2006 series for s+XY/2, it is
           otherwise independent of the precession-nutation model and can in
           practice be used with any equinox-based NPB matrix.

        4) The result is returned in the range 0 to 2pi.

        Called:
           eraBpn2xy    extract CIP X,Y coordinates from NPB matrix
           eraS06       the CIO locator s, given X,Y, IAU 2006
           eraAnp       normalize angle into range 0 to 2pi
           eraEra00     Earth rotation angle, IAU 2000
           eraEors      equation of the origins, given NPB matrix and s

        Reference:

           Wallace, P.T. & Capitaine, N., 2006, Astron.Astrophys. 459, 981

        This revision:  2020 November 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.gst06(uta, utb, tta, ttb, rnpb)
    return c_retval


def gst06a(uta, utb, tta, ttb):
    """
    Greenwich apparent sidereal time (consistent with IAU 2000 and 2006
    resolutions).

    Parameters
    ----------
    uta : double array
    utb : double array
    tta : double array
    ttb : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraGst06a``. The ERFA documentation is::

        - - - - - - - - - -
         e r a G s t 0 6 a
        - - - - - - - - - -

        Greenwich apparent sidereal time (consistent with IAU 2000 and 2006
        resolutions).

        Given:
           uta,utb    double    UT1 as a 2-part Julian Date (Notes 1,2)
           tta,ttb    double    TT as a 2-part Julian Date (Notes 1,2)

        Returned (function value):
                      double    Greenwich apparent sidereal time (radians)

        Notes:

        1) The UT1 and TT dates uta+utb and tta+ttb respectively, are both
           Julian Dates, apportioned in any convenient way between the
           argument pairs.  For example, JD(UT1)=2450123.7 could be
           expressed in any of these ways, among others:

                   uta            utb

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable (in the case of UT;  the TT is not at all critical
           in this respect).  The J2000 and MJD methods are good compromises
           between resolution and convenience.  For UT, the date & time
           method is best matched to the algorithm that is used by the Earth
           rotation angle function, called internally:  maximum precision is
           delivered when the uta argument is for 0hrs UT1 on the day in
           question and the utb argument lies in the range 0 to 1, or vice
           versa.

        2) Both UT1 and TT are required, UT1 to predict the Earth rotation
           and TT to predict the effects of precession-nutation.  If UT1 is
           used for both purposes, errors of order 100 microarcseconds
           result.

        3) This GAST is compatible with the IAU 2000/2006 resolutions and
           must be used only in conjunction with IAU 2006 precession and
           IAU 2000A nutation.

        4) The result is returned in the range 0 to 2pi.

        Called:
           eraPnm06a    classical NPB matrix, IAU 2006/2000A
           eraGst06     Greenwich apparent ST, IAU 2006, given NPB matrix

        Reference:

           Wallace, P.T. & Capitaine, N., 2006, Astron.Astrophys. 459, 981

        This revision:  2020 November 20

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.gst06a(uta, utb, tta, ttb)
    return c_retval


def gst94(uta, utb):
    """
    Greenwich apparent sidereal time (consistent with IAU 1982/94
    resolutions).

    Parameters
    ----------
    uta : double array
    utb : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraGst94``. The ERFA documentation is::

        - - - - - - - - -
         e r a G s t 9 4
        - - - - - - - - -

        Greenwich apparent sidereal time (consistent with IAU 1982/94
        resolutions).

        Given:
           uta,utb    double    UT1 as a 2-part Julian Date (Notes 1,2)

        Returned (function value):
                      double    Greenwich apparent sidereal time (radians)

        Notes:

        1) The UT1 date uta+utb is a Julian Date, apportioned in any
           convenient way between the argument pair.  For example,
           JD(UT1)=2450123.7 could be expressed in any of these ways, among
           others:

                   uta            utb

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in cases
           where the loss of several decimal digits of resolution is
           acceptable.  The J2000 and MJD methods are good compromises
           between resolution and convenience.  For UT, the date & time
           method is best matched to the algorithm that is used by the Earth
           Rotation Angle function, called internally:  maximum precision is
           delivered when the uta argument is for 0hrs UT1 on the day in
           question and the utb argument lies in the range 0 to 1, or vice
           versa.

        2) The result is compatible with the IAU 1982 and 1994 resolutions,
           except that accuracy has been compromised for the sake of
           convenience in that UT is used instead of TDB (or TT) to compute
           the equation of the equinoxes.

        3) This GAST must be used only in conjunction with contemporaneous
           IAU standards such as 1976 precession, 1980 obliquity and 1982
           nutation.  It is not compatible with the IAU 2000 resolutions.

        4) The result is returned in the range 0 to 2pi.

        Called:
           eraGmst82    Greenwich mean sidereal time, IAU 1982
           eraEqeq94    equation of the equinoxes, IAU 1994
           eraAnp       normalize angle into range 0 to 2pi

        References:

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992)

           IAU Resolution C7, Recommendation 3 (1994)

        This revision:  2020 November 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.gst94(uta, utb)
    return c_retval


def pvstar(pv):
    """
    Convert star position+velocity vector to catalog coordinates.

    Parameters
    ----------
    pv : double array

    Returns
    -------
    ra : double array
    dec : double array
    pmr : double array
    pmd : double array
    px : double array
    rv : double array

    Notes
    -----
    Wraps ERFA function ``eraPvstar``. The ERFA documentation is::

        - - - - - - - - - -
         e r a P v s t a r
        - - - - - - - - - -

        Convert star position+velocity vector to catalog coordinates.

        Given (Note 1):
           pv     double[2][3]   pv-vector (au, au/day)

        Returned (Note 2):
           ra     double         right ascension (radians)
           dec    double         declination (radians)
           pmr    double         RA proper motion (radians/year)
           pmd    double         Dec proper motion (radians/year)
           px     double         parallax (arcsec)
           rv     double         radial velocity (km/s, positive = receding)

        Returned (function value):
                  int            status:
                                    0 = OK
                                   -1 = superluminal speed (Note 5)
                                   -2 = null position vector

        Notes:

        1) The specified pv-vector is the coordinate direction (and its rate
           of change) for the date at which the light leaving the star
           reached the solar-system barycenter.

        2) The star data returned by this function are "observables" for an
           imaginary observer at the solar-system barycenter.  Proper motion
           and radial velocity are, strictly, in terms of barycentric
           coordinate time, TCB.  For most practical applications, it is
           permissible to neglect the distinction between TCB and ordinary
           "proper" time on Earth (TT/TAI).  The result will, as a rule, be
           limited by the intrinsic accuracy of the proper-motion and
           radial-velocity data;  moreover, the supplied pv-vector is likely
           to be merely an intermediate result (for example generated by the
           function eraStarpv), so that a change of time unit will cancel
           out overall.

           In accordance with normal star-catalog conventions, the object's
           right ascension and declination are freed from the effects of
           secular aberration.  The frame, which is aligned to the catalog
           equator and equinox, is Lorentzian and centered on the SSB.

           Summarizing, the specified pv-vector is for most stars almost
           identical to the result of applying the standard geometrical
           "space motion" transformation to the catalog data.  The
           differences, which are the subject of the Stumpff paper cited
           below, are:

           (i) In stars with significant radial velocity and proper motion,
           the constantly changing light-time distorts the apparent proper
           motion.  Note that this is a classical, not a relativistic,
           effect.

           (ii) The transformation complies with special relativity.

        3) Care is needed with units.  The star coordinates are in radians
           and the proper motions in radians per Julian year, but the
           parallax is in arcseconds; the radial velocity is in km/s, but
           the pv-vector result is in au and au/day.

        4) The proper motions are the rate of change of the right ascension
           and declination at the catalog epoch and are in radians per Julian
           year.  The RA proper motion is in terms of coordinate angle, not
           true angle, and will thus be numerically larger at high
           declinations.

        5) Straight-line motion at constant speed in the inertial frame is
           assumed.  If the speed is greater than or equal to the speed of
           light, the function aborts with an error status.

        6) The inverse transformation is performed by the function eraStarpv.

        Called:
           eraPn        decompose p-vector into modulus and direction
           eraPdp       scalar product of two p-vectors
           eraSxp       multiply p-vector by scalar
           eraPmp       p-vector minus p-vector
           eraPm        modulus of p-vector
           eraPpp       p-vector plus p-vector
           eraPv2s      pv-vector to spherical
           eraAnp       normalize angle into range 0 to 2pi

        Reference:

           Stumpff, P., 1985, Astron.Astrophys. 144, 232-240.

        This revision:  2017 March 16

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    ra, dec, pmr, pmd, px, rv, c_retval = ufunc.pvstar(pv)
    check_errwarn(c_retval, 'pvstar')
    return ra, dec, pmr, pmd, px, rv


STATUS_CODES['pvstar'] = {
    0: 'OK',
    -1: 'superluminal speed (Note 5)',
    -2: 'null position vector',
}


def starpv(ra, dec, pmr, pmd, px, rv):
    """
    Convert star catalog coordinates to position+velocity vector.

    Parameters
    ----------
    ra : double array
    dec : double array
    pmr : double array
    pmd : double array
    px : double array
    rv : double array

    Returns
    -------
    pv : double array

    Notes
    -----
    Wraps ERFA function ``eraStarpv``. The ERFA documentation is::

        - - - - - - - - - -
         e r a S t a r p v
        - - - - - - - - - -

        Convert star catalog coordinates to position+velocity vector.

        Given (Note 1):
           ra     double        right ascension (radians)
           dec    double        declination (radians)
           pmr    double        RA proper motion (radians/year)
           pmd    double        Dec proper motion (radians/year)
           px     double        parallax (arcseconds)
           rv     double        radial velocity (km/s, positive = receding)

        Returned (Note 2):
           pv     double[2][3]  pv-vector (au, au/day)

        Returned (function value):
                  int           status:
                                    0 = no warnings
                                    1 = distance overridden (Note 6)
                                    2 = excessive speed (Note 7)
                                    4 = solution didn't converge (Note 8)
                                 else = binary logical OR of the above

        Notes:

        1) The star data accepted by this function are "observables" for an
           imaginary observer at the solar-system barycenter.  Proper motion
           and radial velocity are, strictly, in terms of barycentric
           coordinate time, TCB.  For most practical applications, it is
           permissible to neglect the distinction between TCB and ordinary
           "proper" time on Earth (TT/TAI).  The result will, as a rule, be
           limited by the intrinsic accuracy of the proper-motion and
           radial-velocity data;  moreover, the pv-vector is likely to be
           merely an intermediate result, so that a change of time unit
           would cancel out overall.

           In accordance with normal star-catalog conventions, the object's
           right ascension and declination are freed from the effects of
           secular aberration.  The frame, which is aligned to the catalog
           equator and equinox, is Lorentzian and centered on the SSB.

        2) The resulting position and velocity pv-vector is with respect to
           the same frame and, like the catalog coordinates, is freed from
           the effects of secular aberration.  Should the "coordinate
           direction", where the object was located at the catalog epoch, be
           required, it may be obtained by calculating the magnitude of the
           position vector pv[0][0-2] dividing by the speed of light in
           au/day to give the light-time, and then multiplying the space
           velocity pv[1][0-2] by this light-time and adding the result to
           pv[0][0-2].

           Summarizing, the pv-vector returned is for most stars almost
           identical to the result of applying the standard geometrical
           "space motion" transformation.  The differences, which are the
           subject of the Stumpff paper referenced below, are:

           (i) In stars with significant radial velocity and proper motion,
           the constantly changing light-time distorts the apparent proper
           motion.  Note that this is a classical, not a relativistic,
           effect.

           (ii) The transformation complies with special relativity.

        3) Care is needed with units.  The star coordinates are in radians
           and the proper motions in radians per Julian year, but the
           parallax is in arcseconds; the radial velocity is in km/s, but
           the pv-vector result is in au and au/day.

        4) The RA proper motion is in terms of coordinate angle, not true
           angle.  If the catalog uses arcseconds for both RA and Dec proper
           motions, the RA proper motion will need to be divided by cos(Dec)
           before use.

        5) Straight-line motion at constant speed, in the inertial frame,
           is assumed.

        6) An extremely small (or zero or negative) parallax is interpreted
           to mean that the object is on the "celestial sphere", the radius
           of which is an arbitrary (large) value (see the constant PXMIN).
           When the distance is overridden in this way, the status,
           initially zero, has 1 added to it.

        7) If the space velocity is a significant fraction of c (see the
           constant VMAX), it is arbitrarily set to zero.  When this action
           occurs, 2 is added to the status.

        8) The relativistic adjustment involves an iterative calculation.
           If the process fails to converge within a set number (IMAX) of
           iterations, 4 is added to the status.

        9) The inverse transformation is performed by the function
           eraPvstar.

        Called:
           eraS2pv      spherical coordinates to pv-vector
           eraPm        modulus of p-vector
           eraZp        zero p-vector
           eraPn        decompose p-vector into modulus and direction
           eraPdp       scalar product of two p-vectors
           eraSxp       multiply p-vector by scalar
           eraPmp       p-vector minus p-vector
           eraPpp       p-vector plus p-vector

        Reference:

           Stumpff, P., 1985, Astron.Astrophys. 144, 232-240.

        This revision:  2017 March 16

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    pv, c_retval = ufunc.starpv(ra, dec, pmr, pmd, px, rv)
    check_errwarn(c_retval, 'starpv')
    return pv


STATUS_CODES['starpv'] = {
    0: 'no warnings',
    1: 'distance overridden (Note 6)',
    2: 'excessive speed (Note 7)',
    4: "solution didn't converge (Note 8)",
    'else': 'binary logical OR of the above',
}


def fk425(r1950, d1950, dr1950, dd1950, p1950, v1950):
    """
    Convert B1950.0 FK4 star catalog data to J2000.0 FK5.

    Parameters
    ----------
    r1950 : double array
    d1950 : double array
    dr1950 : double array
    dd1950 : double array
    p1950 : double array
    v1950 : double array

    Returns
    -------
    r2000 : double array
    d2000 : double array
    dr2000 : double array
    dd2000 : double array
    p2000 : double array
    v2000 : double array

    Notes
    -----
    Wraps ERFA function ``eraFk425``. The ERFA documentation is::

        - - - - - - - - -
         e r a F k 4 2 5
        - - - - - - - - -

        Convert B1950.0 FK4 star catalog data to J2000.0 FK5.

        This function converts a star's catalog data from the old FK4
       (Bessel-Newcomb) system to the later IAU 1976 FK5 (Fricke) system.

        Given: (all B1950.0, FK4)
           r1950,d1950    double   B1950.0 RA,Dec (rad)
           dr1950,dd1950  double   B1950.0 proper motions (rad/trop.yr)
           p1950          double   parallax (arcsec)
           v1950          double   radial velocity (km/s, +ve = moving away)

        Returned: (all J2000.0, FK5)
           r2000,d2000    double   J2000.0 RA,Dec (rad)
           dr2000,dd2000  double   J2000.0 proper motions (rad/Jul.yr)
           p2000          double   parallax (arcsec)
           v2000          double   radial velocity (km/s, +ve = moving away)

        Notes:

        1) The proper motions in RA are dRA/dt rather than cos(Dec)*dRA/dt,
           and are per year rather than per century.

        2) The conversion is somewhat complicated, for several reasons:

           . Change of standard epoch from B1950.0 to J2000.0.

           . An intermediate transition date of 1984 January 1.0 TT.

           . A change of precession model.

           . Change of time unit for proper motion (tropical to Julian).

           . FK4 positions include the E-terms of aberration, to simplify
             the hand computation of annual aberration.  FK5 positions
             assume a rigorous aberration computation based on the Earth's
             barycentric velocity.

           . The E-terms also affect proper motions, and in particular cause
             objects at large distances to exhibit fictitious proper
             motions.

           The algorithm is based on Smith et al. (1989) and Yallop et al.
           (1989), which presented a matrix method due to Standish (1982) as
           developed by Aoki et al. (1983), using Kinoshita's development of
           Andoyer's post-Newcomb precession.  The numerical constants from
           Seidelmann (1992) are used canonically.

        3) Conversion from B1950.0 FK4 to J2000.0 FK5 only is provided for.
           Conversions for different epochs and equinoxes would require
           additional treatment for precession, proper motion and E-terms.

        4) In the FK4 catalog the proper motions of stars within 10 degrees
           of the poles do not embody differential E-terms effects and
           should, strictly speaking, be handled in a different manner from
           stars outside these regions.  However, given the general lack of
           homogeneity of the star data available for routine astrometry,
           the difficulties of handling positions that may have been
           determined from astrometric fields spanning the polar and non-
           polar regions, the likelihood that the differential E-terms
           effect was not taken into account when allowing for proper motion
           in past astrometry, and the undesirability of a discontinuity in
           the algorithm, the decision has been made in this ERFA algorithm
           to include the effects of differential E-terms on the proper
           motions for all stars, whether polar or not.  At epoch J2000.0,
           and measuring "on the sky" rather than in terms of RA change, the
           errors resulting from this simplification are less than
           1 milliarcsecond in position and 1 milliarcsecond per century in
           proper motion.

        Called:
           eraAnp       normalize angle into range 0 to 2pi
           eraPv2s      pv-vector to spherical coordinates
           eraPdp       scalar product of two p-vectors
           eraPvmpv     pv-vector minus pv_vector
           eraPvppv     pv-vector plus pv_vector
           eraS2pv      spherical coordinates to pv-vector
           eraSxp       multiply p-vector by scalar

        References:

           Aoki, S. et al., 1983, "Conversion matrix of epoch B1950.0
           FK4-based positions of stars to epoch J2000.0 positions in
           accordance with the new IAU resolutions".  Astron.Astrophys.
           128, 263-267.

           Seidelmann, P.K. (ed), 1992, "Explanatory Supplement to the
           Astronomical Almanac", ISBN 0-935702-68-7.

           Smith, C.A. et al., 1989, "The transformation of astrometric
           catalog systems to the equinox J2000.0".  Astron.J. 97, 265.

           Standish, E.M., 1982, "Conversion of positions and proper motions
           from B1950.0 to the IAU system at J2000.0".  Astron.Astrophys.,
           115, 1, 20-22.

           Yallop, B.D. et al., 1989, "Transformation of mean star places
           from FK4 B1950.0 to FK5 J2000.0 using matrices in 6-space".
           Astron.J. 97, 274.

        This revision:   2018 December 5

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    r2000, d2000, dr2000, dd2000, p2000, v2000 = ufunc.fk425(
        r1950, d1950, dr1950, dd1950, p1950, v1950)
    return r2000, d2000, dr2000, dd2000, p2000, v2000


def fk45z(r1950, d1950, bepoch):
    """
    Convert a B1950.0 FK4 star position to J2000.0 FK5, assuming zero
    proper motion in the FK5 system.

    Parameters
    ----------
    r1950 : double array
    d1950 : double array
    bepoch : double array

    Returns
    -------
    r2000 : double array
    d2000 : double array

    Notes
    -----
    Wraps ERFA function ``eraFk45z``. The ERFA documentation is::

        - - - - - - - - -
         e r a F k 4 5 z
        - - - - - - - - -

        Convert a B1950.0 FK4 star position to J2000.0 FK5, assuming zero
        proper motion in the FK5 system.

        This function converts a star's catalog data from the old FK4
        (Bessel-Newcomb) system to the later IAU 1976 FK5 (Fricke) system,
        in such a way that the FK5 proper motion is zero.  Because such a
        star has, in general, a non-zero proper motion in the FK4 system,
        the function requires the epoch at which the position in the FK4
        system was determined.

        Given:
           r1950,d1950    double   B1950.0 FK4 RA,Dec at epoch (rad)
           bepoch         double   Besselian epoch (e.g. 1979.3)

        Returned:
           r2000,d2000    double   J2000.0 FK5 RA,Dec (rad)

        Notes:

        1) The epoch bepoch is strictly speaking Besselian, but if a
           Julian epoch is supplied the result will be affected only to a
           negligible extent.

        2) The method is from Appendix 2 of Aoki et al. (1983), but using
           the constants of Seidelmann (1992).  See the function eraFk425
           for a general introduction to the FK4 to FK5 conversion.

        3) Conversion from equinox B1950.0 FK4 to equinox J2000.0 FK5 only
           is provided for.  Conversions for different starting and/or
           ending epochs would require additional treatment for precession,
           proper motion and E-terms.

        4) In the FK4 catalog the proper motions of stars within 10 degrees
           of the poles do not embody differential E-terms effects and
           should, strictly speaking, be handled in a different manner from
           stars outside these regions.  However, given the general lack of
           homogeneity of the star data available for routine astrometry,
           the difficulties of handling positions that may have been
           determined from astrometric fields spanning the polar and non-
           polar regions, the likelihood that the differential E-terms
           effect was not taken into account when allowing for proper motion
           in past astrometry, and the undesirability of a discontinuity in
           the algorithm, the decision has been made in this ERFA algorithm
           to include the effects of differential E-terms on the proper
           motions for all stars, whether polar or not.  At epoch 2000.0,
           and measuring "on the sky" rather than in terms of RA change, the
           errors resulting from this simplification are less than
           1 milliarcsecond in position and 1 milliarcsecond per century in
           proper motion.

        References:

           Aoki, S. et al., 1983, "Conversion matrix of epoch B1950.0
           FK4-based positions of stars to epoch J2000.0 positions in
           accordance with the new IAU resolutions".  Astron.Astrophys.
           128, 263-267.

           Seidelmann, P.K. (ed), 1992, "Explanatory Supplement to the
           Astronomical Almanac", ISBN 0-935702-68-7.

        Called:
           eraAnp       normalize angle into range 0 to 2pi
           eraC2s       p-vector to spherical
           eraEpb2jd    Besselian epoch to Julian date
           eraEpj       Julian date to Julian epoch
           eraPdp       scalar product of two p-vectors
           eraPmp       p-vector minus p-vector
           eraPpsp      p-vector plus scaled p-vector
           eraPvu       update a pv-vector
           eraS2c       spherical to p-vector

        This revision:   2020 November 19

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    r2000, d2000 = ufunc.fk45z(r1950, d1950, bepoch)
    return r2000, d2000


def fk524(r2000, d2000, dr2000, dd2000, p2000, v2000):
    """
    Convert J2000.0 FK5 star catalog data to B1950.0 FK4.

    Parameters
    ----------
    r2000 : double array
    d2000 : double array
    dr2000 : double array
    dd2000 : double array
    p2000 : double array
    v2000 : double array

    Returns
    -------
    r1950 : double array
    d1950 : double array
    dr1950 : double array
    dd1950 : double array
    p1950 : double array
    v1950 : double array

    Notes
    -----
    Wraps ERFA function ``eraFk524``. The ERFA documentation is::

        - - - - - - - - -
         e r a F k 5 2 4
        - - - - - - - - -

        Convert J2000.0 FK5 star catalog data to B1950.0 FK4.

        Given: (all J2000.0, FK5)
           r2000,d2000    double   J2000.0 RA,Dec (rad)
           dr2000,dd2000  double   J2000.0 proper motions (rad/Jul.yr)
           p2000          double   parallax (arcsec)
           v2000          double   radial velocity (km/s, +ve = moving away)

        Returned: (all B1950.0, FK4)
           r1950,d1950    double   B1950.0 RA,Dec (rad)
           dr1950,dd1950  double   B1950.0 proper motions (rad/trop.yr)
           p1950          double   parallax (arcsec)
           v1950          double   radial velocity (km/s, +ve = moving away)

        Notes:

        1) The proper motions in RA are dRA/dt rather than cos(Dec)*dRA/dt,
           and are per year rather than per century.

        2) The conversion is somewhat complicated, for several reasons:

           . Change of standard epoch from J2000.0 to B1950.0.

           . An intermediate transition date of 1984 January 1.0 TT.

           . A change of precession model.

           . Change of time unit for proper motion (Julian to tropical).

           . FK4 positions include the E-terms of aberration, to simplify
             the hand computation of annual aberration.  FK5 positions
             assume a rigorous aberration computation based on the Earth's
             barycentric velocity.

           . The E-terms also affect proper motions, and in particular cause
             objects at large distances to exhibit fictitious proper
             motions.

           The algorithm is based on Smith et al. (1989) and Yallop et al.
           (1989), which presented a matrix method due to Standish (1982) as
           developed by Aoki et al. (1983), using Kinoshita's development of
           Andoyer's post-Newcomb precession.  The numerical constants from
           Seidelmann (1992) are used canonically.

        4) In the FK4 catalog the proper motions of stars within 10 degrees
           of the poles do not embody differential E-terms effects and
           should, strictly speaking, be handled in a different manner from
           stars outside these regions.  However, given the general lack of
           homogeneity of the star data available for routine astrometry,
           the difficulties of handling positions that may have been
           determined from astrometric fields spanning the polar and non-
           polar regions, the likelihood that the differential E-terms
           effect was not taken into account when allowing for proper motion
           in past astrometry, and the undesirability of a discontinuity in
           the algorithm, the decision has been made in this ERFA algorithm
           to include the effects of differential E-terms on the proper
           motions for all stars, whether polar or not.  At epoch J2000.0,
           and measuring "on the sky" rather than in terms of RA change, the
           errors resulting from this simplification are less than
           1 milliarcsecond in position and 1 milliarcsecond per century in
           proper motion.

        Called:
           eraAnp       normalize angle into range 0 to 2pi
           eraPdp       scalar product of two p-vectors
           eraPm        modulus of p-vector
           eraPmp       p-vector minus p-vector
           eraPpp       p-vector pluus p-vector
           eraPv2s      pv-vector to spherical coordinates
           eraS2pv      spherical coordinates to pv-vector
           eraSxp       multiply p-vector by scalar

        References:

           Aoki, S. et al., 1983, "Conversion matrix of epoch B1950.0
           FK4-based positions of stars to epoch J2000.0 positions in
           accordance with the new IAU resolutions".  Astron.Astrophys.
           128, 263-267.

           Seidelmann, P.K. (ed), 1992, "Explanatory Supplement to the
           Astronomical Almanac", ISBN 0-935702-68-7.

           Smith, C.A. et al., 1989, "The transformation of astrometric
           catalog systems to the equinox J2000.0".  Astron.J. 97, 265.

           Standish, E.M., 1982, "Conversion of positions and proper motions
           from B1950.0 to the IAU system at J2000.0".  Astron.Astrophys.,
           115, 1, 20-22.

           Yallop, B.D. et al., 1989, "Transformation of mean star places
           from FK4 B1950.0 to FK5 J2000.0 using matrices in 6-space".
           Astron.J. 97, 274.

        This revision:   2019 October 3

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    r1950, d1950, dr1950, dd1950, p1950, v1950 = ufunc.fk524(
        r2000, d2000, dr2000, dd2000, p2000, v2000)
    return r1950, d1950, dr1950, dd1950, p1950, v1950


def fk52h(r5, d5, dr5, dd5, px5, rv5):
    """
    Transform FK5 (J2000.0) star data into the Hipparcos system.

    Parameters
    ----------
    r5 : double array
    d5 : double array
    dr5 : double array
    dd5 : double array
    px5 : double array
    rv5 : double array

    Returns
    -------
    rh : double array
    dh : double array
    drh : double array
    ddh : double array
    pxh : double array
    rvh : double array

    Notes
    -----
    Wraps ERFA function ``eraFk52h``. The ERFA documentation is::

        - - - - - - - - -
         e r a F k 5 2 h
        - - - - - - - - -

        Transform FK5 (J2000.0) star data into the Hipparcos system.

        Given (all FK5, equinox J2000.0, epoch J2000.0):
           r5      double    RA (radians)
           d5      double    Dec (radians)
           dr5     double    proper motion in RA (dRA/dt, rad/Jyear)
           dd5     double    proper motion in Dec (dDec/dt, rad/Jyear)
           px5     double    parallax (arcsec)
           rv5     double    radial velocity (km/s, positive = receding)

        Returned (all Hipparcos, epoch J2000.0):
           rh      double    RA (radians)
           dh      double    Dec (radians)
           drh     double    proper motion in RA (dRA/dt, rad/Jyear)
           ddh     double    proper motion in Dec (dDec/dt, rad/Jyear)
           pxh     double    parallax (arcsec)
           rvh     double    radial velocity (km/s, positive = receding)

        Notes:

        1) This function transforms FK5 star positions and proper motions
           into the system of the Hipparcos catalog.

        2) The proper motions in RA are dRA/dt rather than
           cos(Dec)*dRA/dt, and are per year rather than per century.

        3) The FK5 to Hipparcos transformation is modeled as a pure
           rotation and spin;  zonal errors in the FK5 catalog are not
           taken into account.

        4) See also eraH2fk5, eraFk5hz, eraHfk5z.

        Called:
           eraStarpv    star catalog data to space motion pv-vector
           eraFk5hip    FK5 to Hipparcos rotation and spin
           eraRxp       product of r-matrix and p-vector
           eraPxp       vector product of two p-vectors
           eraPpp       p-vector plus p-vector
           eraPvstar    space motion pv-vector to star catalog data

        Reference:

           F.Mignard & M.Froeschle, Astron.Astrophys., 354, 732-739 (2000).

        This revision:  2017 October 12

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rh, dh, drh, ddh, pxh, rvh = ufunc.fk52h(r5, d5, dr5, dd5, px5, rv5)
    return rh, dh, drh, ddh, pxh, rvh


def fk54z(r2000, d2000, bepoch):
    """
    Convert a J2000.0 FK5 star position to B1950.0 FK4, assuming zero
    proper motion in FK5 and parallax.

    Parameters
    ----------
    r2000 : double array
    d2000 : double array
    bepoch : double array

    Returns
    -------
    r1950 : double array
    d1950 : double array
    dr1950 : double array
    dd1950 : double array

    Notes
    -----
    Wraps ERFA function ``eraFk54z``. The ERFA documentation is::

        - - - - - - - - -
         e r a F k 5 4 z
        - - - - - - - - -

        Convert a J2000.0 FK5 star position to B1950.0 FK4, assuming zero
        proper motion in FK5 and parallax.

        Given:
           r2000,d2000    double   J2000.0 FK5 RA,Dec (rad)
           bepoch         double   Besselian epoch (e.g. 1950.0)

        Returned:
           r1950,d1950    double   B1950.0 FK4 RA,Dec (rad) at epoch BEPOCH
           dr1950,dd1950  double   B1950.0 FK4 proper motions (rad/trop.yr)

        Notes:

        1) In contrast to the eraFk524 function, here the FK5 proper
           motions, the parallax and the radial velocity are presumed zero.

        2) This function converts a star position from the IAU 1976 FK5
          (Fricke) system to the former FK4 (Bessel-Newcomb) system, for
           cases such as distant radio sources where it is presumed there is
           zero parallax and no proper motion.  Because of the E-terms of
           aberration, such objects have (in general) non-zero proper motion
           in FK4, and the present function returns those fictitious proper
           motions.

        3) Conversion from B1950.0 FK4 to J2000.0 FK5 only is provided for.
           Conversions involving other equinoxes would require additional
           treatment for precession.

        4) The position returned by this function is in the B1950.0 FK4
           reference system but at Besselian epoch BEPOCH.  For comparison
           with catalogs the BEPOCH argument will frequently be 1950.0. (In
           this context the distinction between Besselian and Julian epoch
           is insignificant.)

        5) The RA component of the returned (fictitious) proper motion is
           dRA/dt rather than cos(Dec)*dRA/dt.

        Called:
           eraAnp       normalize angle into range 0 to 2pi
           eraC2s       p-vector to spherical
           eraFk524     FK4 to FK5
           eraS2c       spherical to p-vector

        This revision:   2020 November 19

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    r1950, d1950, dr1950, dd1950 = ufunc.fk54z(r2000, d2000, bepoch)
    return r1950, d1950, dr1950, dd1950


def fk5hip():
    """
    FK5 to Hipparcos rotation and spin.

    Parameters
    ----------

    Returns
    -------
    r5h : double array
    s5h : double array

    Notes
    -----
    Wraps ERFA function ``eraFk5hip``. The ERFA documentation is::

        - - - - - - - - - -
         e r a F k 5 h i p
        - - - - - - - - - -

        FK5 to Hipparcos rotation and spin.

        Returned:
           r5h   double[3][3]  r-matrix: FK5 rotation wrt Hipparcos (Note 2)
           s5h   double[3]     r-vector: FK5 spin wrt Hipparcos (Note 3)

        Notes:

        1) This function models the FK5 to Hipparcos transformation as a
           pure rotation and spin;  zonal errors in the FK5 catalogue are
           not taken into account.

        2) The r-matrix r5h operates in the sense:

                 P_Hipparcos = r5h x P_FK5

           where P_FK5 is a p-vector in the FK5 frame, and P_Hipparcos is
           the equivalent Hipparcos p-vector.

        3) The r-vector s5h represents the time derivative of the FK5 to
           Hipparcos rotation.  The units are radians per year (Julian,
           TDB).

        Called:
           eraRv2m      r-vector to r-matrix

        Reference:

           F.Mignard & M.Froeschle, Astron.Astrophys., 354, 732-739 (2000).

        This revision:  2017 October 12

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    r5h, s5h = ufunc.fk5hip()
    return r5h, s5h


def fk5hz(r5, d5, date1, date2):
    """
    Transform an FK5 (J2000.0) star position into the system of the
    Hipparcos catalogue, assuming zero Hipparcos proper motion.

    Parameters
    ----------
    r5 : double array
    d5 : double array
    date1 : double array
    date2 : double array

    Returns
    -------
    rh : double array
    dh : double array

    Notes
    -----
    Wraps ERFA function ``eraFk5hz``. The ERFA documentation is::

        - - - - - - - - -
         e r a F k 5 h z
        - - - - - - - - -

        Transform an FK5 (J2000.0) star position into the system of the
        Hipparcos catalogue, assuming zero Hipparcos proper motion.

        Given:
           r5           double   FK5 RA (radians), equinox J2000.0, at date
           d5           double   FK5 Dec (radians), equinox J2000.0, at date
           date1,date2  double   TDB date (Notes 1,2)

        Returned:
           rh           double   Hipparcos RA (radians)
           dh           double   Hipparcos Dec (radians)

        Notes:

        1) This function converts a star position from the FK5 system to
           the Hipparcos system, in such a way that the Hipparcos proper
           motion is zero.  Because such a star has, in general, a non-zero
           proper motion in the FK5 system, the function requires the date
           at which the position in the FK5 system was determined.

        2) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        3) The FK5 to Hipparcos transformation is modeled as a pure
           rotation and spin;  zonal errors in the FK5 catalogue are not
           taken into account.

        4) The position returned by this function is in the Hipparcos
           reference system but at date date1+date2.

        5) See also eraFk52h, eraH2fk5, eraHfk5z.

        Called:
           eraS2c       spherical coordinates to unit vector
           eraFk5hip    FK5 to Hipparcos rotation and spin
           eraSxp       multiply p-vector by scalar
           eraRv2m      r-vector to r-matrix
           eraTrxp      product of transpose of r-matrix and p-vector
           eraPxp       vector product of two p-vectors
           eraC2s       p-vector to spherical
           eraAnp       normalize angle into range 0 to 2pi

        Reference:

           F.Mignard & M.Froeschle, 2000, Astron.Astrophys. 354, 732-739.

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rh, dh = ufunc.fk5hz(r5, d5, date1, date2)
    return rh, dh


def h2fk5(rh, dh, drh, ddh, pxh, rvh):
    """
    Transform Hipparcos star data into the FK5 (J2000.0) system.

    Parameters
    ----------
    rh : double array
    dh : double array
    drh : double array
    ddh : double array
    pxh : double array
    rvh : double array

    Returns
    -------
    r5 : double array
    d5 : double array
    dr5 : double array
    dd5 : double array
    px5 : double array
    rv5 : double array

    Notes
    -----
    Wraps ERFA function ``eraH2fk5``. The ERFA documentation is::

        - - - - - - - - -
         e r a H 2 f k 5
        - - - - - - - - -

        Transform Hipparcos star data into the FK5 (J2000.0) system.

        Given (all Hipparcos, epoch J2000.0):
           rh      double    RA (radians)
           dh      double    Dec (radians)
           drh     double    proper motion in RA (dRA/dt, rad/Jyear)
           ddh     double    proper motion in Dec (dDec/dt, rad/Jyear)
           pxh     double    parallax (arcsec)
           rvh     double    radial velocity (km/s, positive = receding)

        Returned (all FK5, equinox J2000.0, epoch J2000.0):
           r5      double    RA (radians)
           d5      double    Dec (radians)
           dr5     double    proper motion in RA (dRA/dt, rad/Jyear)
           dd5     double    proper motion in Dec (dDec/dt, rad/Jyear)
           px5     double    parallax (arcsec)
           rv5     double    radial velocity (km/s, positive = receding)

        Notes:

        1) This function transforms Hipparcos star positions and proper
           motions into FK5 J2000.0.

        2) The proper motions in RA are dRA/dt rather than
           cos(Dec)*dRA/dt, and are per year rather than per century.

        3) The FK5 to Hipparcos transformation is modeled as a pure
           rotation and spin;  zonal errors in the FK5 catalog are not
           taken into account.

        4) See also eraFk52h, eraFk5hz, eraHfk5z.

        Called:
           eraStarpv    star catalog data to space motion pv-vector
           eraFk5hip    FK5 to Hipparcos rotation and spin
           eraRv2m      r-vector to r-matrix
           eraRxp       product of r-matrix and p-vector
           eraTrxp      product of transpose of r-matrix and p-vector
           eraPxp       vector product of two p-vectors
           eraPmp       p-vector minus p-vector
           eraPvstar    space motion pv-vector to star catalog data

        Reference:

           F.Mignard & M.Froeschle, Astron.Astrophys., 354, 732-739 (2000).

        This revision:  2017 October 12

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    r5, d5, dr5, dd5, px5, rv5 = ufunc.h2fk5(rh, dh, drh, ddh, pxh, rvh)
    return r5, d5, dr5, dd5, px5, rv5


def hfk5z(rh, dh, date1, date2):
    """
    Transform a Hipparcos star position into FK5 J2000.0, assuming
    zero Hipparcos proper motion.

    Parameters
    ----------
    rh : double array
    dh : double array
    date1 : double array
    date2 : double array

    Returns
    -------
    r5 : double array
    d5 : double array
    dr5 : double array
    dd5 : double array

    Notes
    -----
    Wraps ERFA function ``eraHfk5z``. The ERFA documentation is::

        - - - - - - - - -
         e r a H f k 5 z
        - - - - - - - - -

        Transform a Hipparcos star position into FK5 J2000.0, assuming
        zero Hipparcos proper motion.

        Given:
           rh            double    Hipparcos RA (radians)
           dh            double    Hipparcos Dec (radians)
           date1,date2   double    TDB date (Note 1)

        Returned (all FK5, equinox J2000.0, date date1+date2):
           r5            double    RA (radians)
           d5            double    Dec (radians)
           dr5           double    FK5 RA proper motion (rad/year, Note 4)
           dd5           double    Dec proper motion (rad/year, Note 4)

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) The proper motion in RA is dRA/dt rather than cos(Dec)*dRA/dt.

        3) The FK5 to Hipparcos transformation is modeled as a pure rotation
           and spin;  zonal errors in the FK5 catalogue are not taken into
           account.

        4) It was the intention that Hipparcos should be a close
           approximation to an inertial frame, so that distant objects have
           zero proper motion;  such objects have (in general) non-zero
           proper motion in FK5, and this function returns those fictitious
           proper motions.

        5) The position returned by this function is in the FK5 J2000.0
           reference system but at date date1+date2.

        6) See also eraFk52h, eraH2fk5, eraFk5zhz.

        Called:
           eraS2c       spherical coordinates to unit vector
           eraFk5hip    FK5 to Hipparcos rotation and spin
           eraRxp       product of r-matrix and p-vector
           eraSxp       multiply p-vector by scalar
           eraRxr       product of two r-matrices
           eraTrxp      product of transpose of r-matrix and p-vector
           eraPxp       vector product of two p-vectors
           eraPv2s      pv-vector to spherical
           eraAnp       normalize angle into range 0 to 2pi

        Reference:

           F.Mignard & M.Froeschle, 2000, Astron.Astrophys. 354, 732-739.

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    r5, d5, dr5, dd5 = ufunc.hfk5z(rh, dh, date1, date2)
    return r5, d5, dr5, dd5


def starpm(ra1, dec1, pmr1, pmd1, px1, rv1, ep1a, ep1b, ep2a, ep2b):
    """
    Star proper motion:  update star catalog data for space motion.

    Parameters
    ----------
    ra1 : double array
    dec1 : double array
    pmr1 : double array
    pmd1 : double array
    px1 : double array
    rv1 : double array
    ep1a : double array
    ep1b : double array
    ep2a : double array
    ep2b : double array

    Returns
    -------
    ra2 : double array
    dec2 : double array
    pmr2 : double array
    pmd2 : double array
    px2 : double array
    rv2 : double array

    Notes
    -----
    Wraps ERFA function ``eraStarpm``. The ERFA documentation is::

        - - - - - - - - - -
         e r a S t a r p m
        - - - - - - - - - -

        Star proper motion:  update star catalog data for space motion.

        Given:
           ra1    double     right ascension (radians), before
           dec1   double     declination (radians), before
           pmr1   double     RA proper motion (radians/year), before
           pmd1   double     Dec proper motion (radians/year), before
           px1    double     parallax (arcseconds), before
           rv1    double     radial velocity (km/s, +ve = receding), before
           ep1a   double     "before" epoch, part A (Note 1)
           ep1b   double     "before" epoch, part B (Note 1)
           ep2a   double     "after" epoch, part A (Note 1)
           ep2b   double     "after" epoch, part B (Note 1)

        Returned:
           ra2    double     right ascension (radians), after
           dec2   double     declination (radians), after
           pmr2   double     RA proper motion (radians/year), after
           pmd2   double     Dec proper motion (radians/year), after
           px2    double     parallax (arcseconds), after
           rv2    double     radial velocity (km/s, +ve = receding), after

        Returned (function value):
                  int        status:
                                -1 = system error (should not occur)
                                 0 = no warnings or errors
                                 1 = distance overridden (Note 6)
                                 2 = excessive velocity (Note 7)
                                 4 = solution didn't converge (Note 8)
                              else = binary logical OR of the above warnings

        Notes:

        1) The starting and ending TDB dates ep1a+ep1b and ep2a+ep2b are
           Julian Dates, apportioned in any convenient way between the two
           parts (A and B).  For example, JD(TDB)=2450123.7 could be
           expressed in any of these ways, among others:

                   epna          epnb

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) In accordance with normal star-catalog conventions, the object's
           right ascension and declination are freed from the effects of
           secular aberration.  The frame, which is aligned to the catalog
           equator and equinox, is Lorentzian and centered on the SSB.

           The proper motions are the rate of change of the right ascension
           and declination at the catalog epoch and are in radians per TDB
           Julian year.

           The parallax and radial velocity are in the same frame.

        3) Care is needed with units.  The star coordinates are in radians
           and the proper motions in radians per Julian year, but the
           parallax is in arcseconds.

        4) The RA proper motion is in terms of coordinate angle, not true
           angle.  If the catalog uses arcseconds for both RA and Dec proper
           motions, the RA proper motion will need to be divided by cos(Dec)
           before use.

        5) Straight-line motion at constant speed, in the inertial frame,
           is assumed.

        6) An extremely small (or zero or negative) parallax is interpreted
           to mean that the object is on the "celestial sphere", the radius
           of which is an arbitrary (large) value (see the eraStarpv
           function for the value used).  When the distance is overridden in
           this way, the status, initially zero, has 1 added to it.

        7) If the space velocity is a significant fraction of c (see the
           constant VMAX in the function eraStarpv), it is arbitrarily set
           to zero.  When this action occurs, 2 is added to the status.

        8) The relativistic adjustment carried out in the eraStarpv function
           involves an iterative calculation.  If the process fails to
           converge within a set number of iterations, 4 is added to the
           status.

        Called:
           eraStarpv    star catalog data to space motion pv-vector
           eraPvu       update a pv-vector
           eraPdp       scalar product of two p-vectors
           eraPvstar    space motion pv-vector to star catalog data

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    ra2, dec2, pmr2, pmd2, px2, rv2, c_retval = ufunc.starpm(
        ra1, dec1, pmr1, pmd1, px1, rv1, ep1a, ep1b, ep2a, ep2b)
    check_errwarn(c_retval, 'starpm')
    return ra2, dec2, pmr2, pmd2, px2, rv2


STATUS_CODES['starpm'] = {
    -1: 'system error (should not occur)',
    0: 'no warnings or errors',
    1: 'distance overridden (Note 6)',
    2: 'excessive velocity (Note 7)',
    4: "solution didn't converge (Note 8)",
    'else': 'binary logical OR of the above warnings',
}


def eceq06(date1, date2, dl, db):
    """
    Transformation from ecliptic coordinates (mean equinox and ecliptic
    of date) to ICRS RA,Dec, using the IAU 2006 precession model.

    Parameters
    ----------
    date1 : double array
    date2 : double array
    dl : double array
    db : double array

    Returns
    -------
    dr : double array
    dd : double array

    Notes
    -----
    Wraps ERFA function ``eraEceq06``. The ERFA documentation is::

        - - - - - - - - - -
         e r a E c e q 0 6
        - - - - - - - - - -

        Transformation from ecliptic coordinates (mean equinox and ecliptic
        of date) to ICRS RA,Dec, using the IAU 2006 precession model.

        Given:
           date1,date2 double TT as a 2-part Julian date (Note 1)
           dl,db       double ecliptic longitude and latitude (radians)

        Returned:
           dr,dd       double ICRS right ascension and declination (radians)

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) No assumptions are made about whether the coordinates represent
           starlight and embody astrometric effects such as parallax or
           aberration.

        3) The transformation is approximately that from ecliptic longitude
           and latitude (mean equinox and ecliptic of date) to mean J2000.0
           right ascension and declination, with only frame bias (always
           less than 25 mas) to disturb this classical picture.

        Called:
           eraS2c       spherical coordinates to unit vector
           eraEcm06     J2000.0 to ecliptic rotation matrix, IAU 2006
           eraTrxp      product of transpose of r-matrix and p-vector
           eraC2s       unit vector to spherical coordinates
           eraAnp       normalize angle into range 0 to 2pi
           eraAnpm      normalize angle into range +/- pi

        This revision:  2016 February 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    dr, dd = ufunc.eceq06(date1, date2, dl, db)
    return dr, dd


def ecm06(date1, date2):
    """
    ICRS equatorial to ecliptic rotation matrix, IAU 2006.

    Parameters
    ----------
    date1 : double array
    date2 : double array

    Returns
    -------
    rm : double array

    Notes
    -----
    Wraps ERFA function ``eraEcm06``. The ERFA documentation is::

        - - - - - - - - -
         e r a E c m 0 6
        - - - - - - - - -

        ICRS equatorial to ecliptic rotation matrix, IAU 2006.

        Given:
           date1,date2  double         TT as a 2-part Julian date (Note 1)

        Returned:
           rm           double[3][3]   ICRS to ecliptic rotation matrix

        Notes:

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        1) The matrix is in the sense

              E_ep = rm x P_ICRS,

           where P_ICRS is a vector with respect to ICRS right ascension
           and declination axes and E_ep is the same vector with respect to
           the (inertial) ecliptic and equinox of date.

        2) P_ICRS is a free vector, merely a direction, typically of unit
           magnitude, and not bound to any particular spatial origin, such
           as the Earth, Sun or SSB.  No assumptions are made about whether
           it represents starlight and embodies astrometric effects such as
           parallax or aberration.  The transformation is approximately that
           between mean J2000.0 right ascension and declination and ecliptic
           longitude and latitude, with only frame bias (always less than
           25 mas) to disturb this classical picture.

        Called:
           eraObl06     mean obliquity, IAU 2006
           eraPmat06    PB matrix, IAU 2006
           eraIr        initialize r-matrix to identity
           eraRx        rotate around X-axis
           eraRxr       product of two r-matrices

        This revision:  2015 December 11

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rm = ufunc.ecm06(date1, date2)
    return rm


def eqec06(date1, date2, dr, dd):
    """
    Transformation from ICRS equatorial coordinates to ecliptic
    coordinates (mean equinox and ecliptic of date) using IAU 2006
    precession model.

    Parameters
    ----------
    date1 : double array
    date2 : double array
    dr : double array
    dd : double array

    Returns
    -------
    dl : double array
    db : double array

    Notes
    -----
    Wraps ERFA function ``eraEqec06``. The ERFA documentation is::

        - - - - - - - - - -
         e r a E q e c 0 6
        - - - - - - - - - -

        Transformation from ICRS equatorial coordinates to ecliptic
        coordinates (mean equinox and ecliptic of date) using IAU 2006
        precession model.

        Given:
           date1,date2 double TT as a 2-part Julian date (Note 1)
           dr,dd       double ICRS right ascension and declination (radians)

        Returned:
           dl,db       double ecliptic longitude and latitude (radians)

        1) The TT date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

        2) No assumptions are made about whether the coordinates represent
           starlight and embody astrometric effects such as parallax or
           aberration.

        3) The transformation is approximately that from mean J2000.0 right
           ascension and declination to ecliptic longitude and latitude
           (mean equinox and ecliptic of date), with only frame bias (always
           less than 25 mas) to disturb this classical picture.

        Called:
           eraS2c       spherical coordinates to unit vector
           eraEcm06     J2000.0 to ecliptic rotation matrix, IAU 2006
           eraRxp       product of r-matrix and p-vector
           eraC2s       unit vector to spherical coordinates
           eraAnp       normalize angle into range 0 to 2pi
           eraAnpm      normalize angle into range +/- pi

        This revision:  2016 February 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    dl, db = ufunc.eqec06(date1, date2, dr, dd)
    return dl, db


def lteceq(epj, dl, db):
    """
    Transformation from ecliptic coordinates (mean equinox and ecliptic
    of date) to ICRS RA,Dec, using a long-term precession model.

    Parameters
    ----------
    epj : double array
    dl : double array
    db : double array

    Returns
    -------
    dr : double array
    dd : double array

    Notes
    -----
    Wraps ERFA function ``eraLteceq``. The ERFA documentation is::

        - - - - - - - - - -
         e r a L t e c e q
        - - - - - - - - - -

        Transformation from ecliptic coordinates (mean equinox and ecliptic
        of date) to ICRS RA,Dec, using a long-term precession model.

        Given:
           epj     double     Julian epoch (TT)
           dl,db   double     ecliptic longitude and latitude (radians)

        Returned:
           dr,dd   double     ICRS right ascension and declination (radians)

        1) No assumptions are made about whether the coordinates represent
           starlight and embody astrometric effects such as parallax or
           aberration.

        2) The transformation is approximately that from ecliptic longitude
           and latitude (mean equinox and ecliptic of date) to mean J2000.0
           right ascension and declination, with only frame bias (always
           less than 25 mas) to disturb this classical picture.

        3) The Vondrak et al. (2011, 2012) 400 millennia precession model
           agrees with the IAU 2006 precession at J2000.0 and stays within
           100 microarcseconds during the 20th and 21st centuries.  It is
           accurate to a few arcseconds throughout the historical period,
           worsening to a few tenths of a degree at the end of the
           +/- 200,000 year time span.

        Called:
           eraS2c       spherical coordinates to unit vector
           eraLtecm     J2000.0 to ecliptic rotation matrix, long term
           eraTrxp      product of transpose of r-matrix and p-vector
           eraC2s       unit vector to spherical coordinates
           eraAnp       normalize angle into range 0 to 2pi
           eraAnpm      normalize angle into range +/- pi

        References:

          Vondrak, J., Capitaine, N. and Wallace, P., 2011, New precession
          expressions, valid for long time intervals, Astron.Astrophys. 534,
          A22

          Vondrak, J., Capitaine, N. and Wallace, P., 2012, New precession
          expressions, valid for long time intervals (Corrigendum),
          Astron.Astrophys. 541, C1

        This revision:  2016 February 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    dr, dd = ufunc.lteceq(epj, dl, db)
    return dr, dd


def ltecm(epj):
    """
    ICRS equatorial to ecliptic rotation matrix, long-term.

    Parameters
    ----------
    epj : double array

    Returns
    -------
    rm : double array

    Notes
    -----
    Wraps ERFA function ``eraLtecm``. The ERFA documentation is::

        - - - - - - - - -
         e r a L t e c m
        - - - - - - - - -

        ICRS equatorial to ecliptic rotation matrix, long-term.

        Given:
           epj     double         Julian epoch (TT)

        Returned:
           rm      double[3][3]   ICRS to ecliptic rotation matrix

        Notes:

        1) The matrix is in the sense

              E_ep = rm x P_ICRS,

           where P_ICRS is a vector with respect to ICRS right ascension
           and declination axes and E_ep is the same vector with respect to
           the (inertial) ecliptic and equinox of epoch epj.

        2) P_ICRS is a free vector, merely a direction, typically of unit
           magnitude, and not bound to any particular spatial origin, such
           as the Earth, Sun or SSB.  No assumptions are made about whether
           it represents starlight and embodies astrometric effects such as
           parallax or aberration.  The transformation is approximately that
           between mean J2000.0 right ascension and declination and ecliptic
           longitude and latitude, with only frame bias (always less than
           25 mas) to disturb this classical picture.

        3) The Vondrak et al. (2011, 2012) 400 millennia precession model
           agrees with the IAU 2006 precession at J2000.0 and stays within
           100 microarcseconds during the 20th and 21st centuries.  It is
           accurate to a few arcseconds throughout the historical period,
           worsening to a few tenths of a degree at the end of the
           +/- 200,000 year time span.

        Called:
           eraLtpequ    equator pole, long term
           eraLtpecl    ecliptic pole, long term
           eraPxp       vector product
           eraPn        normalize vector

        References:

          Vondrak, J., Capitaine, N. and Wallace, P., 2011, New precession
          expressions, valid for long time intervals, Astron.Astrophys. 534,
          A22

          Vondrak, J., Capitaine, N. and Wallace, P., 2012, New precession
          expressions, valid for long time intervals (Corrigendum),
          Astron.Astrophys. 541, C1

        This revision:  2015 December 6

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rm = ufunc.ltecm(epj)
    return rm


def lteqec(epj, dr, dd):
    """
    Transformation from ICRS equatorial coordinates to ecliptic
    coordinates (mean equinox and ecliptic of date) using a long-term
    precession model.

    Parameters
    ----------
    epj : double array
    dr : double array
    dd : double array

    Returns
    -------
    dl : double array
    db : double array

    Notes
    -----
    Wraps ERFA function ``eraLteqec``. The ERFA documentation is::

        - - - - - - - - - -
         e r a L t e q e c
        - - - - - - - - - -

        Transformation from ICRS equatorial coordinates to ecliptic
        coordinates (mean equinox and ecliptic of date) using a long-term
        precession model.

        Given:
           epj     double     Julian epoch (TT)
           dr,dd   double     ICRS right ascension and declination (radians)

        Returned:
           dl,db   double     ecliptic longitude and latitude (radians)

        1) No assumptions are made about whether the coordinates represent
           starlight and embody astrometric effects such as parallax or
           aberration.

        2) The transformation is approximately that from mean J2000.0 right
           ascension and declination to ecliptic longitude and latitude
           (mean equinox and ecliptic of date), with only frame bias (always
           less than 25 mas) to disturb this classical picture.

        3) The Vondrak et al. (2011, 2012) 400 millennia precession model
           agrees with the IAU 2006 precession at J2000.0 and stays within
           100 microarcseconds during the 20th and 21st centuries.  It is
           accurate to a few arcseconds throughout the historical period,
           worsening to a few tenths of a degree at the end of the
           +/- 200,000 year time span.

        Called:
           eraS2c       spherical coordinates to unit vector
           eraLtecm     J2000.0 to ecliptic rotation matrix, long term
           eraRxp       product of r-matrix and p-vector
           eraC2s       unit vector to spherical coordinates
           eraAnp       normalize angle into range 0 to 2pi
           eraAnpm      normalize angle into range +/- pi

        References:

          Vondrak, J., Capitaine, N. and Wallace, P., 2011, New precession
          expressions, valid for long time intervals, Astron.Astrophys. 534,
          A22

          Vondrak, J., Capitaine, N. and Wallace, P., 2012, New precession
          expressions, valid for long time intervals (Corrigendum),
          Astron.Astrophys. 541, C1

        This revision:  2016 February 9

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    dl, db = ufunc.lteqec(epj, dr, dd)
    return dl, db


def g2icrs(dl, db):
    """
    Transformation from Galactic Coordinates to ICRS.

    Parameters
    ----------
    dl : double array
    db : double array

    Returns
    -------
    dr : double array
    dd : double array

    Notes
    -----
    Wraps ERFA function ``eraG2icrs``. The ERFA documentation is::

        - - - - - - - - - -
         e r a G 2 i c r s
        - - - - - - - - - -

        Transformation from Galactic Coordinates to ICRS.

        Given:
           dl     double      galactic longitude (radians)
           db     double      galactic latitude (radians)

        Returned:
           dr     double      ICRS right ascension (radians)
           dd     double      ICRS declination (radians)

        Notes:

        1) The IAU 1958 system of Galactic coordinates was defined with
           respect to the now obsolete reference system FK4 B1950.0.  When
           interpreting the system in a modern context, several factors have
           to be taken into account:

           . The inclusion in FK4 positions of the E-terms of aberration.

           . The distortion of the FK4 proper motion system by differential
             Galactic rotation.

           . The use of the B1950.0 equinox rather than the now-standard
             J2000.0.

           . The frame bias between ICRS and the J2000.0 mean place system.

           The Hipparcos Catalogue (Perryman & ESA 1997) provides a rotation
           matrix that transforms directly between ICRS and Galactic
           coordinates with the above factors taken into account.  The
           matrix is derived from three angles, namely the ICRS coordinates
           of the Galactic pole and the longitude of the ascending node of
           the galactic equator on the ICRS equator.  They are given in
           degrees to five decimal places and for canonical purposes are
           regarded as exact.  In the Hipparcos Catalogue the matrix
           elements are given to 10 decimal places (about 20 microarcsec).
           In the present ERFA function the matrix elements have been
           recomputed from the canonical three angles and are given to 30
           decimal places.

        2) The inverse transformation is performed by the function eraIcrs2g.

        Called:
           eraAnp       normalize angle into range 0 to 2pi
           eraAnpm      normalize angle into range +/- pi
           eraS2c       spherical coordinates to unit vector
           eraTrxp      product of transpose of r-matrix and p-vector
           eraC2s       p-vector to spherical

        Reference:
           Perryman M.A.C. & ESA, 1997, ESA SP-1200, The Hipparcos and Tycho
           catalogues.  Astrometric and photometric star catalogues
           derived from the ESA Hipparcos Space Astrometry Mission.  ESA
           Publications Division, Noordwijk, Netherlands.

        This revision:   2018 January 2

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    dr, dd = ufunc.g2icrs(dl, db)
    return dr, dd


def icrs2g(dr, dd):
    """
    Transformation from ICRS to Galactic Coordinates.

    Parameters
    ----------
    dr : double array
    dd : double array

    Returns
    -------
    dl : double array
    db : double array

    Notes
    -----
    Wraps ERFA function ``eraIcrs2g``. The ERFA documentation is::

        - - - - - - - - - -
         e r a I c r s 2 g
        - - - - - - - - - -

        Transformation from ICRS to Galactic Coordinates.

        Given:
           dr     double      ICRS right ascension (radians)
           dd     double      ICRS declination (radians)

        Returned:
           dl     double      galactic longitude (radians)
           db     double      galactic latitude (radians)

        Notes:

        1) The IAU 1958 system of Galactic coordinates was defined with
           respect to the now obsolete reference system FK4 B1950.0.  When
           interpreting the system in a modern context, several factors have
           to be taken into account:

           . The inclusion in FK4 positions of the E-terms of aberration.

           . The distortion of the FK4 proper motion system by differential
             Galactic rotation.

           . The use of the B1950.0 equinox rather than the now-standard
             J2000.0.

           . The frame bias between ICRS and the J2000.0 mean place system.

           The Hipparcos Catalogue (Perryman & ESA 1997) provides a rotation
           matrix that transforms directly between ICRS and Galactic
           coordinates with the above factors taken into account.  The
           matrix is derived from three angles, namely the ICRS coordinates
           of the Galactic pole and the longitude of the ascending node of
           the galactic equator on the ICRS equator.  They are given in
           degrees to five decimal places and for canonical purposes are
           regarded as exact.  In the Hipparcos Catalogue the matrix
           elements are given to 10 decimal places (about 20 microarcsec).
           In the present ERFA function the matrix elements have been
           recomputed from the canonical three angles and are given to 30
           decimal places.

        2) The inverse transformation is performed by the function eraG2icrs.

        Called:
           eraAnp       normalize angle into range 0 to 2pi
           eraAnpm      normalize angle into range +/- pi
           eraS2c       spherical coordinates to unit vector
           eraRxp       product of r-matrix and p-vector
           eraC2s       p-vector to spherical

        Reference:
           Perryman M.A.C. & ESA, 1997, ESA SP-1200, The Hipparcos and Tycho
           catalogues.  Astrometric and photometric star catalogues
           derived from the ESA Hipparcos Space Astrometry Mission.  ESA
           Publications Division, Noordwijk, Netherlands.

        This revision:   2018 January 2

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    dl, db = ufunc.icrs2g(dr, dd)
    return dl, db


def eform(n):
    """
    Earth reference ellipsoids.

    Parameters
    ----------
    n : int array

    Returns
    -------
    a : double array
    f : double array

    Notes
    -----
    Wraps ERFA function ``eraEform``. The ERFA documentation is::

        - - - - - - - - -
         e r a E f o r m
        - - - - - - - - -

        Earth reference ellipsoids.

        Given:
           n    int         ellipsoid identifier (Note 1)

        Returned:
           a    double      equatorial radius (meters, Note 2)
           f    double      flattening (Note 2)

        Returned (function value):
                int         status:  0 = OK
                                    -1 = illegal identifier (Note 3)

        Notes:

        1) The identifier n is a number that specifies the choice of
           reference ellipsoid.  The following are supported:

              n    ellipsoid

              1     ERFA_WGS84
              2     ERFA_GRS80
              3     ERFA_WGS72

           The n value has no significance outside the ERFA software.  For
           convenience, symbols ERFA_WGS84 etc. are defined in erfam.h.

        2) The ellipsoid parameters are returned in the form of equatorial
           radius in meters (a) and flattening (f).  The latter is a number
           around 0.00335, i.e. around 1/298.

        3) For the case where an unsupported n value is supplied, zero a and
           f are returned, as well as error status.

        References:

           Department of Defense World Geodetic System 1984, National
           Imagery and Mapping Agency Technical Report 8350.2, Third
           Edition, p3-2.

           Moritz, H., Bull. Geodesique 66-2, 187 (1992).

           The Department of Defense World Geodetic System 1972, World
           Geodetic System Committee, May 1974.

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992),
           p220.

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    a, f, c_retval = ufunc.eform(n)
    check_errwarn(c_retval, 'eform')
    return a, f


STATUS_CODES['eform'] = {
    0: 'OK',
    -1: 'illegal identifier (Note 3)',
}


def gc2gd(n, xyz):
    """
    Transform geocentric coordinates to geodetic using the specified
    reference ellipsoid.

    Parameters
    ----------
    n : int array
    xyz : double array

    Returns
    -------
    elong : double array
    phi : double array
    height : double array

    Notes
    -----
    Wraps ERFA function ``eraGc2gd``. The ERFA documentation is::

        - - - - - - - - -
         e r a G c 2 g d
        - - - - - - - - -

        Transform geocentric coordinates to geodetic using the specified
        reference ellipsoid.

        Given:
           n       int        ellipsoid identifier (Note 1)
           xyz     double[3]  geocentric vector (Note 2)

        Returned:
           elong   double     longitude (radians, east +ve, Note 3)
           phi     double     latitude (geodetic, radians, Note 3)
           height  double     height above ellipsoid (geodetic, Notes 2,3)

        Returned (function value):
                  int         status:  0 = OK
                                      -1 = illegal identifier (Note 3)
                                      -2 = internal error (Note 3)

        Notes:

        1) The identifier n is a number that specifies the choice of
           reference ellipsoid.  The following are supported:

              n    ellipsoid

              1     ERFA_WGS84
              2     ERFA_GRS80
              3     ERFA_WGS72

           The n value has no significance outside the ERFA software.  For
           convenience, symbols ERFA_WGS84 etc. are defined in erfam.h.

        2) The geocentric vector (xyz, given) and height (height, returned)
           are in meters.

        3) An error status -1 means that the identifier n is illegal.  An
           error status -2 is theoretically impossible.  In all error cases,
           all three results are set to -1e9.

        4) The inverse transformation is performed in the function eraGd2gc.

        Called:
           eraEform     Earth reference ellipsoids
           eraGc2gde    geocentric to geodetic transformation, general

        This revision:  2013 September 1

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    elong, phi, height, c_retval = ufunc.gc2gd(n, xyz)
    check_errwarn(c_retval, 'gc2gd')
    return elong, phi, height


STATUS_CODES['gc2gd'] = {
    0: 'OK',
    -1: 'illegal identifier (Note 3)',
    -2: 'internal error (Note 3)',
}


def gc2gde(a, f, xyz):
    """
    Transform geocentric coordinates to geodetic for a reference
    ellipsoid of specified form.

    Parameters
    ----------
    a : double array
    f : double array
    xyz : double array

    Returns
    -------
    elong : double array
    phi : double array
    height : double array

    Notes
    -----
    Wraps ERFA function ``eraGc2gde``. The ERFA documentation is::

        - - - - - - - - - -
         e r a G c 2 g d e
        - - - - - - - - - -

        Transform geocentric coordinates to geodetic for a reference
        ellipsoid of specified form.

        Given:
           a       double     equatorial radius (Notes 2,4)
           f       double     flattening (Note 3)
           xyz     double[3]  geocentric vector (Note 4)

        Returned:
           elong   double     longitude (radians, east +ve)
           phi     double     latitude (geodetic, radians)
           height  double     height above ellipsoid (geodetic, Note 4)

        Returned (function value):
                   int        status:  0 = OK
                                      -1 = illegal f
                                      -2 = illegal a

        Notes:

        1) This function is based on the GCONV2H Fortran subroutine by
           Toshio Fukushima (see reference).

        2) The equatorial radius, a, can be in any units, but meters is
           the conventional choice.

        3) The flattening, f, is (for the Earth) a value around 0.00335,
           i.e. around 1/298.

        4) The equatorial radius, a, and the geocentric vector, xyz,
           must be given in the same units, and determine the units of
           the returned height, height.

        5) If an error occurs (status < 0), elong, phi and height are
           unchanged.

        6) The inverse transformation is performed in the function
           eraGd2gce.

        7) The transformation for a standard ellipsoid (such as ERFA_WGS84) can
           more conveniently be performed by calling eraGc2gd, which uses a
           numerical code to identify the required A and F values.

        Reference:

           Fukushima, T., "Transformation from Cartesian to geodetic
           coordinates accelerated by Halley's method", J.Geodesy (2006)
           79: 689-693

        This revision:  2014 November 7

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    elong, phi, height, c_retval = ufunc.gc2gde(a, f, xyz)
    check_errwarn(c_retval, 'gc2gde')
    return elong, phi, height


STATUS_CODES['gc2gde'] = {
    0: 'OK',
    -1: 'illegal f',
    -2: 'illegal a',
}


def gd2gc(n, elong, phi, height):
    """
    Transform geodetic coordinates to geocentric using the specified
    reference ellipsoid.

    Parameters
    ----------
    n : int array
    elong : double array
    phi : double array
    height : double array

    Returns
    -------
    xyz : double array

    Notes
    -----
    Wraps ERFA function ``eraGd2gc``. The ERFA documentation is::

        - - - - - - - - -
         e r a G d 2 g c
        - - - - - - - - -

        Transform geodetic coordinates to geocentric using the specified
        reference ellipsoid.

        Given:
           n       int        ellipsoid identifier (Note 1)
           elong   double     longitude (radians, east +ve)
           phi     double     latitude (geodetic, radians, Note 3)
           height  double     height above ellipsoid (geodetic, Notes 2,3)

        Returned:
           xyz     double[3]  geocentric vector (Note 2)

        Returned (function value):
                   int        status:  0 = OK
                                      -1 = illegal identifier (Note 3)
                                      -2 = illegal case (Note 3)

        Notes:

        1) The identifier n is a number that specifies the choice of
           reference ellipsoid.  The following are supported:

              n    ellipsoid

              1     ERFA_WGS84
              2     ERFA_GRS80
              3     ERFA_WGS72

           The n value has no significance outside the ERFA software.  For
           convenience, symbols ERFA_WGS84 etc. are defined in erfam.h.

        2) The height (height, given) and the geocentric vector (xyz,
           returned) are in meters.

        3) No validation is performed on the arguments elong, phi and
           height.  An error status -1 means that the identifier n is
           illegal.  An error status -2 protects against cases that would
           lead to arithmetic exceptions.  In all error cases, xyz is set
           to zeros.

        4) The inverse transformation is performed in the function eraGc2gd.

        Called:
           eraEform     Earth reference ellipsoids
           eraGd2gce    geodetic to geocentric transformation, general
           eraZp        zero p-vector

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    xyz, c_retval = ufunc.gd2gc(n, elong, phi, height)
    check_errwarn(c_retval, 'gd2gc')
    return xyz


STATUS_CODES['gd2gc'] = {
    0: 'OK',
    -1: 'illegal identifier (Note 3)',
    -2: 'illegal case (Note 3)',
}


def gd2gce(a, f, elong, phi, height):
    """
    Transform geodetic coordinates to geocentric for a reference
    ellipsoid of specified form.

    Parameters
    ----------
    a : double array
    f : double array
    elong : double array
    phi : double array
    height : double array

    Returns
    -------
    xyz : double array

    Notes
    -----
    Wraps ERFA function ``eraGd2gce``. The ERFA documentation is::

        - - - - - - - - - -
         e r a G d 2 g c e
        - - - - - - - - - -

        Transform geodetic coordinates to geocentric for a reference
        ellipsoid of specified form.

        Given:
           a       double     equatorial radius (Notes 1,4)
           f       double     flattening (Notes 2,4)
           elong   double     longitude (radians, east +ve)
           phi     double     latitude (geodetic, radians, Note 4)
           height  double     height above ellipsoid (geodetic, Notes 3,4)

        Returned:
           xyz     double[3]  geocentric vector (Note 3)

        Returned (function value):
                   int        status:  0 = OK
                                      -1 = illegal case (Note 4)
        Notes:

        1) The equatorial radius, a, can be in any units, but meters is
           the conventional choice.

        2) The flattening, f, is (for the Earth) a value around 0.00335,
           i.e. around 1/298.

        3) The equatorial radius, a, and the height, height, must be
           given in the same units, and determine the units of the
           returned geocentric vector, xyz.

        4) No validation is performed on individual arguments.  The error
           status -1 protects against (unrealistic) cases that would lead
           to arithmetic exceptions.  If an error occurs, xyz is unchanged.

        5) The inverse transformation is performed in the function
           eraGc2gde.

        6) The transformation for a standard ellipsoid (such as ERFA_WGS84) can
           more conveniently be performed by calling eraGd2gc,  which uses a
           numerical code to identify the required a and f values.

        References:

           Green, R.M., Spherical Astronomy, Cambridge University Press,
           (1985) Section 4.5, p96.

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992),
           Section 4.22, p202.

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    xyz, c_retval = ufunc.gd2gce(a, f, elong, phi, height)
    check_errwarn(c_retval, 'gd2gce')
    return xyz


STATUS_CODES['gd2gce'] = {
    0: 'OK',
    -1: 'illegal case (Note 4)Notes:',
}


def d2dtf(scale, ndp, d1, d2):
    """
    Format for output a 2-part Julian Date (or in the case of UTC a
    quasi-JD form that includes special provision for leap seconds).

    Parameters
    ----------
    scale : const char array
    ndp : int array
    d1 : double array
    d2 : double array

    Returns
    -------
    iy : int array
    im : int array
    id : int array
    ihmsf : int array

    Notes
    -----
    Wraps ERFA function ``eraD2dtf``. The ERFA documentation is::

        - - - - - - - - -
         e r a D 2 d t f
        - - - - - - - - -

        Format for output a 2-part Julian Date (or in the case of UTC a
        quasi-JD form that includes special provision for leap seconds).

        Given:
           scale     char[]  time scale ID (Note 1)
           ndp       int     resolution (Note 2)
           d1,d2     double  time as a 2-part Julian Date (Notes 3,4)

        Returned:
           iy,im,id  int     year, month, day in Gregorian calendar (Note 5)
           ihmsf     int[4]  hours, minutes, seconds, fraction (Note 1)

        Returned (function value):
                     int     status: +1 = dubious year (Note 5)
                                      0 = OK
                                     -1 = unacceptable date (Note 6)

        Notes:

        1) scale identifies the time scale.  Only the value "UTC" (in upper
           case) is significant, and enables handling of leap seconds (see
           Note 4).

        2) ndp is the number of decimal places in the seconds field, and can
           have negative as well as positive values, such as:

           ndp         resolution
           -4            1 00 00
           -3            0 10 00
           -2            0 01 00
           -1            0 00 10
            0            0 00 01
            1            0 00 00.1
            2            0 00 00.01
            3            0 00 00.001

           The limits are platform dependent, but a safe range is -5 to +9.

        3) d1+d2 is Julian Date, apportioned in any convenient way between
           the two arguments, for example where d1 is the Julian Day Number
           and d2 is the fraction of a day.  In the case of UTC, where the
           use of JD is problematical, special conventions apply:  see the
           next note.

        4) JD cannot unambiguously represent UTC during a leap second unless
           special measures are taken.  The ERFA internal convention is that
           the quasi-JD day represents UTC days whether the length is 86399,
           86400 or 86401 SI seconds.  In the 1960-1972 era there were
           smaller jumps (in either direction) each time the linear UTC(TAI)
           expression was changed, and these "mini-leaps" are also included
           in the ERFA convention.

        5) The warning status "dubious year" flags UTCs that predate the
           introduction of the time scale or that are too far in the future
           to be trusted.  See eraDat for further details.

        6) For calendar conventions and limitations, see eraCal2jd.

        Called:
           eraJd2cal    JD to Gregorian calendar
           eraD2tf      decompose days to hms
           eraDat       delta(AT) = TAI-UTC

        This revision:  2014 February 15

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    iy, im, id, ihmsf, c_retval = ufunc.d2dtf(scale, ndp, d1, d2)
    check_errwarn(c_retval, 'd2dtf')
    return iy, im, id, ihmsf


STATUS_CODES['d2dtf'] = {
    1: 'dubious year (Note 5)',
    0: 'OK',
    -1: 'unacceptable date (Note 6)',
}


def dat(iy, im, id, fd):
    """
    For a given UTC date, calculate Delta(AT) = TAI-UTC.

    Parameters
    ----------
    iy : int array
    im : int array
    id : int array
    fd : double array

    Returns
    -------
    deltat : double array

    Notes
    -----
    Wraps ERFA function ``eraDat``. The ERFA documentation is::

        - - - - - - -
         e r a D a t
        - - - - - - -

        For a given UTC date, calculate Delta(AT) = TAI-UTC.

           :------------------------------------------:
           :                                          :
           :                 IMPORTANT                :
           :                                          :
           :  A new version of this function must be  :
           :  produced whenever a new leap second is  :
           :  announced.  There are four items to     :
           :  change on each such occasion:           :
           :                                          :
           :  1) A new line must be added to the set  :
           :     of statements that initialize the    :
           :     array "changes".                     :
           :                                          :
           :  2) The constant IYV must be set to the  :
           :     current year.                        :
           :                                          :
           :  3) The "Latest leap second" comment     :
           :     below must be set to the new leap    :
           :     second date.                         :
           :                                          :
           :  4) The "This revision" comment, later,  :
           :     must be set to the current date.     :
           :                                          :
           :  Change (2) must also be carried out     :
           :  whenever the function is re-issued,     :
           :  even if no leap seconds have been       :
           :  added.                                  :
           :                                          :
           :  Latest leap second:  2016 December 31   :
           :                                          :
           :__________________________________________:

        Given:
           iy     int      UTC:  year (Notes 1 and 2)
           im     int            month (Note 2)
           id     int            day (Notes 2 and 3)
           fd     double         fraction of day (Note 4)

        Returned:
           deltat double   TAI minus UTC, seconds

        Returned (function value):
                  int      status (Note 5):
                             1 = dubious year (Note 1)
                             0 = OK
                            -1 = bad year
                            -2 = bad month
                            -3 = bad day (Note 3)
                            -4 = bad fraction (Note 4)
                            -5 = internal error (Note 5)

        Notes:

        1) UTC began at 1960 January 1.0 (JD 2436934.5) and it is improper
           to call the function with an earlier date.  If this is attempted,
           zero is returned together with a warning status.

           Because leap seconds cannot, in principle, be predicted in
           advance, a reliable check for dates beyond the valid range is
           impossible.  To guard against gross errors, a year five or more
           after the release year of the present function (see the constant
           IYV) is considered dubious.  In this case a warning status is
           returned but the result is computed in the normal way.

           For both too-early and too-late years, the warning status is +1.
           This is distinct from the error status -1, which signifies a year
           so early that JD could not be computed.

        2) If the specified date is for a day which ends with a leap second,
           the TAI-UTC value returned is for the period leading up to the
           leap second.  If the date is for a day which begins as a leap
           second ends, the TAI-UTC returned is for the period following the
           leap second.

        3) The day number must be in the normal calendar range, for example
           1 through 30 for April.  The "almanac" convention of allowing
           such dates as January 0 and December 32 is not supported in this
           function, in order to avoid confusion near leap seconds.

        4) The fraction of day is used only for dates before the
           introduction of leap seconds, the first of which occurred at the
           end of 1971.  It is tested for validity (0 to 1 is the valid
           range) even if not used;  if invalid, zero is used and status -4
           is returned.  For many applications, setting fd to zero is
           acceptable;  the resulting error is always less than 3 ms (and
           occurs only pre-1972).

        5) The status value returned in the case where there are multiple
           errors refers to the first error detected.  For example, if the
           month and day are 13 and 32 respectively, status -2 (bad month)
           will be returned.  The "internal error" status refers to a
           case that is impossible but causes some compilers to issue a
           warning.

        6) In cases where a valid result is not available, zero is returned.

        References:

        1) For dates from 1961 January 1 onwards, the expressions from the
           file ftp://maia.usno.navy.mil/ser7/tai-utc.dat are used.

        2) The 5ms timestep at 1961 January 1 is taken from 2.58.1 (p87) of
           the 1992 Explanatory Supplement.

        Called:
           eraCal2jd    Gregorian calendar to JD

        This revision:  2020 May 31

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    deltat, c_retval = ufunc.dat(iy, im, id, fd)
    check_errwarn(c_retval, 'dat')
    return deltat


STATUS_CODES['dat'] = {
    1: 'dubious year (Note 1)',
    0: 'OK',
    -1: 'bad year',
    -2: 'bad month',
    -3: 'bad day (Note 3)',
    -4: 'bad fraction (Note 4)',
    -5: 'internal error (Note 5)',
}


def dtdb(date1, date2, ut, elong, u, v):
    """
    An approximation to TDB-TT, the difference between barycentric
    dynamical time and terrestrial time, for an observer on the Earth.

    Parameters
    ----------
    date1 : double array
    date2 : double array
    ut : double array
    elong : double array
    u : double array
    v : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraDtdb``. The ERFA documentation is::

        - - - - - - - -
         e r a D t d b
        - - - - - - - -

        An approximation to TDB-TT, the difference between barycentric
        dynamical time and terrestrial time, for an observer on the Earth.

        The different time scales - proper, coordinate and realized - are
        related to each other:

                  TAI             <-  physically realized
                   :
                offset            <-  observed (nominally +32.184s)
                   :
                  TT              <-  terrestrial time
                   :
          rate adjustment (L_G)   <-  definition of TT
                   :
                  TCG             <-  time scale for GCRS
                   :
            "periodic" terms      <-  eraDtdb  is an implementation
                   :
          rate adjustment (L_C)   <-  function of solar-system ephemeris
                   :
                  TCB             <-  time scale for BCRS
                   :
          rate adjustment (-L_B)  <-  definition of TDB
                   :
                  TDB             <-  TCB scaled to track TT
                   :
            "periodic" terms      <-  -eraDtdb is an approximation
                   :
                  TT              <-  terrestrial time

        Adopted values for the various constants can be found in the IERS
        Conventions (McCarthy & Petit 2003).

        Given:
           date1,date2   double  date, TDB (Notes 1-3)
           ut            double  universal time (UT1, fraction of one day)
           elong         double  longitude (east positive, radians)
           u             double  distance from Earth spin axis (km)
           v             double  distance north of equatorial plane (km)

        Returned (function value):
                         double  TDB-TT (seconds)

        Notes:

        1) The date date1+date2 is a Julian Date, apportioned in any
           convenient way between the two arguments.  For example,
           JD(TT)=2450123.7 could be expressed in any of these ways,
           among others:

                  date1          date2

               2450123.7           0.0       (JD method)
               2451545.0       -1421.3       (J2000 method)
               2400000.5       50123.2       (MJD method)
               2450123.5           0.2       (date & time method)

           The JD method is the most natural and convenient to use in
           cases where the loss of several decimal digits of resolution
           is acceptable.  The J2000 method is best matched to the way
           the argument is handled internally and will deliver the
           optimum resolution.  The MJD method and the date & time methods
           are both good compromises between resolution and convenience.

           Although the date is, formally, barycentric dynamical time (TDB),
           the terrestrial dynamical time (TT) can be used with no practical
           effect on the accuracy of the prediction.

        2) TT can be regarded as a coordinate time that is realized as an
           offset of 32.184s from International Atomic Time, TAI.  TT is a
           specific linear transformation of geocentric coordinate time TCG,
           which is the time scale for the Geocentric Celestial Reference
           System, GCRS.

        3) TDB is a coordinate time, and is a specific linear transformation
           of barycentric coordinate time TCB, which is the time scale for
           the Barycentric Celestial Reference System, BCRS.

        4) The difference TCG-TCB depends on the masses and positions of the
           bodies of the solar system and the velocity of the Earth.  It is
           dominated by a rate difference, the residual being of a periodic
           character.  The latter, which is modeled by the present function,
           comprises a main (annual) sinusoidal term of amplitude
           approximately 0.00166 seconds, plus planetary terms up to about
           20 microseconds, and lunar and diurnal terms up to 2 microseconds.
           These effects come from the changing transverse Doppler effect
           and gravitational red-shift as the observer (on the Earth's
           surface) experiences variations in speed (with respect to the
           BCRS) and gravitational potential.

        5) TDB can be regarded as the same as TCB but with a rate adjustment
           to keep it close to TT, which is convenient for many applications.
           The history of successive attempts to define TDB is set out in
           Resolution 3 adopted by the IAU General Assembly in 2006, which
           defines a fixed TDB(TCB) transformation that is consistent with
           contemporary solar-system ephemerides.  Future ephemerides will
           imply slightly changed transformations between TCG and TCB, which
           could introduce a linear drift between TDB and TT;  however, any
           such drift is unlikely to exceed 1 nanosecond per century.

        6) The geocentric TDB-TT model used in the present function is that of
           Fairhead & Bretagnon (1990), in its full form.  It was originally
           supplied by Fairhead (private communications with P.T.Wallace,
           1990) as a Fortran subroutine.  The present C function contains an
           adaptation of the Fairhead code.  The numerical results are
           essentially unaffected by the changes, the differences with
           respect to the Fairhead & Bretagnon original being at the 1e-20 s
           level.

           The topocentric part of the model is from Moyer (1981) and
           Murray (1983), with fundamental arguments adapted from
           Simon et al. 1994.  It is an approximation to the expression
           ( v / c ) . ( r / c ), where v is the barycentric velocity of
           the Earth, r is the geocentric position of the observer and
           c is the speed of light.

           By supplying zeroes for u and v, the topocentric part of the
           model can be nullified, and the function will return the Fairhead
           & Bretagnon result alone.

        7) During the interval 1950-2050, the absolute accuracy is better
           than +/- 3 nanoseconds relative to time ephemerides obtained by
           direct numerical integrations based on the JPL DE405 solar system
           ephemeris.

        8) It must be stressed that the present function is merely a model,
           and that numerical integration of solar-system ephemerides is the
           definitive method for predicting the relationship between TCG and
           TCB and hence between TT and TDB.

        References:

           Fairhead, L., & Bretagnon, P., Astron.Astrophys., 229, 240-247
           (1990).

           IAU 2006 Resolution 3.

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Moyer, T.D., Cel.Mech., 23, 33 (1981).

           Murray, C.A., Vectorial Astrometry, Adam Hilger (1983).

           Seidelmann, P.K. et al., Explanatory Supplement to the
           Astronomical Almanac, Chapter 2, University Science Books (1992).

           Simon, J.L., Bretagnon, P., Chapront, J., Chapront-Touze, M.,
           Francou, G. & Laskar, J., Astron.Astrophys., 282, 663-683 (1994).

        This revision:  2018 January 2

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.dtdb(date1, date2, ut, elong, u, v)
    return c_retval


def dtf2d(scale, iy, im, id, ihr, imn, sec):
    """
    Encode date and time fields into 2-part Julian Date (or in the case
    of UTC a quasi-JD form that includes special provision for leap
    seconds).

    Parameters
    ----------
    scale : const char array
    iy : int array
    im : int array
    id : int array
    ihr : int array
    imn : int array
    sec : double array

    Returns
    -------
    d1 : double array
    d2 : double array

    Notes
    -----
    Wraps ERFA function ``eraDtf2d``. The ERFA documentation is::

        - - - - - - - - -
         e r a D t f 2 d
        - - - - - - - - -

        Encode date and time fields into 2-part Julian Date (or in the case
        of UTC a quasi-JD form that includes special provision for leap
        seconds).

        Given:
           scale     char[]  time scale ID (Note 1)
           iy,im,id  int     year, month, day in Gregorian calendar (Note 2)
           ihr,imn   int     hour, minute
           sec       double  seconds

        Returned:
           d1,d2     double  2-part Julian Date (Notes 3,4)

        Returned (function value):
                     int     status: +3 = both of next two
                                     +2 = time is after end of day (Note 5)
                                     +1 = dubious year (Note 6)
                                      0 = OK
                                     -1 = bad year
                                     -2 = bad month
                                     -3 = bad day
                                     -4 = bad hour
                                     -5 = bad minute
                                     -6 = bad second (<0)

        Notes:

        1) scale identifies the time scale.  Only the value "UTC" (in upper
           case) is significant, and enables handling of leap seconds (see
           Note 4).

        2) For calendar conventions and limitations, see eraCal2jd.

        3) The sum of the results, d1+d2, is Julian Date, where normally d1
           is the Julian Day Number and d2 is the fraction of a day.  In the
           case of UTC, where the use of JD is problematical, special
           conventions apply:  see the next note.

        4) JD cannot unambiguously represent UTC during a leap second unless
           special measures are taken.  The ERFA internal convention is that
           the quasi-JD day represents UTC days whether the length is 86399,
           86400 or 86401 SI seconds.  In the 1960-1972 era there were
           smaller jumps (in either direction) each time the linear UTC(TAI)
           expression was changed, and these "mini-leaps" are also included
           in the ERFA convention.

        5) The warning status "time is after end of day" usually means that
           the sec argument is greater than 60.0.  However, in a day ending
           in a leap second the limit changes to 61.0 (or 59.0 in the case
           of a negative leap second).

        6) The warning status "dubious year" flags UTCs that predate the
           introduction of the time scale or that are too far in the future
           to be trusted.  See eraDat for further details.

        7) Only in the case of continuous and regular time scales (TAI, TT,
           TCG, TCB and TDB) is the result d1+d2 a Julian Date, strictly
           speaking.  In the other cases (UT1 and UTC) the result must be
           used with circumspection;  in particular the difference between
           two such results cannot be interpreted as a precise time
           interval.

        Called:
           eraCal2jd    Gregorian calendar to JD
           eraDat       delta(AT) = TAI-UTC
           eraJd2cal    JD to Gregorian calendar

        This revision:  2013 July 26

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    d1, d2, c_retval = ufunc.dtf2d(scale, iy, im, id, ihr, imn, sec)
    check_errwarn(c_retval, 'dtf2d')
    return d1, d2


STATUS_CODES['dtf2d'] = {
    3: 'both of next two',
    2: 'time is after end of day (Note 5)',
    1: 'dubious year (Note 6)',
    0: 'OK',
    -1: 'bad year',
    -2: 'bad month',
    -3: 'bad day',
    -4: 'bad hour',
    -5: 'bad minute',
    -6: 'bad second (<0)',
}


def taitt(tai1, tai2):
    """
    Time scale transformation:  International Atomic Time, TAI, to
    Terrestrial Time, TT.

    Parameters
    ----------
    tai1 : double array
    tai2 : double array

    Returns
    -------
    tt1 : double array
    tt2 : double array

    Notes
    -----
    Wraps ERFA function ``eraTaitt``. The ERFA documentation is::

        - - - - - - - - -
         e r a T a i t t
        - - - - - - - - -

        Time scale transformation:  International Atomic Time, TAI, to
        Terrestrial Time, TT.

        Given:
           tai1,tai2  double    TAI as a 2-part Julian Date

        Returned:
           tt1,tt2    double    TT as a 2-part Julian Date

        Returned (function value):
                      int       status:  0 = OK

        Note:

           tai1+tai2 is Julian Date, apportioned in any convenient way
           between the two arguments, for example where tai1 is the Julian
           Day Number and tai2 is the fraction of a day.  The returned
           tt1,tt2 follow suit.

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992)

        This revision:  2019 June 20

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    tt1, tt2, c_retval = ufunc.taitt(tai1, tai2)
    check_errwarn(c_retval, 'taitt')
    return tt1, tt2


STATUS_CODES['taitt'] = {
    0: 'OK',
}


def taiut1(tai1, tai2, dta):
    """
    Time scale transformation:  International Atomic Time, TAI, to
    Universal Time, UT1.

    Parameters
    ----------
    tai1 : double array
    tai2 : double array
    dta : double array

    Returns
    -------
    ut11 : double array
    ut12 : double array

    Notes
    -----
    Wraps ERFA function ``eraTaiut1``. The ERFA documentation is::

        - - - - - - - - - -
         e r a T a i u t 1
        - - - - - - - - - -

        Time scale transformation:  International Atomic Time, TAI, to
        Universal Time, UT1.

        Given:
           tai1,tai2  double    TAI as a 2-part Julian Date
           dta        double    UT1-TAI in seconds

        Returned:
           ut11,ut12  double    UT1 as a 2-part Julian Date

        Returned (function value):
                      int       status:  0 = OK

        Notes:

        1) tai1+tai2 is Julian Date, apportioned in any convenient way
           between the two arguments, for example where tai1 is the Julian
           Day Number and tai2 is the fraction of a day.  The returned
           UT11,UT12 follow suit.

        2) The argument dta, i.e. UT1-TAI, is an observed quantity, and is
           available from IERS tabulations.

        Reference:

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992)

        This revision:  2019 June 20

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    ut11, ut12, c_retval = ufunc.taiut1(tai1, tai2, dta)
    check_errwarn(c_retval, 'taiut1')
    return ut11, ut12


STATUS_CODES['taiut1'] = {
    0: 'OK',
}


def taiutc(tai1, tai2):
    """
    Time scale transformation:  International Atomic Time, TAI, to
    Coordinated Universal Time, UTC.

    Parameters
    ----------
    tai1 : double array
    tai2 : double array

    Returns
    -------
    utc1 : double array
    utc2 : double array

    Notes
    -----
    Wraps ERFA function ``eraTaiutc``. The ERFA documentation is::

        - - - - - - - - - -
         e r a T a i u t c
        - - - - - - - - - -

        Time scale transformation:  International Atomic Time, TAI, to
        Coordinated Universal Time, UTC.

        Given:
           tai1,tai2  double   TAI as a 2-part Julian Date (Note 1)

        Returned:
           utc1,utc2  double   UTC as a 2-part quasi Julian Date (Notes 1-3)

        Returned (function value):
                      int      status: +1 = dubious year (Note 4)
                                        0 = OK
                                       -1 = unacceptable date

        Notes:

        1) tai1+tai2 is Julian Date, apportioned in any convenient way
           between the two arguments, for example where tai1 is the Julian
           Day Number and tai2 is the fraction of a day.  The returned utc1
           and utc2 form an analogous pair, except that a special convention
           is used, to deal with the problem of leap seconds - see the next
           note.

        2) JD cannot unambiguously represent UTC during a leap second unless
           special measures are taken.  The convention in the present
           function is that the JD day represents UTC days whether the
           length is 86399, 86400 or 86401 SI seconds.  In the 1960-1972 era
           there were smaller jumps (in either direction) each time the
           linear UTC(TAI) expression was changed, and these "mini-leaps"
           are also included in the ERFA convention.

        3) The function eraD2dtf can be used to transform the UTC quasi-JD
           into calendar date and clock time, including UTC leap second
           handling.

        4) The warning status "dubious year" flags UTCs that predate the
           introduction of the time scale or that are too far in the future
           to be trusted.  See eraDat for further details.

        Called:
           eraUtctai    UTC to TAI

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992)

        This revision:  2019 June 20

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    utc1, utc2, c_retval = ufunc.taiutc(tai1, tai2)
    check_errwarn(c_retval, 'taiutc')
    return utc1, utc2


STATUS_CODES['taiutc'] = {
    1: 'dubious year (Note 4)',
    0: 'OK',
    -1: 'unacceptable date',
}


def tcbtdb(tcb1, tcb2):
    """
    Time scale transformation:  Barycentric Coordinate Time, TCB, to
    Barycentric Dynamical Time, TDB.

    Parameters
    ----------
    tcb1 : double array
    tcb2 : double array

    Returns
    -------
    tdb1 : double array
    tdb2 : double array

    Notes
    -----
    Wraps ERFA function ``eraTcbtdb``. The ERFA documentation is::

        - - - - - - - - - -
         e r a T c b t d b
        - - - - - - - - - -

        Time scale transformation:  Barycentric Coordinate Time, TCB, to
        Barycentric Dynamical Time, TDB.

        Given:
           tcb1,tcb2  double    TCB as a 2-part Julian Date

        Returned:
           tdb1,tdb2  double    TDB as a 2-part Julian Date

        Returned (function value):
                      int       status:  0 = OK

        Notes:

        1) tcb1+tcb2 is Julian Date, apportioned in any convenient way
           between the two arguments, for example where tcb1 is the Julian
           Day Number and tcb2 is the fraction of a day.  The returned
           tdb1,tdb2 follow suit.

        2) The 2006 IAU General Assembly introduced a conventional linear
           transformation between TDB and TCB.  This transformation
           compensates for the drift between TCB and terrestrial time TT,
           and keeps TDB approximately centered on TT.  Because the
           relationship between TT and TCB depends on the adopted solar
           system ephemeris, the degree of alignment between TDB and TT over
           long intervals will vary according to which ephemeris is used.
           Former definitions of TDB attempted to avoid this problem by
           stipulating that TDB and TT should differ only by periodic
           effects.  This is a good description of the nature of the
           relationship but eluded precise mathematical formulation.  The
           conventional linear relationship adopted in 2006 sidestepped
           these difficulties whilst delivering a TDB that in practice was
           consistent with values before that date.

        3) TDB is essentially the same as Teph, the time argument for the
           JPL solar system ephemerides.

        Reference:

           IAU 2006 Resolution B3

        This revision:  2019 June 20

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    tdb1, tdb2, c_retval = ufunc.tcbtdb(tcb1, tcb2)
    check_errwarn(c_retval, 'tcbtdb')
    return tdb1, tdb2


STATUS_CODES['tcbtdb'] = {
    0: 'OK',
}


def tcgtt(tcg1, tcg2):
    """
    Time scale transformation:  Geocentric Coordinate Time, TCG, to
    Terrestrial Time, TT.

    Parameters
    ----------
    tcg1 : double array
    tcg2 : double array

    Returns
    -------
    tt1 : double array
    tt2 : double array

    Notes
    -----
    Wraps ERFA function ``eraTcgtt``. The ERFA documentation is::

        - - - - - - - - -
         e r a T c g t t
        - - - - - - - - -

        Time scale transformation:  Geocentric Coordinate Time, TCG, to
        Terrestrial Time, TT.

        Given:
           tcg1,tcg2  double    TCG as a 2-part Julian Date

        Returned:
           tt1,tt2    double    TT as a 2-part Julian Date

        Returned (function value):
                      int       status:  0 = OK

        Note:

           tcg1+tcg2 is Julian Date, apportioned in any convenient way
           between the two arguments, for example where tcg1 is the Julian
           Day Number and tcg22 is the fraction of a day.  The returned
           tt1,tt2 follow suit.

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           IAU 2000 Resolution B1.9

        This revision:  2020 October 23

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    tt1, tt2, c_retval = ufunc.tcgtt(tcg1, tcg2)
    check_errwarn(c_retval, 'tcgtt')
    return tt1, tt2


STATUS_CODES['tcgtt'] = {
    0: 'OK',
}


def tdbtcb(tdb1, tdb2):
    """
    Time scale transformation:  Barycentric Dynamical Time, TDB, to
    Barycentric Coordinate Time, TCB.

    Parameters
    ----------
    tdb1 : double array
    tdb2 : double array

    Returns
    -------
    tcb1 : double array
    tcb2 : double array

    Notes
    -----
    Wraps ERFA function ``eraTdbtcb``. The ERFA documentation is::

        - - - - - - - - - -
         e r a T d b t c b
        - - - - - - - - - -

        Time scale transformation:  Barycentric Dynamical Time, TDB, to
        Barycentric Coordinate Time, TCB.

        Given:
           tdb1,tdb2  double    TDB as a 2-part Julian Date

        Returned:
           tcb1,tcb2  double    TCB as a 2-part Julian Date

        Returned (function value):
                      int       status:  0 = OK

        Notes:

        1) tdb1+tdb2 is Julian Date, apportioned in any convenient way
           between the two arguments, for example where tdb1 is the Julian
           Day Number and tdb2 is the fraction of a day.  The returned
           tcb1,tcb2 follow suit.

        2) The 2006 IAU General Assembly introduced a conventional linear
           transformation between TDB and TCB.  This transformation
           compensates for the drift between TCB and terrestrial time TT,
           and keeps TDB approximately centered on TT.  Because the
           relationship between TT and TCB depends on the adopted solar
           system ephemeris, the degree of alignment between TDB and TT over
           long intervals will vary according to which ephemeris is used.
           Former definitions of TDB attempted to avoid this problem by
           stipulating that TDB and TT should differ only by periodic
           effects.  This is a good description of the nature of the
           relationship but eluded precise mathematical formulation.  The
           conventional linear relationship adopted in 2006 sidestepped
           these difficulties whilst delivering a TDB that in practice was
           consistent with values before that date.

        3) TDB is essentially the same as Teph, the time argument for the
           JPL solar system ephemerides.

        Reference:

           IAU 2006 Resolution B3

        This revision:  2019 June 20

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    tcb1, tcb2, c_retval = ufunc.tdbtcb(tdb1, tdb2)
    check_errwarn(c_retval, 'tdbtcb')
    return tcb1, tcb2


STATUS_CODES['tdbtcb'] = {
    0: 'OK',
}


def tdbtt(tdb1, tdb2, dtr):
    """
    Time scale transformation:  Barycentric Dynamical Time, TDB, to
    Terrestrial Time, TT.

    Parameters
    ----------
    tdb1 : double array
    tdb2 : double array
    dtr : double array

    Returns
    -------
    tt1 : double array
    tt2 : double array

    Notes
    -----
    Wraps ERFA function ``eraTdbtt``. The ERFA documentation is::

        - - - - - - - - -
         e r a T d b t t
        - - - - - - - - -

        Time scale transformation:  Barycentric Dynamical Time, TDB, to
        Terrestrial Time, TT.

        Given:
           tdb1,tdb2  double    TDB as a 2-part Julian Date
           dtr        double    TDB-TT in seconds

        Returned:
           tt1,tt2    double    TT as a 2-part Julian Date

        Returned (function value):
                      int       status:  0 = OK

        Notes:

        1) tdb1+tdb2 is Julian Date, apportioned in any convenient way
           between the two arguments, for example where tdb1 is the Julian
           Day Number and tdb2 is the fraction of a day.  The returned
           tt1,tt2 follow suit.

        2) The argument dtr represents the quasi-periodic component of the
           GR transformation between TT and TCB.  It is dependent upon the
           adopted solar-system ephemeris, and can be obtained by numerical
           integration, by interrogating a precomputed time ephemeris or by
           evaluating a model such as that implemented in the ERFA function
           eraDtdb.   The quantity is dominated by an annual term of 1.7 ms
           amplitude.

        3) TDB is essentially the same as Teph, the time argument for the
           JPL solar system ephemerides.

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           IAU 2006 Resolution 3

        This revision:  2019 June 20

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    tt1, tt2, c_retval = ufunc.tdbtt(tdb1, tdb2, dtr)
    check_errwarn(c_retval, 'tdbtt')
    return tt1, tt2


STATUS_CODES['tdbtt'] = {
    0: 'OK',
}


def tttai(tt1, tt2):
    """
    Time scale transformation:  Terrestrial Time, TT, to International
    Atomic Time, TAI.

    Parameters
    ----------
    tt1 : double array
    tt2 : double array

    Returns
    -------
    tai1 : double array
    tai2 : double array

    Notes
    -----
    Wraps ERFA function ``eraTttai``. The ERFA documentation is::

        - - - - - - - - -
         e r a T t t a i
        - - - - - - - - -

        Time scale transformation:  Terrestrial Time, TT, to International
        Atomic Time, TAI.

        Given:
           tt1,tt2    double    TT as a 2-part Julian Date

        Returned:
           tai1,tai2  double    TAI as a 2-part Julian Date

        Returned (function value):
                      int       status:  0 = OK

        Note:

           tt1+tt2 is Julian Date, apportioned in any convenient way between
           the two arguments, for example where tt1 is the Julian Day Number
           and tt2 is the fraction of a day.  The returned tai1,tai2 follow
           suit.

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992)

        This revision:  2019 June 20

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    tai1, tai2, c_retval = ufunc.tttai(tt1, tt2)
    check_errwarn(c_retval, 'tttai')
    return tai1, tai2


STATUS_CODES['tttai'] = {
    0: 'OK',
}


def tttcg(tt1, tt2):
    """
    Time scale transformation:  Terrestrial Time, TT, to Geocentric
    Coordinate Time, TCG.

    Parameters
    ----------
    tt1 : double array
    tt2 : double array

    Returns
    -------
    tcg1 : double array
    tcg2 : double array

    Notes
    -----
    Wraps ERFA function ``eraTttcg``. The ERFA documentation is::

        - - - - - - - - -
         e r a T t t c g
        - - - - - - - - -

        Time scale transformation:  Terrestrial Time, TT, to Geocentric
        Coordinate Time, TCG.

        Given:
           tt1,tt2    double    TT as a 2-part Julian Date

        Returned:
           tcg1,tcg2  double    TCG as a 2-part Julian Date

        Returned (function value):
                      int       status:  0 = OK

        Note:

           tt1+tt2 is Julian Date, apportioned in any convenient way between
           the two arguments, for example where tt1 is the Julian Day Number
           and tt2 is the fraction of a day.  The returned tcg1,tcg2 follow
           suit.

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           IAU 2000 Resolution B1.9

        This revision:  2019 June 20

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    tcg1, tcg2, c_retval = ufunc.tttcg(tt1, tt2)
    check_errwarn(c_retval, 'tttcg')
    return tcg1, tcg2


STATUS_CODES['tttcg'] = {
    0: 'OK',
}


def tttdb(tt1, tt2, dtr):
    """
    Time scale transformation:  Terrestrial Time, TT, to Barycentric
    Dynamical Time, TDB.

    Parameters
    ----------
    tt1 : double array
    tt2 : double array
    dtr : double array

    Returns
    -------
    tdb1 : double array
    tdb2 : double array

    Notes
    -----
    Wraps ERFA function ``eraTttdb``. The ERFA documentation is::

        - - - - - - - - -
         e r a T t t d b
        - - - - - - - - -

        Time scale transformation:  Terrestrial Time, TT, to Barycentric
        Dynamical Time, TDB.

        Given:
           tt1,tt2    double    TT as a 2-part Julian Date
           dtr        double    TDB-TT in seconds

        Returned:
           tdb1,tdb2  double    TDB as a 2-part Julian Date

        Returned (function value):
                      int       status:  0 = OK

        Notes:

        1) tt1+tt2 is Julian Date, apportioned in any convenient way between
           the two arguments, for example where tt1 is the Julian Day Number
           and tt2 is the fraction of a day.  The returned tdb1,tdb2 follow
           suit.

        2) The argument dtr represents the quasi-periodic component of the
           GR transformation between TT and TCB.  It is dependent upon the
           adopted solar-system ephemeris, and can be obtained by numerical
           integration, by interrogating a precomputed time ephemeris or by
           evaluating a model such as that implemented in the ERFA function
           eraDtdb.   The quantity is dominated by an annual term of 1.7 ms
           amplitude.

        3) TDB is essentially the same as Teph, the time argument for the JPL
           solar system ephemerides.

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           IAU 2006 Resolution 3

        This revision:  2019 June 20

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    tdb1, tdb2, c_retval = ufunc.tttdb(tt1, tt2, dtr)
    check_errwarn(c_retval, 'tttdb')
    return tdb1, tdb2


STATUS_CODES['tttdb'] = {
    0: 'OK',
}


def ttut1(tt1, tt2, dt):
    """
    Time scale transformation:  Terrestrial Time, TT, to Universal Time,
    UT1.

    Parameters
    ----------
    tt1 : double array
    tt2 : double array
    dt : double array

    Returns
    -------
    ut11 : double array
    ut12 : double array

    Notes
    -----
    Wraps ERFA function ``eraTtut1``. The ERFA documentation is::

        - - - - - - - - -
         e r a T t u t 1
        - - - - - - - - -

        Time scale transformation:  Terrestrial Time, TT, to Universal Time,
        UT1.

        Given:
           tt1,tt2    double    TT as a 2-part Julian Date
           dt         double    TT-UT1 in seconds

        Returned:
           ut11,ut12  double    UT1 as a 2-part Julian Date

        Returned (function value):
                      int       status:  0 = OK

        Notes:

        1) tt1+tt2 is Julian Date, apportioned in any convenient way between
           the two arguments, for example where tt1 is the Julian Day Number
           and tt2 is the fraction of a day.  The returned ut11,ut12 follow
           suit.

        2) The argument dt is classical Delta T.

        Reference:

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992)

        This revision:  2019 June 20

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    ut11, ut12, c_retval = ufunc.ttut1(tt1, tt2, dt)
    check_errwarn(c_retval, 'ttut1')
    return ut11, ut12


STATUS_CODES['ttut1'] = {
    0: 'OK',
}


def ut1tai(ut11, ut12, dta):
    """
    Time scale transformation:  Universal Time, UT1, to International
    Atomic Time, TAI.

    Parameters
    ----------
    ut11 : double array
    ut12 : double array
    dta : double array

    Returns
    -------
    tai1 : double array
    tai2 : double array

    Notes
    -----
    Wraps ERFA function ``eraUt1tai``. The ERFA documentation is::

        - - - - - - - - - -
         e r a U t 1 t a i
        - - - - - - - - - -

        Time scale transformation:  Universal Time, UT1, to International
        Atomic Time, TAI.

        Given:
           ut11,ut12  double    UT1 as a 2-part Julian Date
           dta        double    UT1-TAI in seconds

        Returned:
           tai1,tai2  double    TAI as a 2-part Julian Date

        Returned (function value):
                      int       status:  0 = OK

        Notes:

        1) ut11+ut12 is Julian Date, apportioned in any convenient way
           between the two arguments, for example where ut11 is the Julian
           Day Number and ut12 is the fraction of a day.  The returned
           tai1,tai2 follow suit.

        2) The argument dta, i.e. UT1-TAI, is an observed quantity, and is
           available from IERS tabulations.

        Reference:

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992)

        This revision:  2019 June 20

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    tai1, tai2, c_retval = ufunc.ut1tai(ut11, ut12, dta)
    check_errwarn(c_retval, 'ut1tai')
    return tai1, tai2


STATUS_CODES['ut1tai'] = {
    0: 'OK',
}


def ut1tt(ut11, ut12, dt):
    """
    Time scale transformation:  Universal Time, UT1, to Terrestrial
    Time, TT.

    Parameters
    ----------
    ut11 : double array
    ut12 : double array
    dt : double array

    Returns
    -------
    tt1 : double array
    tt2 : double array

    Notes
    -----
    Wraps ERFA function ``eraUt1tt``. The ERFA documentation is::

        - - - - - - - - -
         e r a U t 1 t t
        - - - - - - - - -

        Time scale transformation:  Universal Time, UT1, to Terrestrial
        Time, TT.

        Given:
           ut11,ut12  double    UT1 as a 2-part Julian Date
           dt         double    TT-UT1 in seconds

        Returned:
           tt1,tt2    double    TT as a 2-part Julian Date

        Returned (function value):
                      int       status:  0 = OK

        Notes:

        1) ut11+ut12 is Julian Date, apportioned in any convenient way
           between the two arguments, for example where ut11 is the Julian
           Day Number and ut12 is the fraction of a day.  The returned
           tt1,tt2 follow suit.

        2) The argument dt is classical Delta T.

        Reference:

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992)

        This revision:  2019 June 20

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    tt1, tt2, c_retval = ufunc.ut1tt(ut11, ut12, dt)
    check_errwarn(c_retval, 'ut1tt')
    return tt1, tt2


STATUS_CODES['ut1tt'] = {
    0: 'OK',
}


def ut1utc(ut11, ut12, dut1):
    """
    Time scale transformation:  Universal Time, UT1, to Coordinated
    Universal Time, UTC.

    Parameters
    ----------
    ut11 : double array
    ut12 : double array
    dut1 : double array

    Returns
    -------
    utc1 : double array
    utc2 : double array

    Notes
    -----
    Wraps ERFA function ``eraUt1utc``. The ERFA documentation is::

        - - - - - - - - - -
         e r a U t 1 u t c
        - - - - - - - - - -

        Time scale transformation:  Universal Time, UT1, to Coordinated
        Universal Time, UTC.

        Given:
           ut11,ut12  double   UT1 as a 2-part Julian Date (Note 1)
           dut1       double   Delta UT1: UT1-UTC in seconds (Note 2)

        Returned:
           utc1,utc2  double   UTC as a 2-part quasi Julian Date (Notes 3,4)

        Returned (function value):
                      int      status: +1 = dubious year (Note 5)
                                        0 = OK
                                       -1 = unacceptable date

        Notes:

        1) ut11+ut12 is Julian Date, apportioned in any convenient way
           between the two arguments, for example where ut11 is the Julian
           Day Number and ut12 is the fraction of a day.  The returned utc1
           and utc2 form an analogous pair, except that a special convention
           is used, to deal with the problem of leap seconds - see Note 3.

        2) Delta UT1 can be obtained from tabulations provided by the
           International Earth Rotation and Reference Systems Service.  The
           value changes abruptly by 1s at a leap second;  however, close to
           a leap second the algorithm used here is tolerant of the "wrong"
           choice of value being made.

        3) JD cannot unambiguously represent UTC during a leap second unless
           special measures are taken.  The convention in the present
           function is that the returned quasi-JD UTC1+UTC2 represents UTC
           days whether the length is 86399, 86400 or 86401 SI seconds.

        4) The function eraD2dtf can be used to transform the UTC quasi-JD
           into calendar date and clock time, including UTC leap second
           handling.

        5) The warning status "dubious year" flags UTCs that predate the
           introduction of the time scale or that are too far in the future
           to be trusted.  See eraDat for further details.

        Called:
           eraJd2cal    JD to Gregorian calendar
           eraDat       delta(AT) = TAI-UTC
           eraCal2jd    Gregorian calendar to JD

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992)

        This revision:  2020 October 25

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    utc1, utc2, c_retval = ufunc.ut1utc(ut11, ut12, dut1)
    check_errwarn(c_retval, 'ut1utc')
    return utc1, utc2


STATUS_CODES['ut1utc'] = {
    1: 'dubious year (Note 5)',
    0: 'OK',
    -1: 'unacceptable date',
}


def utctai(utc1, utc2):
    """
    Time scale transformation:  Coordinated Universal Time, UTC, to
    International Atomic Time, TAI.

    Parameters
    ----------
    utc1 : double array
    utc2 : double array

    Returns
    -------
    tai1 : double array
    tai2 : double array

    Notes
    -----
    Wraps ERFA function ``eraUtctai``. The ERFA documentation is::

        - - - - - - - - - -
         e r a U t c t a i
        - - - - - - - - - -

        Time scale transformation:  Coordinated Universal Time, UTC, to
        International Atomic Time, TAI.

        Given:
           utc1,utc2  double   UTC as a 2-part quasi Julian Date (Notes 1-4)

        Returned:
           tai1,tai2  double   TAI as a 2-part Julian Date (Note 5)

        Returned (function value):
                      int      status: +1 = dubious year (Note 3)
                                        0 = OK
                                       -1 = unacceptable date

        Notes:

        1) utc1+utc2 is quasi Julian Date (see Note 2), apportioned in any
           convenient way between the two arguments, for example where utc1
           is the Julian Day Number and utc2 is the fraction of a day.

        2) JD cannot unambiguously represent UTC during a leap second unless
           special measures are taken.  The convention in the present
           function is that the JD day represents UTC days whether the
           length is 86399, 86400 or 86401 SI seconds.  In the 1960-1972 era
           there were smaller jumps (in either direction) each time the
           linear UTC(TAI) expression was changed, and these "mini-leaps"
           are also included in the ERFA convention.

        3) The warning status "dubious year" flags UTCs that predate the
           introduction of the time scale or that are too far in the future
           to be trusted.  See eraDat for further details.

        4) The function eraDtf2d converts from calendar date and time of day
           into 2-part Julian Date, and in the case of UTC implements the
           leap-second-ambiguity convention described above.

        5) The returned TAI1,TAI2 are such that their sum is the TAI Julian
           Date.

        Called:
           eraJd2cal    JD to Gregorian calendar
           eraDat       delta(AT) = TAI-UTC
           eraCal2jd    Gregorian calendar to JD

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992)

        This revision:  2019 June 20

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    tai1, tai2, c_retval = ufunc.utctai(utc1, utc2)
    check_errwarn(c_retval, 'utctai')
    return tai1, tai2


STATUS_CODES['utctai'] = {
    1: 'dubious year (Note 3)',
    0: 'OK',
    -1: 'unacceptable date',
}


def utcut1(utc1, utc2, dut1):
    """
    Time scale transformation:  Coordinated Universal Time, UTC, to
    Universal Time, UT1.

    Parameters
    ----------
    utc1 : double array
    utc2 : double array
    dut1 : double array

    Returns
    -------
    ut11 : double array
    ut12 : double array

    Notes
    -----
    Wraps ERFA function ``eraUtcut1``. The ERFA documentation is::

        - - - - - - - - - -
         e r a U t c u t 1
        - - - - - - - - - -

        Time scale transformation:  Coordinated Universal Time, UTC, to
        Universal Time, UT1.

        Given:
           utc1,utc2  double   UTC as a 2-part quasi Julian Date (Notes 1-4)
           dut1       double   Delta UT1 = UT1-UTC in seconds (Note 5)

        Returned:
           ut11,ut12  double   UT1 as a 2-part Julian Date (Note 6)

        Returned (function value):
                      int      status: +1 = dubious year (Note 3)
                                        0 = OK
                                       -1 = unacceptable date

        Notes:

        1) utc1+utc2 is quasi Julian Date (see Note 2), apportioned in any
           convenient way between the two arguments, for example where utc1
           is the Julian Day Number and utc2 is the fraction of a day.

        2) JD cannot unambiguously represent UTC during a leap second unless
           special measures are taken.  The convention in the present
           function is that the JD day represents UTC days whether the
           length is 86399, 86400 or 86401 SI seconds.

        3) The warning status "dubious year" flags UTCs that predate the
           introduction of the time scale or that are too far in the future
           to be trusted.  See eraDat for further details.

        4) The function eraDtf2d converts from calendar date and time of
           day into 2-part Julian Date, and in the case of UTC implements
           the leap-second-ambiguity convention described above.

        5) Delta UT1 can be obtained from tabulations provided by the
           International Earth Rotation and Reference Systems Service.
           It is the caller's responsibility to supply a dut1 argument
           containing the UT1-UTC value that matches the given UTC.

        6) The returned ut11,ut12 are such that their sum is the UT1 Julian
           Date.

        References:

           McCarthy, D. D., Petit, G. (eds.), IERS Conventions (2003),
           IERS Technical Note No. 32, BKG (2004)

           Explanatory Supplement to the Astronomical Almanac,
           P. Kenneth Seidelmann (ed), University Science Books (1992)

        Called:
           eraJd2cal    JD to Gregorian calendar
           eraDat       delta(AT) = TAI-UTC
           eraUtctai    UTC to TAI
           eraTaiut1    TAI to UT1

        This revision:  2013 August 12

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    ut11, ut12, c_retval = ufunc.utcut1(utc1, utc2, dut1)
    check_errwarn(c_retval, 'utcut1')
    return ut11, ut12


STATUS_CODES['utcut1'] = {
    1: 'dubious year (Note 3)',
    0: 'OK',
    -1: 'unacceptable date',
}


def ae2hd(az, el, phi):
    """
    Horizon to equatorial coordinates:  transform azimuth and altitude
    to hour angle and declination.

    Parameters
    ----------
    az : double array
    el : double array
    phi : double array

    Returns
    -------
    ha : double array
    dec : double array

    Notes
    -----
    Wraps ERFA function ``eraAe2hd``. The ERFA documentation is::

        - - - - - - - - -
         e r a A e 2 h d
        - - - - - - - - -

        Horizon to equatorial coordinates:  transform azimuth and altitude
        to hour angle and declination.

        Given:
           az       double       azimuth
           el       double       altitude (informally, elevation)
           phi      double       site latitude

        Returned:
           ha       double       hour angle (local)
           dec      double       declination

        Notes:

        1)  All the arguments are angles in radians.

        2)  The sign convention for azimuth is north zero, east +pi/2.

        3)  HA is returned in the range +/-pi.  Declination is returned in
            the range +/-pi/2.

        4)  The latitude phi is pi/2 minus the angle between the Earth's
            rotation axis and the adopted zenith.  In many applications it
            will be sufficient to use the published geodetic latitude of the
            site.  In very precise (sub-arcsecond) applications, phi can be
            corrected for polar motion.

        5)  The azimuth az must be with respect to the rotational north pole,
            as opposed to the ITRS pole, and an azimuth with respect to north
            on a map of the Earth's surface will need to be adjusted for
            polar motion if sub-arcsecond accuracy is required.

        6)  Should the user wish to work with respect to the astronomical
            zenith rather than the geodetic zenith, phi will need to be
            adjusted for deflection of the vertical (often tens of
            arcseconds), and the zero point of ha will also be affected.

        7)  The transformation is the same as Ve = Ry(phi-pi/2)*Rz(pi)*Vh,
            where Ve and Vh are lefthanded unit vectors in the (ha,dec) and
            (az,el) systems respectively and Rz and Ry are rotations about
            first the z-axis and then the y-axis.  (n.b. Rz(pi) simply
            reverses the signs of the x and y components.)  For efficiency,
            the algorithm is written out rather than calling other utility
            functions.  For applications that require even greater
            efficiency, additional savings are possible if constant terms
            such as functions of latitude are computed once and for all.

        8)  Again for efficiency, no range checking of arguments is carried
            out.

        Last revision:   2017 September 12

        ERFA release 2021-01-25

        Copyright (C) 2021 IAU ERFA Board.  See notes at end.

    """
    ha, dec = ufunc.ae2hd(az, el, phi)
    return ha, dec


def hd2ae(ha, dec, phi):
    """
    Equatorial to horizon coordinates:  transform hour angle and
    declination to azimuth and altitude.

    Parameters
    ----------
    ha : double array
    dec : double array
    phi : double array

    Returns
    -------
    az : double array
    el : double array

    Notes
    -----
    Wraps ERFA function ``eraHd2ae``. The ERFA documentation is::

        - - - - - - - - -
         e r a H d 2 a e
        - - - - - - - - -

        Equatorial to horizon coordinates:  transform hour angle and
        declination to azimuth and altitude.

        Given:
           ha       double       hour angle (local)
           dec      double       declination
           phi      double       site latitude

        Returned:
           *az      double       azimuth
           *el      double       altitude (informally, elevation)

        Notes:

        1)  All the arguments are angles in radians.

        2)  Azimuth is returned in the range 0-2pi;  north is zero, and east
            is +pi/2.  Altitude is returned in the range +/- pi/2.

        3)  The latitude phi is pi/2 minus the angle between the Earth's
            rotation axis and the adopted zenith.  In many applications it
            will be sufficient to use the published geodetic latitude of the
            site.  In very precise (sub-arcsecond) applications, phi can be
            corrected for polar motion.

        4)  The returned azimuth az is with respect to the rotational north
            pole, as opposed to the ITRS pole, and for sub-arcsecond
            accuracy will need to be adjusted for polar motion if it is to
            be with respect to north on a map of the Earth's surface.

        5)  Should the user wish to work with respect to the astronomical
            zenith rather than the geodetic zenith, phi will need to be
            adjusted for deflection of the vertical (often tens of
            arcseconds), and the zero point of the hour angle ha will also
            be affected.

        6)  The transformation is the same as Vh = Rz(pi)*Ry(pi/2-phi)*Ve,
            where Vh and Ve are lefthanded unit vectors in the (az,el) and
            (ha,dec) systems respectively and Ry and Rz are rotations about
            first the y-axis and then the z-axis.  (n.b. Rz(pi) simply
            reverses the signs of the x and y components.)  For efficiency,
            the algorithm is written out rather than calling other utility
            functions.  For applications that require even greater
            efficiency, additional savings are possible if constant terms
            such as functions of latitude are computed once and for all.

        7)  Again for efficiency, no range checking of arguments is carried
            out.

        Last revision:   2017 September 12

        ERFA release 2021-01-25

        Copyright (C) 2021 IAU ERFA Board.  See notes at end.

    """
    az, el = ufunc.hd2ae(ha, dec, phi)
    return az, el


def hd2pa(ha, dec, phi):
    """
    Parallactic angle for a given hour angle and declination.

    Parameters
    ----------
    ha : double array
    dec : double array
    phi : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraHd2pa``. The ERFA documentation is::

        - - - - - - - - -
         e r a H d 2 p a
        - - - - - - - - -

        Parallactic angle for a given hour angle and declination.

        Given:
           ha     double     hour angle
           dec    double     declination
           phi    double     site latitude

        Returned (function value):
                  double     parallactic angle

        Notes:

        1)  All the arguments are angles in radians.

        2)  The parallactic angle at a point in the sky is the position
            angle of the vertical, i.e. the angle between the directions to
            the north celestial pole and to the zenith respectively.

        3)  The result is returned in the range -pi to +pi.

        4)  At the pole itself a zero result is returned.

        5)  The latitude phi is pi/2 minus the angle between the Earth's
            rotation axis and the adopted zenith.  In many applications it
            will be sufficient to use the published geodetic latitude of the
            site.  In very precise (sub-arcsecond) applications, phi can be
            corrected for polar motion.

        6)  Should the user wish to work with respect to the astronomical
            zenith rather than the geodetic zenith, phi will need to be
            adjusted for deflection of the vertical (often tens of
            arcseconds), and the zero point of the hour angle ha will also
            be affected.

        Reference:
           Smart, W.M., "Spherical Astronomy", Cambridge University Press,
           6th edition (Green, 1977), p49.

        Last revision:   2017 September 12

        ERFA release 2021-01-25

        Copyright (C) 2021 IAU ERFA Board.  See notes at end.

    """
    c_retval = ufunc.hd2pa(ha, dec, phi)
    return c_retval


def tpors(xi, eta, a, b):
    """
    In the tangent plane projection, given the rectangular coordinates
    of a star and its spherical coordinates, determine the spherical
    coordinates of the tangent point.

    Parameters
    ----------
    xi : double array
    eta : double array
    a : double array
    b : double array

    Returns
    -------
    a01 : double array
    b01 : double array
    a02 : double array
    b02 : double array

    Notes
    -----
    Wraps ERFA function ``eraTpors``. The ERFA documentation is::

        - - - - - - - - -
         e r a T p o r s
        - - - - - - - - -

        In the tangent plane projection, given the rectangular coordinates
        of a star and its spherical coordinates, determine the spherical
        coordinates of the tangent point.

        Given:
           xi,eta     double  rectangular coordinates of star image (Note 2)
           a,b        double  star's spherical coordinates (Note 3)

        Returned:
           *a01,*b01  double  tangent point's spherical coordinates, Soln. 1
           *a02,*b02  double  tangent point's spherical coordinates, Soln. 2

        Returned (function value):
                      int     number of solutions:
                              0 = no solutions returned (Note 5)
                              1 = only the first solution is useful (Note 6)
                              2 = both solutions are useful (Note 6)

        Notes:

        1) The tangent plane projection is also called the "gnomonic
           projection" and the "central projection".

        2) The eta axis points due north in the adopted coordinate system.
           If the spherical coordinates are observed (RA,Dec), the tangent
           plane coordinates (xi,eta) are conventionally called the
           "standard coordinates".  If the spherical coordinates are with
           respect to a right-handed triad, (xi,eta) are also right-handed.
           The units of (xi,eta) are, effectively, radians at the tangent
           point.

        3) All angular arguments are in radians.

        4) The angles a01 and a02 are returned in the range 0-2pi.  The
           angles b01 and b02 are returned in the range +/-pi, but in the
           usual, non-pole-crossing, case, the range is +/-pi/2.

        5) Cases where there is no solution can arise only near the poles.
           For example, it is clearly impossible for a star at the pole
           itself to have a non-zero xi value, and hence it is meaningless
           to ask where the tangent point would have to be to bring about
           this combination of xi and dec.

        6) Also near the poles, cases can arise where there are two useful
           solutions.  The return value indicates whether the second of the
           two solutions returned is useful;  1 indicates only one useful
           solution, the usual case.

        7) The basis of the algorithm is to solve the spherical triangle PSC,
           where P is the north celestial pole, S is the star and C is the
           tangent point.  The spherical coordinates of the tangent point are
           [a0,b0];  writing rho^2 = (xi^2+eta^2) and r^2 = (1+rho^2), side c
           is then (pi/2-b), side p is sqrt(xi^2+eta^2) and side s (to be
           found) is (pi/2-b0).  Angle C is given by sin(C) = xi/rho and
           cos(C) = eta/rho.  Angle P (to be found) is the longitude
           difference between star and tangent point (a-a0).

        8) This function is a member of the following set:

               spherical      vector         solve for

               eraTpxes      eraTpxev         xi,eta
               eraTpsts      eraTpstv          star
             > eraTpors <    eraTporv         origin

        Called:
           eraAnp       normalize angle into range 0 to 2pi

        References:

           Calabretta M.R. & Greisen, E.W., 2002, "Representations of
           celestial coordinates in FITS", Astron.Astrophys. 395, 1077

           Green, R.M., "Spherical Astronomy", Cambridge University Press,
           1987, Chapter 13.

        This revision:   2018 January 2

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    a01, b01, a02, b02, c_retval = ufunc.tpors(xi, eta, a, b)
    check_errwarn(c_retval, 'tpors')
    return a01, b01, a02, b02


def tporv(xi, eta, v):
    """
    In the tangent plane projection, given the rectangular coordinates
    of a star and its direction cosines, determine the direction
    cosines of the tangent point.

    Parameters
    ----------
    xi : double array
    eta : double array
    v : double array

    Returns
    -------
    v01 : double array
    v02 : double array

    Notes
    -----
    Wraps ERFA function ``eraTporv``. The ERFA documentation is::

        - - - - - - - - -
         e r a T p o r v
        - - - - - - - - -

        In the tangent plane projection, given the rectangular coordinates
        of a star and its direction cosines, determine the direction
        cosines of the tangent point.

        Given:
           xi,eta   double    rectangular coordinates of star image (Note 2)
           v        double[3] star's direction cosines (Note 3)

        Returned:
           v01      double[3] tangent point's direction cosines, Solution 1
           v02      double[3] tangent point's direction cosines, Solution 2

        Returned (function value):
                      int     number of solutions:
                              0 = no solutions returned (Note 4)
                              1 = only the first solution is useful (Note 5)
                              2 = both solutions are useful (Note 5)

        Notes:

        1) The tangent plane projection is also called the "gnomonic
           projection" and the "central projection".

        2) The eta axis points due north in the adopted coordinate system.
           If the direction cosines represent observed (RA,Dec), the tangent
           plane coordinates (xi,eta) are conventionally called the
           "standard coordinates".  If the direction cosines are with
           respect to a right-handed triad, (xi,eta) are also right-handed.
           The units of (xi,eta) are, effectively, radians at the tangent
           point.

        3) The vector v must be of unit length or the result will be wrong.

        4) Cases where there is no solution can arise only near the poles.
           For example, it is clearly impossible for a star at the pole
           itself to have a non-zero xi value, and hence it is meaningless
           to ask where the tangent point would have to be.

        5) Also near the poles, cases can arise where there are two useful
           solutions.  The return value indicates whether the second of the
           two solutions returned is useful;  1 indicates only one useful
           solution, the usual case.

        6) The basis of the algorithm is to solve the spherical triangle
           PSC, where P is the north celestial pole, S is the star and C is
           the tangent point.  Calling the celestial spherical coordinates
           of the star and tangent point (a,b) and (a0,b0) respectively, and
           writing rho^2 = (xi^2+eta^2) and r^2 = (1+rho^2), and
           transforming the vector v into (a,b) in the normal way, side c is
           then (pi/2-b), side p is sqrt(xi^2+eta^2) and side s (to be
           found) is (pi/2-b0), while angle C is given by sin(C) = xi/rho
           and cos(C) = eta/rho;  angle P (to be found) is (a-a0).  After
           solving the spherical triangle, the result (a0,b0) can be
           expressed in vector form as v0.

        7) This function is a member of the following set:

               spherical      vector         solve for

               eraTpxes      eraTpxev         xi,eta
               eraTpsts      eraTpstv          star
               eraTpors    > eraTporv <       origin

        References:

           Calabretta M.R. & Greisen, E.W., 2002, "Representations of
           celestial coordinates in FITS", Astron.Astrophys. 395, 1077

           Green, R.M., "Spherical Astronomy", Cambridge University Press,
           1987, Chapter 13.

        This revision:   2018 January 2

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    v01, v02, c_retval = ufunc.tporv(xi, eta, v)
    check_errwarn(c_retval, 'tporv')
    return v01, v02


def tpsts(xi, eta, a0, b0):
    """
    In the tangent plane projection, given the star's rectangular
    coordinates and the spherical coordinates of the tangent point,
    solve for the spherical coordinates of the star.

    Parameters
    ----------
    xi : double array
    eta : double array
    a0 : double array
    b0 : double array

    Returns
    -------
    a : double array
    b : double array

    Notes
    -----
    Wraps ERFA function ``eraTpsts``. The ERFA documentation is::

        - - - - - - - - -
         e r a T p s t s
        - - - - - - - - -

        In the tangent plane projection, given the star's rectangular
        coordinates and the spherical coordinates of the tangent point,
        solve for the spherical coordinates of the star.

        Given:
           xi,eta    double  rectangular coordinates of star image (Note 2)
           a0,b0     double  tangent point's spherical coordinates

        Returned:
           *a,*b     double  star's spherical coordinates

        1) The tangent plane projection is also called the "gnomonic
           projection" and the "central projection".

        2) The eta axis points due north in the adopted coordinate system.
           If the spherical coordinates are observed (RA,Dec), the tangent
           plane coordinates (xi,eta) are conventionally called the
           "standard coordinates".  If the spherical coordinates are with
           respect to a right-handed triad, (xi,eta) are also right-handed.
           The units of (xi,eta) are, effectively, radians at the tangent
           point.

        3) All angular arguments are in radians.

        4) This function is a member of the following set:

               spherical      vector         solve for

               eraTpxes      eraTpxev         xi,eta
             > eraTpsts <    eraTpstv          star
               eraTpors      eraTporv         origin

        Called:
           eraAnp       normalize angle into range 0 to 2pi

        References:

           Calabretta M.R. & Greisen, E.W., 2002, "Representations of
           celestial coordinates in FITS", Astron.Astrophys. 395, 1077

           Green, R.M., "Spherical Astronomy", Cambridge University Press,
           1987, Chapter 13.

        This revision:   2018 January 2

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    a, b = ufunc.tpsts(xi, eta, a0, b0)
    return a, b


def tpstv(xi, eta, v0):
    """
    In the tangent plane projection, given the star's rectangular
    coordinates and the direction cosines of the tangent point, solve
    for the direction cosines of the star.

    Parameters
    ----------
    xi : double array
    eta : double array
    v0 : double array

    Returns
    -------
    v : double array

    Notes
    -----
    Wraps ERFA function ``eraTpstv``. The ERFA documentation is::

        - - - - - - - - -
         e r a T p s t v
        - - - - - - - - -

        In the tangent plane projection, given the star's rectangular
        coordinates and the direction cosines of the tangent point, solve
        for the direction cosines of the star.

        Given:
           xi,eta  double     rectangular coordinates of star image (Note 2)
           v0      double[3]  tangent point's direction cosines

        Returned:
           v       double[3]  star's direction cosines

        1) The tangent plane projection is also called the "gnomonic
           projection" and the "central projection".

        2) The eta axis points due north in the adopted coordinate system.
           If the direction cosines represent observed (RA,Dec), the tangent
           plane coordinates (xi,eta) are conventionally called the
           "standard coordinates".  If the direction cosines are with
           respect to a right-handed triad, (xi,eta) are also right-handed.
           The units of (xi,eta) are, effectively, radians at the tangent
           point.

        3) The method used is to complete the star vector in the (xi,eta)
           based triad and normalize it, then rotate the triad to put the
           tangent point at the pole with the x-axis aligned to zero
           longitude.  Writing (a0,b0) for the celestial spherical
           coordinates of the tangent point, the sequence of rotations is
           (b-pi/2) around the x-axis followed by (-a-pi/2) around the
           z-axis.

        4) If vector v0 is not of unit length, the returned vector v will
           be wrong.

        5) If vector v0 points at a pole, the returned vector v will be
           based on the arbitrary assumption that the longitude coordinate
           of the tangent point is zero.

        6) This function is a member of the following set:

               spherical      vector         solve for

               eraTpxes      eraTpxev         xi,eta
               eraTpsts    > eraTpstv <        star
               eraTpors      eraTporv         origin

        References:

           Calabretta M.R. & Greisen, E.W., 2002, "Representations of
           celestial coordinates in FITS", Astron.Astrophys. 395, 1077

           Green, R.M., "Spherical Astronomy", Cambridge University Press,
           1987, Chapter 13.

        This revision:   2018 January 2

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    v = ufunc.tpstv(xi, eta, v0)
    return v


def tpxes(a, b, a0, b0):
    """
    In the tangent plane projection, given celestial spherical
    coordinates for a star and the tangent point, solve for the star's
    rectangular coordinates in the tangent plane.

    Parameters
    ----------
    a : double array
    b : double array
    a0 : double array
    b0 : double array

    Returns
    -------
    xi : double array
    eta : double array

    Notes
    -----
    Wraps ERFA function ``eraTpxes``. The ERFA documentation is::

        - - - - - - - - -
         e r a T p x e s
        - - - - - - - - -

        In the tangent plane projection, given celestial spherical
        coordinates for a star and the tangent point, solve for the star's
        rectangular coordinates in the tangent plane.

        Given:
           a,b       double  star's spherical coordinates
           a0,b0     double  tangent point's spherical coordinates

        Returned:
           *xi,*eta  double  rectangular coordinates of star image (Note 2)

        Returned (function value):
                     int     status:  0 = OK
                                      1 = star too far from axis
                                      2 = antistar on tangent plane
                                      3 = antistar too far from axis

        Notes:

        1) The tangent plane projection is also called the "gnomonic
           projection" and the "central projection".

        2) The eta axis points due north in the adopted coordinate system.
           If the spherical coordinates are observed (RA,Dec), the tangent
           plane coordinates (xi,eta) are conventionally called the
           "standard coordinates".  For right-handed spherical coordinates,
           (xi,eta) are also right-handed.  The units of (xi,eta) are,
           effectively, radians at the tangent point.

        3) All angular arguments are in radians.

        4) This function is a member of the following set:

               spherical      vector         solve for

             > eraTpxes <    eraTpxev         xi,eta
               eraTpsts      eraTpstv          star
               eraTpors      eraTporv         origin

        References:

           Calabretta M.R. & Greisen, E.W., 2002, "Representations of
           celestial coordinates in FITS", Astron.Astrophys. 395, 1077

           Green, R.M., "Spherical Astronomy", Cambridge University Press,
           1987, Chapter 13.

        This revision:   2018 January 2

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    xi, eta, c_retval = ufunc.tpxes(a, b, a0, b0)
    check_errwarn(c_retval, 'tpxes')
    return xi, eta


STATUS_CODES['tpxes'] = {
    0: 'OK',
    1: 'star too far from axis',
    2: 'antistar on tangent plane',
    3: 'antistar too far from axis',
}


def tpxev(v, v0):
    """
    In the tangent plane projection, given celestial direction cosines
    for a star and the tangent point, solve for the star's rectangular
    coordinates in the tangent plane.

    Parameters
    ----------
    v : double array
    v0 : double array

    Returns
    -------
    xi : double array
    eta : double array

    Notes
    -----
    Wraps ERFA function ``eraTpxev``. The ERFA documentation is::

        - - - - - - - - -
         e r a T p x e v
        - - - - - - - - -

        In the tangent plane projection, given celestial direction cosines
        for a star and the tangent point, solve for the star's rectangular
        coordinates in the tangent plane.

        Given:
           v         double[3]  direction cosines of star (Note 4)
           v0        double[3]  direction cosines of tangent point (Note 4)

        Returned:
           *xi,*eta  double     tangent plane coordinates of star

        Returned (function value):
                     int        status: 0 = OK
                                        1 = star too far from axis
                                        2 = antistar on tangent plane
                                        3 = antistar too far from axis

        Notes:

        1) The tangent plane projection is also called the "gnomonic
           projection" and the "central projection".

        2) The eta axis points due north in the adopted coordinate system.
           If the direction cosines represent observed (RA,Dec), the tangent
           plane coordinates (xi,eta) are conventionally called the
           "standard coordinates".  If the direction cosines are with
           respect to a right-handed triad, (xi,eta) are also right-handed.
           The units of (xi,eta) are, effectively, radians at the tangent
           point.

        3) The method used is to extend the star vector to the tangent
           plane and then rotate the triad so that (x,y) becomes (xi,eta).
           Writing (a,b) for the celestial spherical coordinates of the
           star, the sequence of rotations is (a+pi/2) around the z-axis
           followed by (pi/2-b) around the x-axis.

        4) If vector v0 is not of unit length, or if vector v is of zero
           length, the results will be wrong.

        5) If v0 points at a pole, the returned (xi,eta) will be based on
           the arbitrary assumption that the longitude coordinate of the
           tangent point is zero.

        6) This function is a member of the following set:

               spherical      vector         solve for

               eraTpxes    > eraTpxev <       xi,eta
               eraTpsts      eraTpstv          star
               eraTpors      eraTporv         origin

        References:

           Calabretta M.R. & Greisen, E.W., 2002, "Representations of
           celestial coordinates in FITS", Astron.Astrophys. 395, 1077

           Green, R.M., "Spherical Astronomy", Cambridge University Press,
           1987, Chapter 13.

        This revision:   2018 January 2

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    xi, eta, c_retval = ufunc.tpxev(v, v0)
    check_errwarn(c_retval, 'tpxev')
    return xi, eta


STATUS_CODES['tpxev'] = {
    0: 'OK',
    1: 'star too far from axis',
    2: 'antistar on tangent plane',
    3: 'antistar too far from axis',
}


def a2af(ndp, angle):
    """
    Decompose radians into degrees, arcminutes, arcseconds, fraction.

    Parameters
    ----------
    ndp : int array
    angle : double array

    Returns
    -------
    sign : char array
    idmsf : int array

    Notes
    -----
    Wraps ERFA function ``eraA2af``. The ERFA documentation is::

        - - - - - - - -
         e r a A 2 a f
        - - - - - - - -

        Decompose radians into degrees, arcminutes, arcseconds, fraction.

        Given:
           ndp     int     resolution (Note 1)
           angle   double  angle in radians

        Returned:
           sign    char         '+' or '-'
           idmsf   int[4]  degrees, arcminutes, arcseconds, fraction

        Notes:

        1) The argument ndp is interpreted as follows:

           ndp         resolution
            :      ...0000 00 00
           -7         1000 00 00
           -6          100 00 00
           -5           10 00 00
           -4            1 00 00
           -3            0 10 00
           -2            0 01 00
           -1            0 00 10
            0            0 00 01
            1            0 00 00.1
            2            0 00 00.01
            3            0 00 00.001
            :            0 00 00.000...

        2) The largest positive useful value for ndp is determined by the
           size of angle, the format of doubles on the target platform, and
           the risk of overflowing idmsf[3].  On a typical platform, for
           angle up to 2pi, the available floating-point precision might
           correspond to ndp=12.  However, the practical limit is typically
           ndp=9, set by the capacity of a 32-bit int, or ndp=4 if int is
           only 16 bits.

        3) The absolute value of angle may exceed 2pi.  In cases where it
           does not, it is up to the caller to test for and handle the
           case where angle is very nearly 2pi and rounds up to 360 degrees,
           by testing for idmsf[0]=360 and setting idmsf[0-3] to zero.

        Called:
           eraD2tf      decompose days to hms

        This revision:  2020 April 1

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    sign, idmsf = ufunc.a2af(ndp, angle)
    sign = sign.view(dt_bytes1)
    return sign, idmsf


def a2tf(ndp, angle):
    """
    Decompose radians into hours, minutes, seconds, fraction.

    Parameters
    ----------
    ndp : int array
    angle : double array

    Returns
    -------
    sign : char array
    ihmsf : int array

    Notes
    -----
    Wraps ERFA function ``eraA2tf``. The ERFA documentation is::

        - - - - - - - -
         e r a A 2 t f
        - - - - - - - -

        Decompose radians into hours, minutes, seconds, fraction.

        Given:
           ndp     int     resolution (Note 1)
           angle   double  angle in radians

        Returned:
           sign    char         '+' or '-'
           ihmsf   int[4]  hours, minutes, seconds, fraction

        Notes:

        1) The argument ndp is interpreted as follows:

           ndp         resolution
            :      ...0000 00 00
           -7         1000 00 00
           -6          100 00 00
           -5           10 00 00
           -4            1 00 00
           -3            0 10 00
           -2            0 01 00
           -1            0 00 10
            0            0 00 01
            1            0 00 00.1
            2            0 00 00.01
            3            0 00 00.001
            :            0 00 00.000...

        2) The largest positive useful value for ndp is determined by the
           size of angle, the format of doubles on the target platform, and
           the risk of overflowing ihmsf[3].  On a typical platform, for
           angle up to 2pi, the available floating-point precision might
           correspond to ndp=12.  However, the practical limit is typically
           ndp=9, set by the capacity of a 32-bit int, or ndp=4 if int is
           only 16 bits.

        3) The absolute value of angle may exceed 2pi.  In cases where it
           does not, it is up to the caller to test for and handle the
           case where angle is very nearly 2pi and rounds up to 24 hours,
           by testing for ihmsf[0]=24 and setting ihmsf[0-3] to zero.

        Called:
           eraD2tf      decompose days to hms

        This revision:  2020 April 1

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    sign, ihmsf = ufunc.a2tf(ndp, angle)
    sign = sign.view(dt_bytes1)
    return sign, ihmsf


def af2a(s, ideg, iamin, asec):
    """
    Convert degrees, arcminutes, arcseconds to radians.

    Parameters
    ----------
    s : char array
    ideg : int array
    iamin : int array
    asec : double array

    Returns
    -------
    rad : double array

    Notes
    -----
    Wraps ERFA function ``eraAf2a``. The ERFA documentation is::

        - - - - - - - -
         e r a A f 2 a
        - - - - - - - -

        Convert degrees, arcminutes, arcseconds to radians.

        Given:
           s         char    sign:  '-' = negative, otherwise positive
           ideg      int     degrees
           iamin     int     arcminutes
           asec      double  arcseconds

        Returned:
           rad       double  angle in radians

        Returned (function value):
                     int     status:  0 = OK
                                      1 = ideg outside range 0-359
                                      2 = iamin outside range 0-59
                                      3 = asec outside range 0-59.999...

        Notes:

        1)  The result is computed even if any of the range checks fail.

        2)  Negative ideg, iamin and/or asec produce a warning status, but
            the absolute value is used in the conversion.

        3)  If there are multiple errors, the status value reflects only the
            first, the smallest taking precedence.

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rad, c_retval = ufunc.af2a(s, ideg, iamin, asec)
    check_errwarn(c_retval, 'af2a')
    return rad


STATUS_CODES['af2a'] = {
    0: 'OK',
    1: 'ideg outside range 0-359',
    2: 'iamin outside range 0-59',
    3: 'asec outside range 0-59.999...',
}


def anp(a):
    """
    Normalize angle into the range 0 <= a < 2pi.

    Parameters
    ----------
    a : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraAnp``. The ERFA documentation is::

        - - - - - - -
         e r a A n p
        - - - - - - -

        Normalize angle into the range 0 <= a < 2pi.

        Given:
           a        double     angle (radians)

        Returned (function value):
                    double     angle in range 0-2pi

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.anp(a)
    return c_retval


def anpm(a):
    """
    Normalize angle into the range -pi <= a < +pi.

    Parameters
    ----------
    a : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraAnpm``. The ERFA documentation is::

        - - - - - - - -
         e r a A n p m
        - - - - - - - -

        Normalize angle into the range -pi <= a < +pi.

        Given:
           a        double     angle (radians)

        Returned (function value):
                    double     angle in range +/-pi

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.anpm(a)
    return c_retval


def d2tf(ndp, days):
    """
    Decompose days to hours, minutes, seconds, fraction.

    Parameters
    ----------
    ndp : int array
    days : double array

    Returns
    -------
    sign : char array
    ihmsf : int array

    Notes
    -----
    Wraps ERFA function ``eraD2tf``. The ERFA documentation is::

        - - - - - - - -
         e r a D 2 t f
        - - - - - - - -

        Decompose days to hours, minutes, seconds, fraction.

        Given:
           ndp     int     resolution (Note 1)
           days    double  interval in days

        Returned:
           sign    char         '+' or '-'
           ihmsf   int[4]  hours, minutes, seconds, fraction

        Notes:

        1) The argument ndp is interpreted as follows:

           ndp         resolution
            :      ...0000 00 00
           -7         1000 00 00
           -6          100 00 00
           -5           10 00 00
           -4            1 00 00
           -3            0 10 00
           -2            0 01 00
           -1            0 00 10
            0            0 00 01
            1            0 00 00.1
            2            0 00 00.01
            3            0 00 00.001
            :            0 00 00.000...

        2) The largest positive useful value for ndp is determined by the
           size of days, the format of double on the target platform, and
           the risk of overflowing ihmsf[3].  On a typical platform, for
           days up to 1.0, the available floating-point precision might
           correspond to ndp=12.  However, the practical limit is typically
           ndp=9, set by the capacity of a 32-bit int, or ndp=4 if int is
           only 16 bits.

        3) The absolute value of days may exceed 1.0.  In cases where it
           does not, it is up to the caller to test for and handle the
           case where days is very nearly 1.0 and rounds up to 24 hours,
           by testing for ihmsf[0]=24 and setting ihmsf[0-3] to zero.

        This revision:  2020 April 20

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    sign, ihmsf = ufunc.d2tf(ndp, days)
    sign = sign.view(dt_bytes1)
    return sign, ihmsf


def tf2a(s, ihour, imin, sec):
    """
    Convert hours, minutes, seconds to radians.

    Parameters
    ----------
    s : char array
    ihour : int array
    imin : int array
    sec : double array

    Returns
    -------
    rad : double array

    Notes
    -----
    Wraps ERFA function ``eraTf2a``. The ERFA documentation is::

        - - - - - - - -
         e r a T f 2 a
        - - - - - - - -

        Convert hours, minutes, seconds to radians.

        Given:
           s         char    sign:  '-' = negative, otherwise positive
           ihour     int     hours
           imin      int     minutes
           sec       double  seconds

        Returned:
           rad       double  angle in radians

        Returned (function value):
                     int     status:  0 = OK
                                      1 = ihour outside range 0-23
                                      2 = imin outside range 0-59
                                      3 = sec outside range 0-59.999...

        Notes:

        1)  The result is computed even if any of the range checks fail.

        2)  Negative ihour, imin and/or sec produce a warning status, but
            the absolute value is used in the conversion.

        3)  If there are multiple errors, the status value reflects only the
            first, the smallest taking precedence.

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rad, c_retval = ufunc.tf2a(s, ihour, imin, sec)
    check_errwarn(c_retval, 'tf2a')
    return rad


STATUS_CODES['tf2a'] = {
    0: 'OK',
    1: 'ihour outside range 0-23',
    2: 'imin outside range 0-59',
    3: 'sec outside range 0-59.999...',
}


def tf2d(s, ihour, imin, sec):
    """
    Convert hours, minutes, seconds to days.

    Parameters
    ----------
    s : char array
    ihour : int array
    imin : int array
    sec : double array

    Returns
    -------
    days : double array

    Notes
    -----
    Wraps ERFA function ``eraTf2d``. The ERFA documentation is::

        - - - - - - - -
         e r a T f 2 d
        - - - - - - - -

        Convert hours, minutes, seconds to days.

        Given:
           s         char    sign:  '-' = negative, otherwise positive
           ihour     int     hours
           imin      int     minutes
           sec       double  seconds

        Returned:
           days      double  interval in days

        Returned (function value):
                     int     status:  0 = OK
                                      1 = ihour outside range 0-23
                                      2 = imin outside range 0-59
                                      3 = sec outside range 0-59.999...

        Notes:

        1)  The result is computed even if any of the range checks fail.

        2)  Negative ihour, imin and/or sec produce a warning status, but
            the absolute value is used in the conversion.

        3)  If there are multiple errors, the status value reflects only the
            first, the smallest taking precedence.

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    days, c_retval = ufunc.tf2d(s, ihour, imin, sec)
    check_errwarn(c_retval, 'tf2d')
    return days


STATUS_CODES['tf2d'] = {
    0: 'OK',
    1: 'ihour outside range 0-23',
    2: 'imin outside range 0-59',
    3: 'sec outside range 0-59.999...',
}


def rx(phi, r):
    """
    Rotate an r-matrix about the x-axis.

    Parameters
    ----------
    phi : double array
    r : double array

    Returns
    -------
    r : double array

    Notes
    -----
    Wraps ERFA function ``eraRx``. Note that, unlike the erfa routine,
    the python wrapper does not change r in-place. The ERFA documentation is::

        - - - - - -
         e r a R x
        - - - - - -

        Rotate an r-matrix about the x-axis.

        Given:
           phi    double          angle (radians)

        Given and returned:
           r      double[3][3]    r-matrix, rotated

        Notes:

        1) Calling this function with positive phi incorporates in the
           supplied r-matrix r an additional rotation, about the x-axis,
           anticlockwise as seen looking towards the origin from positive x.

        2) The additional rotation can be represented by this matrix:

               (  1        0            0      )
               (                               )
               (  0   + cos(phi)   + sin(phi)  )
               (                               )
               (  0   - sin(phi)   + cos(phi)  )

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    r = ufunc.rx(phi, r)
    return r


def ry(theta, r):
    """
    Rotate an r-matrix about the y-axis.

    Parameters
    ----------
    theta : double array
    r : double array

    Returns
    -------
    r : double array

    Notes
    -----
    Wraps ERFA function ``eraRy``. Note that, unlike the erfa routine,
    the python wrapper does not change r in-place. The ERFA documentation is::

        - - - - - -
         e r a R y
        - - - - - -

        Rotate an r-matrix about the y-axis.

        Given:
           theta  double          angle (radians)

        Given and returned:
           r      double[3][3]    r-matrix, rotated

        Notes:

        1) Calling this function with positive theta incorporates in the
           supplied r-matrix r an additional rotation, about the y-axis,
           anticlockwise as seen looking towards the origin from positive y.

        2) The additional rotation can be represented by this matrix:

               (  + cos(theta)     0      - sin(theta)  )
               (                                        )
               (       0           1           0        )
               (                                        )
               (  + sin(theta)     0      + cos(theta)  )

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    r = ufunc.ry(theta, r)
    return r


def rz(psi, r):
    """
    Rotate an r-matrix about the z-axis.

    Parameters
    ----------
    psi : double array
    r : double array

    Returns
    -------
    r : double array

    Notes
    -----
    Wraps ERFA function ``eraRz``. Note that, unlike the erfa routine,
    the python wrapper does not change r in-place. The ERFA documentation is::

        - - - - - -
         e r a R z
        - - - - - -

        Rotate an r-matrix about the z-axis.

        Given:
           psi    double          angle (radians)

        Given and returned:
           r      double[3][3]    r-matrix, rotated

        Notes:

        1) Calling this function with positive psi incorporates in the
           supplied r-matrix r an additional rotation, about the z-axis,
           anticlockwise as seen looking towards the origin from positive z.

        2) The additional rotation can be represented by this matrix:

               (  + cos(psi)   + sin(psi)     0  )
               (                                 )
               (  - sin(psi)   + cos(psi)     0  )
               (                                 )
               (       0            0         1  )

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    r = ufunc.rz(psi, r)
    return r


def cp(p):
    """
    Copy a p-vector.

    Parameters
    ----------
    p : double array

    Returns
    -------
    c : double array

    Notes
    -----
    Wraps ERFA function ``eraCp``. The ERFA documentation is::

        - - - - - -
         e r a C p
        - - - - - -

        Copy a p-vector.

        Given:
           p        double[3]     p-vector to be copied

        Returned:
           c        double[3]     copy

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c = ufunc.cp(p)
    return c


def cpv(pv):
    """
    Copy a position/velocity vector.

    Parameters
    ----------
    pv : double array

    Returns
    -------
    c : double array

    Notes
    -----
    Wraps ERFA function ``eraCpv``. The ERFA documentation is::

        - - - - - - -
         e r a C p v
        - - - - - - -

        Copy a position/velocity vector.

        Given:
           pv     double[2][3]    position/velocity vector to be copied

        Returned:
           c      double[2][3]    copy

        Called:
           eraCp        copy p-vector

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c = ufunc.cpv(pv)
    return c


def cr(r):
    """
    Copy an r-matrix.

    Parameters
    ----------
    r : double array

    Returns
    -------
    c : double array

    Notes
    -----
    Wraps ERFA function ``eraCr``. The ERFA documentation is::

        - - - - - -
         e r a C r
        - - - - - -

        Copy an r-matrix.

        Given:
           r        double[3][3]    r-matrix to be copied

        Returned:
           c        double[3][3]    copy

        Called:
           eraCp        copy p-vector

        This revision:  2016 May 19

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c = ufunc.cr(r)
    return c


def p2pv(p):
    """
    Extend a p-vector to a pv-vector by appending a zero velocity.

    Parameters
    ----------
    p : double array

    Returns
    -------
    pv : double array

    Notes
    -----
    Wraps ERFA function ``eraP2pv``. The ERFA documentation is::

        - - - - - - - -
         e r a P 2 p v
        - - - - - - - -

        Extend a p-vector to a pv-vector by appending a zero velocity.

        Given:
           p        double[3]       p-vector

        Returned:
           pv       double[2][3]    pv-vector

        Called:
           eraCp        copy p-vector
           eraZp        zero p-vector

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    pv = ufunc.p2pv(p)
    return pv


def pv2p(pv):
    """
    Discard velocity component of a pv-vector.

    Parameters
    ----------
    pv : double array

    Returns
    -------
    p : double array

    Notes
    -----
    Wraps ERFA function ``eraPv2p``. The ERFA documentation is::

        - - - - - - - -
         e r a P v 2 p
        - - - - - - - -

        Discard velocity component of a pv-vector.

        Given:
           pv      double[2][3]     pv-vector

        Returned:
           p       double[3]        p-vector

        Called:
           eraCp        copy p-vector

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    p = ufunc.pv2p(pv)
    return p


def ir():
    """
    Initialize an r-matrix to the identity matrix.

    Parameters
    ----------

    Returns
    -------
    r : double array

    Notes
    -----
    Wraps ERFA function ``eraIr``. The ERFA documentation is::

        - - - - - -
         e r a I r
        - - - - - -

        Initialize an r-matrix to the identity matrix.

        Returned:
           r       double[3][3]    r-matrix

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    r = ufunc.ir()
    return r


def zp():
    """
    Zero a p-vector.

    Parameters
    ----------

    Returns
    -------
    p : double array

    Notes
    -----
    Wraps ERFA function ``eraZp``. The ERFA documentation is::

        - - - - - -
         e r a Z p
        - - - - - -

        Zero a p-vector.

        Returned:
           p        double[3]      zero p-vector

        This revision:  2020 August 25

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    p = ufunc.zp()
    return p


def zpv():
    """
    Zero a pv-vector.

    Parameters
    ----------

    Returns
    -------
    pv : double array

    Notes
    -----
    Wraps ERFA function ``eraZpv``. The ERFA documentation is::

        - - - - - - -
         e r a Z p v
        - - - - - - -

        Zero a pv-vector.

        Returned:
           pv       double[2][3]      zero pv-vector

        Called:
           eraZp        zero p-vector

        This revision:  2020 August 25

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    pv = ufunc.zpv()
    return pv


def zr():
    """
    Initialize an r-matrix to the null matrix.

    Parameters
    ----------

    Returns
    -------
    r : double array

    Notes
    -----
    Wraps ERFA function ``eraZr``. The ERFA documentation is::

        - - - - - -
         e r a Z r
        - - - - - -

        Initialize an r-matrix to the null matrix.

        Returned:
           r        double[3][3]    r-matrix

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    r = ufunc.zr()
    return r


def rxr(a, b):
    """
    Multiply two r-matrices.

    Parameters
    ----------
    a : double array
    b : double array

    Returns
    -------
    atb : double array

    Notes
    -----
    Wraps ERFA function ``eraRxr``. The ERFA documentation is::

        - - - - - - -
         e r a R x r
        - - - - - - -

        Multiply two r-matrices.

        Given:
           a        double[3][3]    first r-matrix
           b        double[3][3]    second r-matrix

        Returned:
           atb      double[3][3]    a * b

        Note:
           It is permissible to re-use the same array for any of the
           arguments.

        Called:
           eraCr        copy r-matrix

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    atb = ufunc.rxr(a, b)
    return atb


def tr(r):
    """
    Transpose an r-matrix.

    Parameters
    ----------
    r : double array

    Returns
    -------
    rt : double array

    Notes
    -----
    Wraps ERFA function ``eraTr``. The ERFA documentation is::

        - - - - - -
         e r a T r
        - - - - - -

        Transpose an r-matrix.

        Given:
           r        double[3][3]    r-matrix

        Returned:
           rt       double[3][3]    transpose

        Note:
           It is permissible for r and rt to be the same array.

        Called:
           eraCr        copy r-matrix

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rt = ufunc.tr(r)
    return rt


def rxp(r, p):
    """
    Multiply a p-vector by an r-matrix.

    Parameters
    ----------
    r : double array
    p : double array

    Returns
    -------
    rp : double array

    Notes
    -----
    Wraps ERFA function ``eraRxp``. The ERFA documentation is::

        - - - - - - -
         e r a R x p
        - - - - - - -

        Multiply a p-vector by an r-matrix.

        Given:
           r        double[3][3]    r-matrix
           p        double[3]       p-vector

        Returned:
           rp       double[3]       r * p

        Note:
           It is permissible for p and rp to be the same array.

        Called:
           eraCp        copy p-vector

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rp = ufunc.rxp(r, p)
    return rp


def rxpv(r, pv):
    """
    Multiply a pv-vector by an r-matrix.

    Parameters
    ----------
    r : double array
    pv : double array

    Returns
    -------
    rpv : double array

    Notes
    -----
    Wraps ERFA function ``eraRxpv``. The ERFA documentation is::

        - - - - - - - -
         e r a R x p v
        - - - - - - - -

        Multiply a pv-vector by an r-matrix.

        Given:
           r        double[3][3]    r-matrix
           pv       double[2][3]    pv-vector

        Returned:
           rpv      double[2][3]    r * pv

        Notes:

        1) The algorithm is for the simple case where the r-matrix r is not
           a function of time.  The case where r is a function of time leads
           to an additional velocity component equal to the product of the
           derivative of r and the position vector.

        2) It is permissible for pv and rpv to be the same array.

        Called:
           eraRxp       product of r-matrix and p-vector

        This revision:  2020 September 26

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    rpv = ufunc.rxpv(r, pv)
    return rpv


def trxp(r, p):
    """
    Multiply a p-vector by the transpose of an r-matrix.

    Parameters
    ----------
    r : double array
    p : double array

    Returns
    -------
    trp : double array

    Notes
    -----
    Wraps ERFA function ``eraTrxp``. The ERFA documentation is::

        - - - - - - - -
         e r a T r x p
        - - - - - - - -

        Multiply a p-vector by the transpose of an r-matrix.

        Given:
           r        double[3][3]   r-matrix
           p        double[3]      p-vector

        Returned:
           trp      double[3]      r^T * p

        Note:
           It is permissible for p and trp to be the same array.

        Called:
           eraTr        transpose r-matrix
           eraRxp       product of r-matrix and p-vector

        This revision:  2020 May 24

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    trp = ufunc.trxp(r, p)
    return trp


def trxpv(r, pv):
    """
    Multiply a pv-vector by the transpose of an r-matrix.

    Parameters
    ----------
    r : double array
    pv : double array

    Returns
    -------
    trpv : double array

    Notes
    -----
    Wraps ERFA function ``eraTrxpv``. The ERFA documentation is::

        - - - - - - - - -
         e r a T r x p v
        - - - - - - - - -

        Multiply a pv-vector by the transpose of an r-matrix.

        Given:
           r        double[3][3]    r-matrix
           pv       double[2][3]    pv-vector

        Returned:
           trpv     double[2][3]    r^T * pv

        Notes:

        1) The algorithm is for the simple case where the r-matrix r is not
           a function of time.  The case where r is a function of time leads
           to an additional velocity component equal to the product of the
           derivative of the transpose of r and the position vector.

        2) It is permissible for pv and rpv to be the same array.

        Called:
           eraTr        transpose r-matrix
           eraRxpv      product of r-matrix and pv-vector

        This revision:  2020 September 26

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    trpv = ufunc.trxpv(r, pv)
    return trpv


def rm2v(r):
    """
    Express an r-matrix as an r-vector.

    Parameters
    ----------
    r : double array

    Returns
    -------
    w : double array

    Notes
    -----
    Wraps ERFA function ``eraRm2v``. The ERFA documentation is::

        - - - - - - - -
         e r a R m 2 v
        - - - - - - - -

        Express an r-matrix as an r-vector.

        Given:
           r        double[3][3]    rotation matrix

        Returned:
           w        double[3]       rotation vector (Note 1)

        Notes:

        1) A rotation matrix describes a rotation through some angle about
           some arbitrary axis called the Euler axis.  The "rotation vector"
           returned by this function has the same direction as the Euler axis,
           and its magnitude is the angle in radians.  (The magnitude and
           direction can be separated by means of the function eraPn.)

        2) If r is null, so is the result.  If r is not a rotation matrix
           the result is undefined;  r must be proper (i.e. have a positive
           determinant) and real orthogonal (inverse = transpose).

        3) The reference frame rotates clockwise as seen looking along
           the rotation vector from the origin.

        This revision:  2015 January 30

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    w = ufunc.rm2v(r)
    return w


def rv2m(w):
    """
    Form the r-matrix corresponding to a given r-vector.

    Parameters
    ----------
    w : double array

    Returns
    -------
    r : double array

    Notes
    -----
    Wraps ERFA function ``eraRv2m``. The ERFA documentation is::

        - - - - - - - -
         e r a R v 2 m
        - - - - - - - -

        Form the r-matrix corresponding to a given r-vector.

        Given:
           w        double[3]      rotation vector (Note 1)

        Returned:
           r        double[3][3]    rotation matrix

        Notes:

        1) A rotation matrix describes a rotation through some angle about
           some arbitrary axis called the Euler axis.  The "rotation vector"
           supplied to This function has the same direction as the Euler
           axis, and its magnitude is the angle in radians.

        2) If w is null, the identity matrix is returned.

        3) The reference frame rotates clockwise as seen looking along the
           rotation vector from the origin.

        This revision:  2020 August 21

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    r = ufunc.rv2m(w)
    return r


def pap(a, b):
    """
    Position-angle from two p-vectors.

    Parameters
    ----------
    a : double array
    b : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraPap``. The ERFA documentation is::

        - - - - - - -
         e r a P a p
        - - - - - - -

        Position-angle from two p-vectors.

        Given:
           a      double[3]  direction of reference point
           b      double[3]  direction of point whose PA is required

        Returned (function value):
                  double     position angle of b with respect to a (radians)

        Notes:

        1) The result is the position angle, in radians, of direction b with
           respect to direction a.  It is in the range -pi to +pi.  The
           sense is such that if b is a small distance "north" of a the
           position angle is approximately zero, and if b is a small
           distance "east" of a the position angle is approximately +pi/2.

        2) The vectors a and b need not be of unit length.

        3) Zero is returned if the two directions are the same or if either
           vector is null.

        4) If vector a is at a pole, the result is ill-defined.

        Called:
           eraPn        decompose p-vector into modulus and direction
           eraPm        modulus of p-vector
           eraPxp       vector product of two p-vectors
           eraPmp       p-vector minus p-vector
           eraPdp       scalar product of two p-vectors

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.pap(a, b)
    return c_retval


def pas(al, ap, bl, bp):
    """
    Position-angle from spherical coordinates.

    Parameters
    ----------
    al : double array
    ap : double array
    bl : double array
    bp : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraPas``. The ERFA documentation is::

        - - - - - - -
         e r a P a s
        - - - - - - -

        Position-angle from spherical coordinates.

        Given:
           al     double     longitude of point A (e.g. RA) in radians
           ap     double     latitude of point A (e.g. Dec) in radians
           bl     double     longitude of point B
           bp     double     latitude of point B

        Returned (function value):
                  double     position angle of B with respect to A

        Notes:

        1) The result is the bearing (position angle), in radians, of point
           B with respect to point A.  It is in the range -pi to +pi.  The
           sense is such that if B is a small distance "east" of point A,
           the bearing is approximately +pi/2.

        2) Zero is returned if the two points are coincident.

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.pas(al, ap, bl, bp)
    return c_retval


def sepp(a, b):
    """
    Angular separation between two p-vectors.

    Parameters
    ----------
    a : double array
    b : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraSepp``. The ERFA documentation is::

        - - - - - - - -
         e r a S e p p
        - - - - - - - -

        Angular separation between two p-vectors.

        Given:
           a      double[3]    first p-vector (not necessarily unit length)
           b      double[3]    second p-vector (not necessarily unit length)

        Returned (function value):
                  double       angular separation (radians, always positive)

        Notes:

        1) If either vector is null, a zero result is returned.

        2) The angular separation is most simply formulated in terms of
           scalar product.  However, this gives poor accuracy for angles
           near zero and pi.  The present algorithm uses both cross product
           and dot product, to deliver full accuracy whatever the size of
           the angle.

        Called:
           eraPxp       vector product of two p-vectors
           eraPm        modulus of p-vector
           eraPdp       scalar product of two p-vectors

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.sepp(a, b)
    return c_retval


def seps(al, ap, bl, bp):
    """
    Angular separation between two sets of spherical coordinates.

    Parameters
    ----------
    al : double array
    ap : double array
    bl : double array
    bp : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraSeps``. The ERFA documentation is::

        - - - - - - - -
         e r a S e p s
        - - - - - - - -

        Angular separation between two sets of spherical coordinates.

        Given:
           al     double       first longitude (radians)
           ap     double       first latitude (radians)
           bl     double       second longitude (radians)
           bp     double       second latitude (radians)

        Returned (function value):
                  double       angular separation (radians)

        Called:
           eraS2c       spherical coordinates to unit vector
           eraSepp      angular separation between two p-vectors

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.seps(al, ap, bl, bp)
    return c_retval


def c2s(p):
    """
    P-vector to spherical coordinates.

    Parameters
    ----------
    p : double array

    Returns
    -------
    theta : double array
    phi : double array

    Notes
    -----
    Wraps ERFA function ``eraC2s``. The ERFA documentation is::

        - - - - - - -
         e r a C 2 s
        - - - - - - -

        P-vector to spherical coordinates.

        Given:
           p      double[3]    p-vector

        Returned:
           theta  double       longitude angle (radians)
           phi    double       latitude angle (radians)

        Notes:

        1) The vector p can have any magnitude; only its direction is used.

        2) If p is null, zero theta and phi are returned.

        3) At either pole, zero theta is returned.

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    theta, phi = ufunc.c2s(p)
    return theta, phi


def p2s(p):
    """
    P-vector to spherical polar coordinates.

    Parameters
    ----------
    p : double array

    Returns
    -------
    theta : double array
    phi : double array
    r : double array

    Notes
    -----
    Wraps ERFA function ``eraP2s``. The ERFA documentation is::

        - - - - - - -
         e r a P 2 s
        - - - - - - -

        P-vector to spherical polar coordinates.

        Given:
           p        double[3]    p-vector

        Returned:
           theta    double       longitude angle (radians)
           phi      double       latitude angle (radians)
           r        double       radial distance

        Notes:

        1) If P is null, zero theta, phi and r are returned.

        2) At either pole, zero theta is returned.

        Called:
           eraC2s       p-vector to spherical
           eraPm        modulus of p-vector

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    theta, phi, r = ufunc.p2s(p)
    return theta, phi, r


def pv2s(pv):
    """
    Convert position/velocity from Cartesian to spherical coordinates.

    Parameters
    ----------
    pv : double array

    Returns
    -------
    theta : double array
    phi : double array
    r : double array
    td : double array
    pd : double array
    rd : double array

    Notes
    -----
    Wraps ERFA function ``eraPv2s``. The ERFA documentation is::

        - - - - - - - -
         e r a P v 2 s
        - - - - - - - -

        Convert position/velocity from Cartesian to spherical coordinates.

        Given:
           pv       double[2][3]  pv-vector

        Returned:
           theta    double        longitude angle (radians)
           phi      double        latitude angle (radians)
           r        double        radial distance
           td       double        rate of change of theta
           pd       double        rate of change of phi
           rd       double        rate of change of r

        Notes:

        1) If the position part of pv is null, theta, phi, td and pd
           are indeterminate.  This is handled by extrapolating the
           position through unit time by using the velocity part of
           pv.  This moves the origin without changing the direction
           of the velocity component.  If the position and velocity
           components of pv are both null, zeroes are returned for all
           six results.

        2) If the position is a pole, theta, td and pd are indeterminate.
           In such cases zeroes are returned for all three.

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    theta, phi, r, td, pd, rd = ufunc.pv2s(pv)
    return theta, phi, r, td, pd, rd


def s2c(theta, phi):
    """
    Convert spherical coordinates to Cartesian.

    Parameters
    ----------
    theta : double array
    phi : double array

    Returns
    -------
    c : double array

    Notes
    -----
    Wraps ERFA function ``eraS2c``. The ERFA documentation is::

        - - - - - - -
         e r a S 2 c
        - - - - - - -

        Convert spherical coordinates to Cartesian.

        Given:
           theta    double       longitude angle (radians)
           phi      double       latitude angle (radians)

        Returned:
           c        double[3]    direction cosines

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c = ufunc.s2c(theta, phi)
    return c


def s2p(theta, phi, r):
    """
    Convert spherical polar coordinates to p-vector.

    Parameters
    ----------
    theta : double array
    phi : double array
    r : double array

    Returns
    -------
    p : double array

    Notes
    -----
    Wraps ERFA function ``eraS2p``. The ERFA documentation is::

        - - - - - - -
         e r a S 2 p
        - - - - - - -

        Convert spherical polar coordinates to p-vector.

        Given:
           theta   double       longitude angle (radians)
           phi     double       latitude angle (radians)
           r       double       radial distance

        Returned:
           p       double[3]    Cartesian coordinates

        Called:
           eraS2c       spherical coordinates to unit vector
           eraSxp       multiply p-vector by scalar

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    p = ufunc.s2p(theta, phi, r)
    return p


def s2pv(theta, phi, r, td, pd, rd):
    """
    Convert position/velocity from spherical to Cartesian coordinates.

    Parameters
    ----------
    theta : double array
    phi : double array
    r : double array
    td : double array
    pd : double array
    rd : double array

    Returns
    -------
    pv : double array

    Notes
    -----
    Wraps ERFA function ``eraS2pv``. The ERFA documentation is::

        - - - - - - - -
         e r a S 2 p v
        - - - - - - - -

        Convert position/velocity from spherical to Cartesian coordinates.

        Given:
           theta    double          longitude angle (radians)
           phi      double          latitude angle (radians)
           r        double          radial distance
           td       double          rate of change of theta
           pd       double          rate of change of phi
           rd       double          rate of change of r

        Returned:
           pv       double[2][3]    pv-vector

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    pv = ufunc.s2pv(theta, phi, r, td, pd, rd)
    return pv


def pdp(a, b):
    """
    p-vector inner (=scalar=dot) product.

    Parameters
    ----------
    a : double array
    b : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraPdp``. The ERFA documentation is::

        - - - - - - -
         e r a P d p
        - - - - - - -

        p-vector inner (=scalar=dot) product.

        Given:
           a      double[3]     first p-vector
           b      double[3]     second p-vector

        Returned (function value):
                  double        a . b

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.pdp(a, b)
    return c_retval


def pm(p):
    """
    Modulus of p-vector.

    Parameters
    ----------
    p : double array

    Returns
    -------
    c_retval : double array

    Notes
    -----
    Wraps ERFA function ``eraPm``. The ERFA documentation is::

        - - - - - -
         e r a P m
        - - - - - -

        Modulus of p-vector.

        Given:
           p      double[3]     p-vector

        Returned (function value):
                  double        modulus

        This revision:  2013 August 7

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    c_retval = ufunc.pm(p)
    return c_retval


def pmp(a, b):
    """
    P-vector subtraction.

    Parameters
    ----------
    a : double array
    b : double array

    Returns
    -------
    amb : double array

    Notes
    -----
    Wraps ERFA function ``eraPmp``. The ERFA documentation is::

        - - - - - - -
         e r a P m p
        - - - - - - -

        P-vector subtraction.

        Given:
           a        double[3]      first p-vector
           b        double[3]      second p-vector

        Returned:
           amb      double[3]      a - b

        Note:
           It is permissible to re-use the same array for any of the
           arguments.

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    amb = ufunc.pmp(a, b)
    return amb


def pn(p):
    """
    Convert a p-vector into modulus and unit vector.

    Parameters
    ----------
    p : double array

    Returns
    -------
    r : double array
    u : double array

    Notes
    -----
    Wraps ERFA function ``eraPn``. The ERFA documentation is::

        - - - - - -
         e r a P n
        - - - - - -

        Convert a p-vector into modulus and unit vector.

        Given:
           p        double[3]      p-vector

        Returned:
           r        double         modulus
           u        double[3]      unit vector

        Notes:

        1) If p is null, the result is null.  Otherwise the result is a unit
           vector.

        2) It is permissible to re-use the same array for any of the
           arguments.

        Called:
           eraPm        modulus of p-vector
           eraZp        zero p-vector
           eraSxp       multiply p-vector by scalar

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    r, u = ufunc.pn(p)
    return r, u


def ppp(a, b):
    """
    P-vector addition.

    Parameters
    ----------
    a : double array
    b : double array

    Returns
    -------
    apb : double array

    Notes
    -----
    Wraps ERFA function ``eraPpp``. The ERFA documentation is::

        - - - - - - -
         e r a P p p
        - - - - - - -

        P-vector addition.

        Given:
           a        double[3]      first p-vector
           b        double[3]      second p-vector

        Returned:
           apb      double[3]      a + b

        Note:
           It is permissible to re-use the same array for any of the
           arguments.

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    apb = ufunc.ppp(a, b)
    return apb


def ppsp(a, s, b):
    """
    P-vector plus scaled p-vector.

    Parameters
    ----------
    a : double array
    s : double array
    b : double array

    Returns
    -------
    apsb : double array

    Notes
    -----
    Wraps ERFA function ``eraPpsp``. The ERFA documentation is::

        - - - - - - - -
         e r a P p s p
        - - - - - - - -

        P-vector plus scaled p-vector.

        Given:
           a      double[3]     first p-vector
           s      double        scalar (multiplier for b)
           b      double[3]     second p-vector

        Returned:
           apsb   double[3]     a + s*b

        Note:
           It is permissible for any of a, b and apsb to be the same array.

        Called:
           eraSxp       multiply p-vector by scalar
           eraPpp       p-vector plus p-vector

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    apsb = ufunc.ppsp(a, s, b)
    return apsb


def pvdpv(a, b):
    """
    Inner (=scalar=dot) product of two pv-vectors.

    Parameters
    ----------
    a : double array
    b : double array

    Returns
    -------
    adb : double array

    Notes
    -----
    Wraps ERFA function ``eraPvdpv``. The ERFA documentation is::

        - - - - - - - - -
         e r a P v d p v
        - - - - - - - - -

        Inner (=scalar=dot) product of two pv-vectors.

        Given:
           a        double[2][3]      first pv-vector
           b        double[2][3]      second pv-vector

        Returned:
           adb      double[2]         a . b (see note)

        Note:

           If the position and velocity components of the two pv-vectors are
           ( ap, av ) and ( bp, bv ), the result, a . b, is the pair of
           numbers ( ap . bp , ap . bv + av . bp ).  The two numbers are the
           dot-product of the two p-vectors and its derivative.

        Called:
           eraPdp       scalar product of two p-vectors

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    adb = ufunc.pvdpv(a, b)
    return adb


def pvm(pv):
    """
    Modulus of pv-vector.

    Parameters
    ----------
    pv : double array

    Returns
    -------
    r : double array
    s : double array

    Notes
    -----
    Wraps ERFA function ``eraPvm``. The ERFA documentation is::

        - - - - - - -
         e r a P v m
        - - - - - - -

        Modulus of pv-vector.

        Given:
           pv     double[2][3]   pv-vector

        Returned:
           r      double         modulus of position component
           s      double         modulus of velocity component

        Called:
           eraPm        modulus of p-vector

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    r, s = ufunc.pvm(pv)
    return r, s


def pvmpv(a, b):
    """
    Subtract one pv-vector from another.

    Parameters
    ----------
    a : double array
    b : double array

    Returns
    -------
    amb : double array

    Notes
    -----
    Wraps ERFA function ``eraPvmpv``. The ERFA documentation is::

        - - - - - - - - -
         e r a P v m p v
        - - - - - - - - -

        Subtract one pv-vector from another.

        Given:
           a       double[2][3]      first pv-vector
           b       double[2][3]      second pv-vector

        Returned:
           amb     double[2][3]      a - b

        Note:
           It is permissible to re-use the same array for any of the
           arguments.

        Called:
           eraPmp       p-vector minus p-vector

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    amb = ufunc.pvmpv(a, b)
    return amb


def pvppv(a, b):
    """
    Add one pv-vector to another.

    Parameters
    ----------
    a : double array
    b : double array

    Returns
    -------
    apb : double array

    Notes
    -----
    Wraps ERFA function ``eraPvppv``. The ERFA documentation is::

        - - - - - - - - -
         e r a P v p p v
        - - - - - - - - -

        Add one pv-vector to another.

        Given:
           a        double[2][3]      first pv-vector
           b        double[2][3]      second pv-vector

        Returned:
           apb      double[2][3]      a + b

        Note:
           It is permissible to re-use the same array for any of the
           arguments.

        Called:
           eraPpp       p-vector plus p-vector

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    apb = ufunc.pvppv(a, b)
    return apb


def pvu(dt, pv):
    """
    Update a pv-vector.

    Parameters
    ----------
    dt : double array
    pv : double array

    Returns
    -------
    upv : double array

    Notes
    -----
    Wraps ERFA function ``eraPvu``. The ERFA documentation is::

        - - - - - - -
         e r a P v u
        - - - - - - -

        Update a pv-vector.

        Given:
           dt       double           time interval
           pv       double[2][3]     pv-vector

        Returned:
           upv      double[2][3]     p updated, v unchanged

        Notes:

        1) "Update" means "refer the position component of the vector
           to a new date dt time units from the existing date".

        2) The time units of dt must match those of the velocity.

        3) It is permissible for pv and upv to be the same array.

        Called:
           eraPpsp      p-vector plus scaled p-vector
           eraCp        copy p-vector

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    upv = ufunc.pvu(dt, pv)
    return upv


def pvup(dt, pv):
    """
    Update a pv-vector, discarding the velocity component.

    Parameters
    ----------
    dt : double array
    pv : double array

    Returns
    -------
    p : double array

    Notes
    -----
    Wraps ERFA function ``eraPvup``. The ERFA documentation is::

        - - - - - - - -
         e r a P v u p
        - - - - - - - -

        Update a pv-vector, discarding the velocity component.

        Given:
           dt       double            time interval
           pv       double[2][3]      pv-vector

        Returned:
           p        double[3]         p-vector

        Notes:

        1) "Update" means "refer the position component of the vector to a
           new date dt time units from the existing date".

        2) The time units of dt must match those of the velocity.

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    p = ufunc.pvup(dt, pv)
    return p


def pvxpv(a, b):
    """
    Outer (=vector=cross) product of two pv-vectors.

    Parameters
    ----------
    a : double array
    b : double array

    Returns
    -------
    axb : double array

    Notes
    -----
    Wraps ERFA function ``eraPvxpv``. The ERFA documentation is::

        - - - - - - - - -
         e r a P v x p v
        - - - - - - - - -

        Outer (=vector=cross) product of two pv-vectors.

        Given:
           a        double[2][3]      first pv-vector
           b        double[2][3]      second pv-vector

        Returned:
           axb      double[2][3]      a x b

        Notes:

        1) If the position and velocity components of the two pv-vectors are
           ( ap, av ) and ( bp, bv ), the result, a x b, is the pair of
           vectors ( ap x bp, ap x bv + av x bp ).  The two vectors are the
           cross-product of the two p-vectors and its derivative.

        2) It is permissible to re-use the same array for any of the
           arguments.

        Called:
           eraCpv       copy pv-vector
           eraPxp       vector product of two p-vectors
           eraPpp       p-vector plus p-vector

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    axb = ufunc.pvxpv(a, b)
    return axb


def pxp(a, b):
    """
    p-vector outer (=vector=cross) product.

    Parameters
    ----------
    a : double array
    b : double array

    Returns
    -------
    axb : double array

    Notes
    -----
    Wraps ERFA function ``eraPxp``. The ERFA documentation is::

        - - - - - - -
         e r a P x p
        - - - - - - -

        p-vector outer (=vector=cross) product.

        Given:
           a        double[3]      first p-vector
           b        double[3]      second p-vector

        Returned:
           axb      double[3]      a x b

        Note:
           It is permissible to re-use the same array for any of the
           arguments.

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    axb = ufunc.pxp(a, b)
    return axb


def s2xpv(s1, s2, pv):
    """
    Multiply a pv-vector by two scalars.

    Parameters
    ----------
    s1 : double array
    s2 : double array
    pv : double array

    Returns
    -------
    spv : double array

    Notes
    -----
    Wraps ERFA function ``eraS2xpv``. The ERFA documentation is::

        - - - - - - - - -
         e r a S 2 x p v
        - - - - - - - - -

        Multiply a pv-vector by two scalars.

        Given:
           s1     double         scalar to multiply position component by
           s2     double         scalar to multiply velocity component by
           pv     double[2][3]   pv-vector

        Returned:
           spv    double[2][3]   pv-vector: p scaled by s1, v scaled by s2

        Note:
           It is permissible for pv and spv to be the same array.

        Called:
           eraSxp       multiply p-vector by scalar

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    spv = ufunc.s2xpv(s1, s2, pv)
    return spv


def sxp(s, p):
    """
    Multiply a p-vector by a scalar.

    Parameters
    ----------
    s : double array
    p : double array

    Returns
    -------
    sp : double array

    Notes
    -----
    Wraps ERFA function ``eraSxp``. The ERFA documentation is::

        - - - - - - -
         e r a S x p
        - - - - - - -

        Multiply a p-vector by a scalar.

        Given:
           s      double        scalar
           p      double[3]     p-vector

        Returned:
           sp     double[3]     s * p

        Note:
           It is permissible for p and sp to be the same array.

        This revision:  2013 June 18

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    sp = ufunc.sxp(s, p)
    return sp


def sxpv(s, pv):
    """
    Multiply a pv-vector by a scalar.

    Parameters
    ----------
    s : double array
    pv : double array

    Returns
    -------
    spv : double array

    Notes
    -----
    Wraps ERFA function ``eraSxpv``. The ERFA documentation is::

        - - - - - - - -
         e r a S x p v
        - - - - - - - -

        Multiply a pv-vector by a scalar.

        Given:
           s       double          scalar
           pv      double[2][3]    pv-vector

        Returned:
           spv     double[2][3]    s * pv

        Note:
           It is permissible for pv and spv to be the same array.

        Called:
           eraS2xpv     multiply pv-vector by two scalars

        This revision:  2020 August 25

        Copyright (C) 2013-2021, NumFOCUS Foundation.
        Derived, with permission, from the SOFA library.  See notes at end of file.

    """
    spv = ufunc.sxpv(s, pv)
    return spv