1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Project: Fast Azimuthal Integration
# https://github.com/pyFAI/pyFAI
#
# Copyright (C) European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"test suite for dark_current / flat_field correction"
__author__ = "Jérôme Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "GPLv3+"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "20/10/2014"
import unittest
import os
import numpy
import logging
import time
import sys
import fabio
from utilstest import UtilsTest, Rwp, getLogger
logger = getLogger(__file__)
pyFAI = sys.modules["pyFAI"]
from pyFAI.opencl import ocl
if logger.getEffectiveLevel() <= logging.INFO:
import pylab
class TestFlat1D(unittest.TestCase):
shape = 640, 480
flat = 1 + numpy.random.random(shape)
dark = numpy.random.random(shape)
raw = flat + dark
eps = 1e-6
ai = pyFAI.AzimuthalIntegrator()
ai.setFit2D(directDist=1, centerX=shape[1] // 2, centerY=shape[0] // 2, pixelX=1, pixelY=1)
bins = 500
def test_no_correct(self):
r, I = self.ai.integrate1d(self.raw, self.bins, unit="r_mm", correctSolidAngle=False)
logger.info("1D Without correction Imin=%s Imax=%s <I>=%s std=%s" % (I.min(), I.max(), I.mean(), I.std()))
self.assertNotAlmostEqual(I.mean(), 1, 2, "Mean should not be 1")
self.assertFalse(I.max() - I.min() < self.eps, "deviation should be large")
def test_correct(self):
all_methods = ["numpy", "cython", "splitbbox", "splitpix", "lut", "csr"]
if ocl:
for device in ["cpu","gpu","acc"]:
if ocl.select_device(dtype=device):
all_methods.append("lut_ocl_%s" % device)
all_methods.append("csr_ocl_%s" % device)
for meth in all_methods:
r, I = self.ai.integrate1d(self.raw, self.bins, unit="r_mm", method=meth, correctSolidAngle=False, dark=self.dark, flat=self.flat)
logger.info("1D method:%s Imin=%s Imax=%s <I>=%s std=%s" % (meth, I.min(), I.max(), I.mean(), I.std()))
self.assertAlmostEqual(I.mean(), 1, 2, "Mean should be 1 in %s" % meth)
self.assert_(I.max() - I.min() < self.eps, "deviation should be small with meth %s, got %s" % (meth, I.max() - I.min()))
for meth in ["xrpd_numpy", "xrpd_cython", "xrpd_splitBBox", "xrpd_splitPixel"]: # , "xrpd_OpenCL" ]: bug with 32 bit GPU and request 64 bit integration
r, I = self.ai.__getattribute__(meth)(self.raw, self.bins, correctSolidAngle=False, dark=self.dark, flat=self.flat)
logger.info("1D method:%s Imin=%s Imax=%s <I>=%s std=%s" % (meth, I.min(), I.max(), I.mean(), I.std()))
self.assertAlmostEqual(I.mean(), 1, 2, "Mean should be 1 in %s" % meth)
self.assert_(I.max() - I.min() < self.eps, "deviation should be small with meth %s, got %s" % (meth, I.max() - I.min()))
if ocl and pyFAI.opencl.ocl.select_device("gpu", extensions=["cl_khr_fp64"]):
meth = "xrpd_OpenCL"
r, I = self.ai.__getattribute__(meth)(self.raw, self.bins, correctSolidAngle=False, dark=self.dark, flat=self.flat)
logger.info("1D method:%s Imin=%s Imax=%s <I>=%s std=%s" % (meth, I.min(), I.max(), I.mean(), I.std()))
self.assertAlmostEqual(I.mean(), 1, 2, "Mean should be 1 in %s" % meth)
self.assert_(I.max() - I.min() < self.eps, "deviation should be small with meth %s, got %s" % (meth, I.max() - I.min()))
class TestFlat2D(unittest.TestCase):
shape = 640, 480
flat = 1 + numpy.random.random(shape)
dark = numpy.random.random(shape)
raw = flat + dark
eps = 1e-6
ai = pyFAI.AzimuthalIntegrator()
ai.setFit2D(directDist=1, centerX=shape[1] // 2, centerY=shape[0] // 2, pixelX=1, pixelY=1)
bins = 500
azim = 360
def test_no_correct(self):
I, _ , _ = self.ai.integrate2d(self.raw, self.bins, self.azim, unit="r_mm", correctSolidAngle=False)
I = I[numpy.where(I > 0)]
logger.info("2D Without correction Imin=%s Imax=%s <I>=%s std=%s" % (I.min(), I.max(), I.mean(), I.std()))
self.assertNotAlmostEqual(I.mean(), 1, 2, "Mean should not be 1")
self.assertFalse(I.max() - I.min() < self.eps, "deviation should be large")
def test_correct(self):
test2d = {"numpy": self.eps,
"cython": self.eps,
"splitbbox": self.eps,
"splitpix": self.eps,
"lut": self.eps,
}
if ocl:
for device in ["cpu","gpu","acc"]:
if ocl.select_device(dtype=device):
test2d["lut_ocl_%s" % device] = self.eps
test2d["csr_ocl_%s" % device] = self.eps
test2d_direct = {"xrpd2_numpy": 0.3, # histograms are very noisy in 2D
"xrpd2_histogram": 0.3, # histograms are very noisy in 2D
"xrpd2_splitBBox": self.eps,
"xrpd2_splitPixel": self.eps}
for meth in test2d:
logger.info("About to test2d %s" % meth)
try:
I, _, _ = self.ai.integrate2d(self.raw, self.bins, self.azim, unit="r_mm", method=meth, correctSolidAngle=False, dark=self.dark, flat=self.flat)
except (MemoryError, pyFAI.opencl.pyopencl.MemoryError):
logger.warning("Got MemoryError from OpenCL device")
continue
I = I[numpy.where(I > 0)]
logger.info("2D method:%s Imin=%s Imax=%s <I>=%s std=%s" % (meth, I.min(), I.max(), I.mean(), I.std()))
self.assertAlmostEqual(I.mean(), 1, 2, "Mean should be 1 in %s" % meth)
self.assert_(I.max() - I.min() < test2d[meth], "deviation should be small with meth %s, got %s" % (meth, I.max() - I.min()))
for meth in test2d_direct:
logger.info("About to test2d_direct %s" % meth)
I, _, _ = self.ai.__getattribute__(meth)(self.raw, self.bins, self.azim, correctSolidAngle=False, dark=self.dark, flat=self.flat)
I = I[numpy.where(I > 0)]
logger.info("1D method:%s Imin=%s Imax=%s <I>=%s std=%s" % (meth, I.min(), I.max(), I.mean(), I.std()))
self.assert_(abs(I.mean() - 1) < test2d_direct[meth], "Mean should be 1 in %s" % meth)
self.assert_(I.max() - I.min() < test2d_direct[meth], "deviation should be small with meth %s, got %s" % (meth, I.max() - I.min()))
def test_suite_all_Flat():
testSuite = unittest.TestSuite()
testSuite.addTest(TestFlat1D("test_no_correct"))
testSuite.addTest(TestFlat1D("test_correct"))
testSuite.addTest(TestFlat2D("test_no_correct"))
testSuite.addTest(TestFlat2D("test_correct"))
return testSuite
if __name__ == '__main__':
mysuite = test_suite_all_Flat()
runner = unittest.TextTestRunner()
runner.run(mysuite)
|