File: graphs.rst

package info (click to toggle)
pyevolve 0.6~rc1%2Bsvn398%2Bdfsg-9
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 3,060 kB
  • ctags: 832
  • sloc: python: 5,119; xml: 183; sh: 71; makefile: 38
file content (329 lines) | stat: -rw-r--r-- 12,737 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Graphical Analysis - Plots
============================================================================

Pyevolve comes with an Graphical Plotting Tool. This utility uses the great
python plotting library called Matplotlib.

.. seealso::

   :ref:`requirements` section.

You can find the Pyevolve plotting tool in your python Scripts directory, the
tool is named **pyevolve_graph.py**.

Graphical Plotting Tool Options
---------------------------------------------------------------------------

**pyevolve_graph.py**, installed in :file:`\\Python2{x}\\Scripts\\pyevolve_graph.py`.

This is the documentation you get by calling the *--help* option: ::

   Pyevolve 0.6rc1 - Graph Plot Tool
   By Christian S. Perone

   Usage: pyevolve_graph.py [options]

   Options:
     -h, --help            show this help message and exit
     -f FILENAME, --file=FILENAME
                           Database file to read (default is 'pyevolve.db').
     -i IDENTIFY, --identify=IDENTIFY
                           The identify of evolution.
     -o OUTFILE, --outfile=OUTFILE
                           Write the graph image to a file (don't use extension,
                           just the filename, default is png format, but you can
                           change using --extension (-e) parameter).
     -e EXTENSION, --extension=EXTENSION
                           Graph image file format. Supported options (formats)
                           are: emf, eps, pdf, png, ps, raw, rgba, svg, svgz.
                           Default is 'png'.
     -g GENRANGE, --genrange=GENRANGE
                           This is the generation range of the graph, ex: 1:30
                           (interval between 1 and 30).
     -l LINDRANGE, --lindrange=LINDRANGE
                           This is the individual range of the graph, ex: 1:30
                           (individuals between 1 and 30), only applies to
                           heatmaps.
     -c COLORMAP, --colormap=COLORMAP
                           Sets the Color Map for the graph types 8 and 9. Some
                           options are: summer, bone, gray, hot, jet, cooper,
                           spectral. The default is 'jet'.
     -m, --minimize        Sets the 'Minimize' mode, default is the Maximize
                           mode. This option makes sense if you are minimizing
                           your evaluation function.

     Graph types:
       This is the supported graph types

       -0                  Write all graphs to files. Graph types: 1, 2, 3, 4 and
                           5.
       -1                  Error bars graph (raw scores).
       -2                  Error bars graph (fitness scores).
       -3                  Max/min/avg/std. dev. graph (raw scores).
       -4                  Max/min/avg graph (fitness scores).
       -5                  Raw and Fitness min/max difference graph.
       -6                  Compare best raw score of two or more evolutions (you
                           must specify the identify comma-separed list with
                           --identify (-i) parameter, like 'one, two, three'),
                           the maximum is 6 items.
       -7                  Compare best fitness score of two or more evolutions
                           (you must specify the identify comma-separed list with
                           --identify (-i) parameter, like 'one, two, three'),
                           the maximum is 6 items.
       -8                  Show a heat map of population raw score distribution
                           between generations.
       -9                  Show a heat map of population fitness score
                           distribution between generations.

Usage
---------------------------------------------------------------------------

To use this graphical plotting tool, you need to use the :class:`DBAdapters.DBSQLite`
adapter and create the database file. Pyevolve uses the "identify" concept. The value
of this parameter means the same value used in the "identify" parameter of the DB Adapter.

See this example: ::

   sqlite_adapter = DBAdapters.DBSQLite(identify="ex1")
   ga.setDBAdapter(sqlite_adapter)

This DB Adapter attached to the GA Engine will create the database file named "pyevolve.db".

.. seealso::

   `Sqliteman, a tool for sqlite3 databases <http://sqliteman.com/>`_
      I recommend the Sqliteman tool to open the database and see the contents or structure, if
      you are interested.

When you run your GA, all the statistics will be dumped to this database, and you will have an ID
for this run, which is the identify parameter. So when you use the graph tool, it will read
the statistics from this database file. The "identify" parameter is passed to the tool using
the "-i" option, like this: ::

   pyevolve_graph.py -i ex1 -1

By default, this tool will use the database file named *pyevolve.db*, but you can change that
using the "-f" option like this: ::
   
   pyevolve_graph.py -i ex1 -1 -f another_db.db


Usage Examples
---------------------------------------------------------------------------

**Writing graph to a file**

   PDF File: ::

      pyevolve_graph.py -i ex1 -1 -o graph_ex1 -e pdf
   
   PNG File (default extension when using "-o" option): ::
      
      pyevolve_graph.py -i ex1 -1 -o graph_ex1

**Using the generation range** ::

   # this command wil plot the evolution of the generations between 10 and 20.
   pyevolve_graph.py -i ex1 -1 -g 10:20

**When you have minimized the evaluation function** ::

   pyevolve_graph.py -i ex1 -1 -m

**To specify an identify list (graphs "-6" and "-7")** ::

   pyevolve_graph.py -i ex1_run1,ex1_run2,ex1_run3 -6

.. _graphs_screens:

Graph Types and Screenshots
---------------------------------------------------------------------------

Here are described all the graph types and some screenshots.

Error bars graph (raw scores) / "-1" option
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In this graph, you will find the generations on the x-axis and the raw scores on
the y-axis. The green vertical bars represent the **maximum and the minimum raw
scores** of the current population at generation indicated in the x-axis. The blue
line between them is the **average raw score** of the population.

This graph was generated using: ::

   pyevolve_graph.py -i ex1 -1

.. image:: imgs/graph_1_ex1.png
   :align: center

Error bars graph (fitness scores) / "-2" option
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The difference between this graph option and the "-1" option is that we 
use the **fitness scores** instead of the raw scores.

This graph was generated using: ::

   pyevolve_graph.py -i ex1 -2

.. image:: imgs/graph_2_ex1.png
   :align: center

.. note:: This graph is from a GA using the **Linear Scaling** scheme and the **Roulette
          Wheel** selection method.

Max/min/avg/std. dev. graph (raw scores) / "-3" option
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In this graph we have the green line showing the maximum raw score at the
generation in the x-axis, the red line shows the minimum raw score, and the
blue line shows the average raw scores. The green shaded region represents
the difference between our max. and min. raw scores. The black line shows the
standard deviation of the average raw scores. 
We also have some annotations like the maximum raw score, maximum std. dev.
and the min std. dev.

This graph was generated using: ::

   pyevolve_graph.py -i ex1 -3

.. image:: imgs/graph_3_ex1.png
   :align: center

.. note:: We can see in this graph the minimum standard deviation at the
          convergence point. The GA Engine stopped the evolution
          using these criteria.

   
Max/min/avg graph (fitness scores) / "-4" option
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

This graph shows the maximum fitness score from the population at the
x-axis generation using the green line. The red line shows the minimum
fitness score and the blue line shows the average fitness score from
the population. The green shaded region between the green and red line
shows the difference between the best and worst individual of population.

This graph was generated using: ::

   pyevolve_graph.py -i ex1 -4

.. image:: imgs/graph_4_ex1.png
   :align: center

.. note:: This graph is from a GA using the **Linear Scaling** scheme and the **Roulette
          Wheel** selection method.

Min/max difference graph, raw and fitness scores / "-5" option
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In this graph, we have two subplots, the first is the difference between
the best individual raw score and the worst individual raw score. The
second graph shows the difference between the best individual fitness score
and the worst individual fitness score
Both subplots show the generation on the x-axis and the score difference
in the y-axis.

This graph was generated using: ::

   pyevolve_graph.py -i ex1 -5

.. image:: imgs/graph_5_ex1.png
   :align: center


Compare best raw score of two or more evolutions / "-6" option
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This graph is used to compare two or more evolutions (the max is 6 evolutions)
of the same or different GA.

It uses a different color for each identify you use, in the example, you can
see the three evolutions (green, blue and red lines) of the same GA.

All the lines have a shaded transparent region of the same line color, they
represent the difference between the maximum and the minimum raw scores of
the evolution.

This graph was generated using: ::

   pyevolve_graph.py -i ex1_run1,ex1_run2,ex1_run3 -6

.. image:: imgs/graph_6_ex1.png
   :align: center

.. note:: The evolution identified by "ex1_run3" (red color) is the
          evolution in which the best raw score (20) was got first at the
          generation 80, compared to the other runs.

Compare best fitness score of two or more evolutions / "-7" option
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The difference between this graph option and the "-6" option is that we are
using the **fitness scores** instead of the raw scores.

This graph was generated using: ::

   pyevolve_graph.py -i ex1_run1,ex1_run2,ex1_run3 -7

.. image:: imgs/graph_7_ex1.png
   :align: center

Heat map of population raw score distribution / "-8" option
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The heat map graph is a plot with the population individual plotted as the
x-axis and the generation plotted in the y-axis. On the right side we have
a legend with the color/score relation. As you can see, on the initial
populations, the last individals scores are the worst (represented in this
colormap with the dark blue). To create this graph, we use the Gaussian
interpolation method.

This graph was generated using: ::

   pyevolve_graph.py -i ex1 -8

.. image:: imgs/graph_8_ex1.png
   :align: center

Using another colormap like the "spectral", we can see more interesting
patterns:

This graph was generated using: ::

   pyevolve_graph.py -i ex1 -8 -c spectral

.. image:: imgs/graph_8_ex1_spec.png
   :align: center

.. warning:: This graph generation can be very slow if you have too many generations.
             You can use the "-g" option to limit your generations.

Heat map of population fitness score distribution / "-9" option
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The difference between this graph option and the "-8" option is that we are
using the **fitness scores** instead of the raw scores.

This graph was generated using: ::

   pyevolve_graph.py -i ex1 -9
   
.. image:: imgs/graph_9_ex1.png
   :align: center

.. note:: Here you can note some interesting things, in this graph of the scaled
          score, the individual's fitnesses seem almost equaly distributed in the
          population.

Now, the same plot using the "hot" colormap.

This graph was generated using: ::

   pyevolve_graph.py -i ex1 -9 -c hot
   
.. image:: imgs/graph_9_ex1_hot.png
   :align: center

.. warning:: This graph generation can be very slow if you have too many generations.
             You can use the "-g" option to limit your generations.