1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Project: Fast Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2017-2018 European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# .
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# .
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""
Detectors manufactured by PSI, those may be different from the one from Dectris
"""
__author__ = "Jerome Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "25/06/2020"
__status__ = "production"
import numpy
import logging
import json
from ._common import Detector
from ..utils import mathutil
logger = logging.getLogger(__name__)
class Jungfrau(Detector):
"""
Raw Jungfrau module without sub-module pixel expension applied.
"""
MANUFACTURER = "PSI"
MODULE_SIZE = (256, 256) # number of pixels per module (y, x)
MAX_SHAPE = (512, 1024) # max size of the detector
PIXEL_SIZE = (75e-6, 75e-6)
BORDER_SIZE_RELATIVE = 2.0
force_pixel = True
aliases = ["Jungfrau 500k"]
uniform_pixel = False
@classmethod
def _calc_pixels_size(cls, length, module_size, pixel_size):
"""
given the length (in pixel) of the detector, the size of a
module (in pixels) and the pixel_size (in meter). this method
return the length of each pixels 0..length.
:param length: the number of pixel to compute
:type length: int
:param module_size: the number of pixel of one module
:type module_size: int
:param pixel_size: the size of one pixels (meter per pixel)
:type length: float
:return: the coordinates of each pixels 0..length
:rtype: ndarray
"""
size = numpy.ones(length)
n = length // module_size
for i in range(1, n):
size[i * module_size - 1] = cls.BORDER_SIZE_RELATIVE
size[i * module_size] = cls.BORDER_SIZE_RELATIVE
return pixel_size * size
def __init__(self, pixel1=75e-6, pixel2=75e-6, max_shape=None, module_size=None):
Detector.__init__(self, pixel1=pixel1, pixel2=pixel2, max_shape=max_shape)
self._pixel_edges = None # array of size max_shape+1: pixels are contiguous
if (module_size is None) and ("MODULE_SIZE" in dir(self.__class__)):
self.module_size = tuple(self.MODULE_SIZE)
else:
self.module_size = module_size
def __repr__(self):
return "Detector %s\t PixelSize= %.3e, %.3e m" % \
(self.name, self.pixel1, self.pixel2)
def calc_pixels_edges(self):
"""
Calculate the position of the pixel edges
"""
if self._pixel_edges is None:
pixel_size1 = self._calc_pixels_size(self.max_shape[0], self.module_size[0], self.PIXEL_SIZE[0])
pixel_size2 = self._calc_pixels_size(self.max_shape[1], self.module_size[1], self.PIXEL_SIZE[1])
pixel_edges1 = numpy.zeros(self.max_shape[0] + 1)
pixel_edges2 = numpy.zeros(self.max_shape[1] + 1)
pixel_edges1[1:] = numpy.cumsum(pixel_size1)
pixel_edges2[1:] = numpy.cumsum(pixel_size2)
self._pixel_edges = pixel_edges1, pixel_edges2
return self._pixel_edges
def get_pixel_corners(self, correct_binning=False):
"""
Calculate the position of the corner of the pixels
This should be overwritten by class representing non-contiguous detector (Xpad, ...)
Precision float32 is ok: precision of 1µm for a detector size of 1m
:return: 4D array containing:
pixel index (slow dimension)
pixel index (fast dimension)
corner index (A, B, C or D), triangles or hexagons can be handled the same way
vertex position (z,y,x)
"""
if self._pixel_corners is None:
with self._sem:
if self._pixel_corners is None:
edges1, edges2 = self.calc_pixels_edges()
p1 = mathutil.expand2d(edges1, self.shape[1] + 1, False)
p2 = mathutil.expand2d(edges2, self.shape[0] + 1, True)
# p3 = None
self._pixel_corners = numpy.zeros((self.shape[0], self.shape[1], 4, 3), dtype=numpy.float32)
self._pixel_corners[:, :, 0, 1] = p1[:-1, :-1]
self._pixel_corners[:, :, 0, 2] = p2[:-1, :-1]
self._pixel_corners[:, :, 1, 1] = p1[1:, :-1]
self._pixel_corners[:, :, 1, 2] = p2[1:, :-1]
self._pixel_corners[:, :, 2, 1] = p1[1:, 1:]
self._pixel_corners[:, :, 2, 2] = p2[1:, 1:]
self._pixel_corners[:, :, 3, 1] = p1[:-1, 1:]
self._pixel_corners[:, :, 3, 2] = p2[:-1, 1:]
# if p3 is not None:
# # non flat detector
# self._pixel_corners[:, :, 0, 0] = p3[:-1, :-1]
# self._pixel_corners[:, :, 1, 0] = p3[1:, :-1]
# self._pixel_corners[:, :, 2, 0] = p3[1:, 1:]
# self._pixel_corners[:, :, 3, 0] = p3[:-1, 1:]
if correct_binning and self._pixel_corners.shape[:2] != self.shape:
return self._rebin_pixel_corners()
else:
return self._pixel_corners
def calc_cartesian_positions(self, d1=None, d2=None, center=True, use_cython=True):
"""
Calculate the position of each pixel center in cartesian coordinate
and in meter of a couple of coordinates.
The half pixel offset is taken into account here !!!
:param d1: the Y pixel positions (slow dimension)
:type d1: ndarray (1D or 2D)
:param d2: the X pixel positions (fast dimension)
:type d2: ndarray (1D or 2D)
:return: position in meter of the center of each pixels.
:rtype: ndarray
d1 and d2 must have the same shape, returned array will have
the same shape.
"""
edges1, edges2 = self.calc_pixels_edges()
if (d1 is None) or (d2 is None):
if center:
# Take the center of each pixel
d1 = 0.5 * (edges1[:-1] + edges1[1:])
d2 = 0.5 * (edges2[:-1] + edges2[1:])
else:
# take the lower corner
d1 = edges1[:-1]
d2 = edges2[:-1]
p1 = numpy.outer(d1, numpy.ones(self.shape[1]))
p2 = numpy.outer(numpy.ones(self.shape[0]), d2)
else:
if center:
# Not +=: do not mangle in place arrays
d1 = d1 + 0.5
d2 = d2 + 0.5
p1 = numpy.interp(d1, numpy.arange(self.max_shape[0] + 1), edges1, edges1[0], edges1[-1])
p2 = numpy.interp(d2, numpy.arange(self.max_shape[1] + 1), edges2, edges2[0], edges2[-1])
return p1, p2, None
|