1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Project: Fast Azimuthal integration
# https://github.com/pyFAI/pyFAI
#
# Copyright (C) European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
"test suite for utilities library"
__author__ = "Jérôme Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "GPLv3+"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "20140106"
import unittest
import numpy
import logging
import sys
import os
import fabio
from utilstest import UtilsTest, getLogger
logger = getLogger(__file__)
pyFAI = sys.modules["pyFAI"]
import pyFAI.utils
if logger.getEffectiveLevel() <= logging.INFO:
import pylab
import scipy.ndimage
# TODO Test:
# gaussian_filter
# relabel
# boundingBox
# removeSaturatedPixel
# DONE:
# # binning
# # unbinning
# # shift
# # shiftFFT
# # measure_offset
# # averageDark
# # averageImages
class test_utils(unittest.TestCase):
unbinned = numpy.random.random((64, 32))
dark = unbinned.astype("float32")
flat = 1 + numpy.random.random((64, 32))
raw = flat + dark
tmp_dir = os.environ.get("PYFAI_TEMPDIR",os.path.join(os.path.dirname(os.path.abspath(__file__)), "tmp"))
tmp_file = os.path.join(tmp_dir, "testUtils_average.edf")
def setUp(self):
"""Download files & create tmp directory if needed"""
if not os.path.isdir(self.tmp_dir):
os.makedirs(self.tmp_dir)
def tearDown(self):
"""Remove tmp files if needed"""
if os.path.isfile(self.tmp_file):
try:
os.unlink(self.tmp_file)
except OSError as error:
logger.error("Unable to remove file %s" % self.tmp_file)
def test_binning(self):
"""
test the binning and unbinning functions
"""
binned = pyFAI.utils.binning(self.unbinned, (4, 2))
self.assertEqual(binned.shape, (64 / 4, 32 / 2), "binned size is OK")
unbinned = pyFAI.utils.unBinning(binned, (4, 2))
self.assertEqual(unbinned.shape, self.unbinned.shape, "unbinned size is OK")
self.assertAlmostEqual(unbinned.sum(), self.unbinned.sum(), 2, "content is the same")
def test_averageDark(self):
"""
Some testing for dark averaging
"""
one = pyFAI.utils.averageDark([self.dark])
self.assertEqual(abs(self.dark - one).max(), 0, "data are the same")
two = pyFAI.utils.averageDark([self.dark, self.dark])
self.assertEqual(abs(self.dark - two).max(), 0, "data are the same: mean test")
three = pyFAI.utils.averageDark([numpy.ones_like(self.dark), self.dark, numpy.zeros_like(self.dark) ], "median")
self.assertEqual(abs(self.dark - three).max(), 0, "data are the same: median test")
four = pyFAI.utils.averageDark([numpy.ones_like(self.dark), self.dark, numpy.zeros_like(self.dark) ], "min")
self.assertEqual(abs(numpy.zeros_like(self.dark) - four).max(), 0, "data are the same: min test")
five = pyFAI.utils.averageDark([numpy.ones_like(self.dark), self.dark, numpy.zeros_like(self.dark) ], "max")
self.assertEqual(abs(numpy.ones_like(self.dark) - five).max(), 0, "data are the same: max test")
six = pyFAI.utils.averageDark([numpy.ones_like(self.dark), self.dark, numpy.zeros_like(self.dark), self.dark, self.dark ], "median", .001)
self.assert_(abs(self.dark - six).max() < 1e-4, "data are the same: test threshold")
seven = pyFAI.utils.averageImages([self.raw], darks=[self.dark], flats=[self.flat], threshold=0, output=self.tmp_file)
self.assert_(abs(numpy.ones_like(self.dark) - fabio.open(seven).data).mean() < 1e-2, "averageImages")
def test_shift(self):
"""
Some testing for image shifting and offset measurement functions.
"""
ref = numpy.ones((11, 12))
ref[2, 3] = 5
res = numpy.ones((11, 12))
res[5, 7] = 5
delta = (5 - 2, 7 - 3)
self.assert_(abs(pyFAI.utils.shift(ref, delta) - res).max() < 1e-12, "shift with integers works")
self.assert_(abs(pyFAI.utils.shiftFFT(ref, delta) - res).max() < 1e-12, "shift with FFTs works")
self.assert_(pyFAI.utils.measure_offset(res, ref) == delta, "measure offset works")
def test_gaussian_filter(self):
"""
Check gaussian filters applied via FFT
"""
for sigma in [2, 9.0 / 8.0]:
for mode in ["wrap", "reflect", "constant", "nearest", "mirror" ]:
blurred1 = scipy.ndimage.filters.gaussian_filter(self.flat, sigma, mode=mode)
blurred2 = pyFAI.utils.gaussian_filter(self.flat, sigma, mode=mode)
delta = abs((blurred1 - blurred2) / (blurred1)).max()
logger.info("Error for gaussian blur sigma: %s with mode %s is %s" % (sigma, mode, delta))
self.assert_(delta < 6e-5, "Gaussian blur sigma: %s in %s mode are the same, got %s" % (sigma, mode, delta))
def test_suite_all_Utils():
testSuite = unittest.TestSuite()
testSuite.addTest(test_utils("test_binning"))
testSuite.addTest(test_utils("test_averageDark"))
testSuite.addTest(test_utils("test_shift"))
testSuite.addTest(test_utils("test_gaussian_filter"))
return testSuite
if __name__ == '__main__':
mysuite = test_suite_all_Utils()
runner = unittest.TextTestRunner()
runner.run(mysuite)
|