1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
|
# coding: utf-8
#
# Project: Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2015-2018 European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""Module with GUI for diffraction mapping experiments"""
__author__ = "Jerome Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "08/01/2021"
__status__ = "development"
__docformat__ = 'restructuredtext'
import os
import time
import posixpath
import sys
import collections
import glob
import logging
logger = logging.getLogger(__name__)
import numpy
import fabio
import json
import __main__ as main
from .opencl import ocl
from .units import to_unit
from . import version as PyFAI_VERSION, date as PyFAI_DATE, load
from .io import Nexus, get_isotime, h5py
from .worker import Worker, _reduce_images
from argparse import ArgumentParser
from urllib.parse import urlparse
DIGITS = [str(i) for i in range(10)]
Position = collections.namedtuple('Position', 'index, rot, trans')
class DiffMap(object):
"""
Basic class for diffraction mapping experiment using pyFAI
"""
def __init__(self, npt_fast=0, npt_slow=1, npt_rad=1000, npt_azim=None):
"""Constructor of the class DiffMap for diffraction mapping
:param npt_fast: number of translations
:param npt_slow: number of translations
:param npt_rad: number of points in diffraction pattern (radial dimension)
:param npt_azim: number of points in diffraction pattern (azimuthal dimension)
"""
self.npt_fast = npt_fast
self.npt_slow = npt_slow
self.npt_rad = npt_rad
self.slow_motor_name = "slow"
self.fast_motor_name = "fast"
self.offset = 0
self.poni = None
self.worker = Worker(unit="2th_deg")
self.worker.output = "raw" # exchange IntegrateResults, not numpy arrays
self.dark = None
self.flat = None
self.mask = None
self.I0 = None
self.hdf5 = None
self.nxdata_grp = None
self.dataset = None
self.inputfiles = []
self.timing = []
self.stats = False
self._idx = -1
self.processed_file = []
self.stored_input = set()
self.nxs = None
self.entry_grp = None
self.experiment_title = "Diffraction Mapping"
def __repr__(self):
return "%s experiment with ntp_slow: %s ntp_fast: %s, npt_diff: %s" % \
(self.experiment_title, self.npt_slow, self.npt_fast, self.npt_rad)
@staticmethod
def to_tuple(name):
"""
Extract numbers as tuple:
to_tuple("slice06/IRIS4_1_14749.edf")
--> (6, 4, 1, 14749)
:param name: input string, often a filename
"""
res = []
cur = ""
for c in name:
if c in DIGITS:
cur = cur + c
elif cur:
res.append(cur)
cur = ""
return tuple(int(i) for i in res)
def parse(self, with_config=False):
"""
parse options from command line: setup the object
:return: dictionary able to setup a DiffMapWidget
"""
description = """Azimuthal integration for diffraction imaging.
Diffraction mapping is an experiment where 2D diffraction patterns are recorded
while performing a 2D scan.
Diff_map is a graphical application (based on pyFAI and h5py) which allows the reduction of this
4D dataset into a 3D dataset containing the two motion dimensions
and the many diffraction angles (thousands). The resulting dataset can be opened using PyMca roitool
where the 1d dataset has to be selected as last dimension.
This result file aims at being NeXus compliant.
This tool can be used for diffraction tomography experiment as well, considering the slow scan direction as the rotation.
"""
epilog = """Bugs: Many, see hereafter:
1)If the number of files is too large, use double quotes "*.edf"
2)There is a known bug on Debian7 where importing a large number of file can
take much longer than the integration itself: consider passing files in the
command line
"""
usage = """diff_map [options] -p ponifile imagefiles*
If the number of files is too large, use double quotes like "*.edf" """
version = "diff_tomo from pyFAI version %s: %s" % (PyFAI_VERSION, PyFAI_DATE)
parser = ArgumentParser(usage=usage, description=description, epilog=epilog)
parser.add_argument("-V", "--version", action='version', version=version)
parser.add_argument("args", metavar="FILE", help="List of files to integrate. Mandatory without GUI", nargs='*')
parser.add_argument("-o", "--output", dest="outfile",
help="HDF5 File where processed map will be saved. Mandatory without GUI",
metavar="FILE", default=None)
parser.add_argument("-v", "--verbose",
action="store_true", dest="verbose", default=False,
help="switch to verbose/debug mode, default: quiet")
parser.add_argument("-P", "--prefix", dest="prefix",
help="Prefix or common base for all files",
metavar="FILE", default="", type=str)
parser.add_argument("-e", "--extension", dest="extension",
help="Process all files with this extension",
default="")
parser.add_argument("-t", "--fast", dest="fast",
help="number of points for the fast motion. Mandatory without GUI", default=None)
parser.add_argument("-r", "--slow", dest="slow",
help="number of points for slow motion. Mandatory without GUI", default=None)
parser.add_argument("-c", "--npt", dest="npt_rad",
help="number of points in diffraction powder pattern. Mandatory without GUI",
default=None)
parser.add_argument("-d", "--dark", dest="dark", metavar="FILE",
help="list of dark images to average and subtract (comma separated list)",
default=None)
parser.add_argument("-f", "--flat", dest="flat", metavar="FILE",
help="list of flat images to average and divide (comma separated list)",
default=None)
parser.add_argument("-m", "--mask", dest="mask", metavar="FILE",
help="file containing the mask, no mask by default", default=None)
parser.add_argument("-p", "--poni", dest="poni", metavar="FILE",
help="file containing the diffraction parameter (poni-file), Mandatory without GUI",
default=None)
parser.add_argument("-O", "--offset", dest="offset",
help="do not process the first files", default=None)
parser.add_argument("-g", "--gpu", dest="gpu", action="store_true",
help="process using OpenCL on GPU ", default=False)
parser.add_argument("-S", "--stats", dest="stats", action="store_true",
help="show statistics at the end", default=False)
parser.add_argument("--gui", dest="gui", action="store_true",
help="Use the Graphical User Interface", default=True)
parser.add_argument("--no-gui", dest="gui", action="store_false",
help="Do not use the Graphical User Interface", default=True)
parser.add_argument("--config", dest="config", default=None,
help="provide a JSON configuration file")
options = parser.parse_args()
args = options.args
if (options.config is not None) and os.path.exists(options.config):
with open(options.config, "r") as fd:
config = json.loads(fd.read())
else:
config = {}
if "ai" not in config:
config["ai"] = {}
if options.verbose:
logger.setLevel(logging.DEBUG)
if options.outfile:
self.hdf5 = options.outfile
config["output_file"] = self.hdf5,
if options.dark:
dark_files = [os.path.abspath(urlparse(f).path)
for f in options.dark.split(",")
if os.path.isfile(urlparse(f).path)]
if dark_files:
self.dark = dark_files
config["ai"]["dark_current"] = ",".join(dark_files)
config["ai"]["do_dark"] = True
else:
raise RuntimeError("No such dark files")
if options.flat:
flat_files = [os.path.abspath(urlparse(f).path)
for f in options.flat.split(",")
if os.path.isfile(urlparse(f).path)]
if flat_files:
self.flat = flat_files
config["ai"]["flat_field"] = ",".join(flat_files)
config["ai"]["do_flat"] = True
else:
raise RuntimeError("No such flat files")
if ocl and options.gpu:
config["ai"]["opencl_device"] = ocl.select_device(type="gpu")
config["ai"]["method"] = "ocl-csr"
self.inputfiles = []
for fn in args:
f = urlparse(fn).path
if os.path.isfile(f) and f.endswith(options.extension):
self.inputfiles.append(os.path.abspath(f))
elif os.path.isdir(f):
self.inputfiles += [os.path.abspath(os.path.join(f, g)) for g in os.listdir(f) if g.endswith(options.extension) and g.startswith(options.prefix)]
else:
self.inputfiles += [os.path.abspath(f) for f in glob.glob(f)]
self.inputfiles.sort(key=self.to_tuple)
config["input_data"] = [(i, None) for i in self.inputfiles]
if options.mask:
mask = urlparse(options.mask).path
if os.path.isfile(mask):
logger.info("Reading Mask file from: %s", mask)
self.mask = os.path.abspath(mask)
config["ai"]["mask_file"] = self.mask
config["ai"]["do_mask"] = True
else:
logger.warning("No such mask file %s", mask)
if options.poni:
if os.path.isfile(options.poni):
logger.info("Reading PONI file from: %s", options.poni)
self.poni = options.poni
config["ai"]["poni"] = self.poni
else:
logger.warning("No such poni file %s", options.poni)
if options.fast is not None:
self.npt_fast = int(options.fast)
config["fast_motor_points"] = self.npt_fast
if options.slow is not None:
self.npt_slow = int(options.slow)
config["slow_motor_points"] = self.npt_slow
if options.npt_rad is not None:
self.npt_rad = int(options.npt_rad)
config["ai"]["nbpt_rad"] = self.npt_rad,
if options.offset is not None:
self.offset = int(options.offset)
config["offset"] = self.offset,
else:
self.offset = 0
self.stats = options.stats
if with_config:
if "do_2D" not in config["ai"]:
config["ai"]["do_2D"] = False
if "do_solid_angle" not in config["ai"]:
config["ai"]["do_solid_angle"] = True
if "unit" not in config["ai"]:
config["ai"]["unit"] = "2th_deg"
if "experiment_title" not in config:
config["experiment_title"] = self.experiment_title
if "fast_motor_name" not in config:
config["fast_motor_name"] = self.fast_motor_name
if "slow_motor_name" not in config:
config["slow_motor_name"] = self.slow_motor_name
return options, config
return options
def makeHDF5(self, rewrite=False):
"""
Create the HDF5 structure if needed ...
"""
if h5py is None:
raise RuntimeError("h5py is needed to create HDF5 files")
dtype = h5py.special_dtype(vlen=str)
if self.hdf5 is None:
raise RuntimeError("No output HDF5 file provided")
logger.info("Initialization of HDF5 file")
if os.path.exists(self.hdf5) and rewrite:
os.unlink(self.hdf5)
nxs = Nexus(self.hdf5, mode="w", creator="pyFAI")
self.entry_grp = entry_grp = nxs.new_entry(entry="entry",
program_name="pyFAI",
title="diff_map")
process_grp = nxs.new_class(entry_grp, "pyFAI", class_type="NXprocess")
process_grp["program"] = main.__file__
process_grp["version"] = PyFAI_VERSION
process_grp["date"] = get_isotime()
if self.mask:
process_grp["maskfile"] = self.mask
if self.flat:
process_grp["flatfiles"] = numpy.array([i for i in self.flat], dtype=dtype)
if self.dark:
process_grp["darkfiles"] = numpy.array([i for i in self.dark], dtype=dtype)
if self.poni is not None:
process_grp["PONIfile"] = self.poni
process_grp["inputfiles"] = numpy.array([i for i in self.inputfiles], dtype=dtype)
process_grp["dim0"] = self.npt_slow
process_grp["dim0"].attrs["axis"] = self.slow_motor_name
process_grp["dim1"] = self.npt_fast
process_grp["dim1"].attrs["axis"] = self.fast_motor_name
process_grp["dim2"] = self.npt_rad
process_grp["dim2"].attrs["axis"] = "diffraction"
config = nxs.new_class(process_grp, "configuration", "NXnote")
config["type"] = "text/json"
config["data"] = json.dumps(self.worker.get_config(), indent=2, separators=(",\r\n", ": "))
self.nxdata_grp = nxs.new_class(process_grp, "result", class_type="NXdata")
entry_grp.attrs["default"] = self.nxdata_grp.name.split("/", 2)[2]
self.dataset = self.nxdata_grp.create_dataset(
name="intensity",
shape=(self.npt_slow, self.npt_fast, self.npt_rad),
dtype="float32",
chunks=(1, self.npt_fast, self.npt_rad),
maxshape=(None, None, self.npt_rad))
self.dataset.attrs["interpretation"] = "spectrum"
self.nxdata_grp.attrs["signal"] = self.dataset.name.split("/")[-1]
self.nxdata_grp.attrs["axes"] = [".", ".", str(self.unit).split("_")[0]]
self.dataset.attrs["title"] = str(self)
self.nxs = nxs
def setup_ai(self):
print("Setup of Azimuthal integrator ...")
if self.poni:
self.ai = load(self.poni)
else:
logger.error(("Unable to setup Azimuthal integrator:"
" no poni file provided"))
raise RuntimeError("You must provide poni a file")
if self.dark:
self.ai.detector.set_darkcurrent(_reduce_images(self.dark))
if self.flat:
self.ai.detector.set_flatfield(_reduce_images(self.flat))
if self.mask is not None:
self.ai.detector.set_mask(_reduce_images(self.mask, method="max"))
def init_ai(self):
"""Force initialization of azimuthal intgrator
:return: radial position array
"""
if not self.ai:
self.setup_ai()
if not self.nxdata_grp:
self.makeHDF5(rewrite=False)
if self.ai.detector.shape:
# shape of detector undefined: reading the first image to guess it
shape = self.ai.detector.shape
else:
fimg = fabio.open(self.inputfiles[0])
shape = fimg.data.shape
self.worker.shape = shape
self.worker.output = "raw"
data = numpy.empty(shape, dtype=numpy.float32)
print("Initialization of the Azimuthal Integrator using method %s" % (self.method,))
# enforce initialization of azimuthal integrator
print(self.ai)
res = self.worker.process(data)
tth = res.radial
if self.dataset is None:
self.makeHDF5()
space, unit = str(self.unit).split("_")
if space not in self.nxdata_grp:
self.nxdata_grp[space] = tth
self.nxdata_grp[space].attrs["axes"] = 3
self.nxdata_grp[space].attrs["unit"] = unit
self.nxdata_grp[space].attrs["long_name"] = self.unit.label
self.nxdata_grp[space].attrs["interpretation"] = "scalar"
return tth
def show_stats(self):
if not self.stats:
return
try:
from .gui.matplotlib import pyplot
except ImportError:
logger.error("Unable to start matplotlib for display")
return
fig = pyplot.figure()
ax = fig.add_subplot(1, 1, 1)
ax.hist(self.timing, 500, facecolor='green', alpha=0.75)
ax.set_xlabel('Execution time (seconds)')
ax.set_ylabel('Occurence')
ax.set_title("Execution time")
ax.grid(True)
fig.show()
input("Enter to quit")
def get_pos(self, filename=None, idx=None):
"""
Calculate the position in the sinogram of the file according
to it's number
:param filename: name of current frame
:param idx: index of current frame
:return: namedtuple: index, rot, trans
"""
if idx is None:
n = self.inputfiles.index(filename) - self.offset
else:
n = idx - self.offset
return Position(n, n // self.npt_fast, n % self.npt_fast)
def process_one_file(self, filename):
"""
:param filename: name of the input filename
:param idx: index of file
"""
if self.ai is None:
self.setup_ai()
if self.dataset is None:
self.makeHDF5()
t = time.perf_counter()
fimg = fabio.open(filename)
if "dataset" in dir(fimg):
if isinstance(fimg.dataset, list):
for ds in fimg.dataset:
self.set_hdf5_input_dataset(ds)
else:
self.set_hdf5_input_dataset(fimg.dataset)
self.process_one_frame(fimg.data)
if fimg.nframes > 1:
for i in range(fimg.nframes - 1):
fimg = fimg.next()
self.process_one_frame(fimg.data)
t -= time.perf_counter()
print("Processing %30s took %6.1fms (%i frames)" %
(os.path.basename(filename), -1000.0 * t, fimg.nframes))
self.timing.append(-t)
self.processed_file.append(filename)
def set_hdf5_input_dataset(self, dataset):
"record the input dataset with an external link"
if not isinstance(dataset, h5py.Dataset):
return
if not (self.nxs and self.nxs.h5 and self.entry_grp):
return
id_ = id(dataset)
if id_ in self.stored_input:
return
else:
self.stored_input.add(id_)
# Process 0: measurement group
if "measurement" in self.entry_grp:
measurement_grp = self.entry_grp["measurement"]
else:
measurement_grp = self.nxs.new_class(self.entry_grp, "measurement", "NXdata")
here = os.path.dirname(os.path.abspath(self.nxs.filename))
there = os.path.abspath(dataset.file.filename)
name = "images_%04i" % len(self.stored_input)
measurement_grp[name] = h5py.ExternalLink(os.path.relpath(there, here), dataset.name)
if "signal" not in measurement_grp.attrs:
measurement_grp.attrs["signal"] = name
def process_one_frame(self, frame):
"""
:param frame: 2d numpy array with an image to process
"""
self._idx += 1
pos = self.get_pos(None, self._idx)
shape = self.dataset.shape
if pos.rot + 1 > shape[0]:
self.dataset.resize((pos.rot + 1, shape[1], shape[2]))
elif pos.index < 0 or pos.rot < 0 or pos.trans < 0:
return
res = self.worker.process(frame)
# _tth, I = self.ai.integrate1d(frame, self.npt_rad, safe=False,
# method=self.method, unit=self.unit)
self.dataset[pos.rot, pos.trans,:] = res.intensity
def process(self):
if self.dataset is None:
self.makeHDF5()
self.init_ai()
t0 = time.perf_counter()
for f in self.inputfiles:
self.process_one_file(f)
tot = time.perf_counter() - t0
cnt = self._idx + 1
print(("Execution time for %i frames: %.3fs;"
" Average execution time: %.1fms") %
(cnt, tot, 1000. * tot / cnt))
self.nxs.close()
def get_use_gpu(self):
return self.method.impl_lower == "opencl"
def set_use_gpu(self, value):
if value:
method = self.method.method.fixed("opencl")
else:
method = self.method.method.fixed("cython")
self.method = method
use_gpu = property(get_use_gpu, set_use_gpu)
@property
def ai(self):
"return the azimuthal integrator stored in the worker, replaces the attribute"
if self.worker is None:
return None
else:
return self.worker.ai
@ai.setter
def ai(self, value):
if self.worker is None:
self.worker = Worker(value, unit=self.unit, shapeOut=(1, self.npt_rad))
else:
self.worker.ai = value
@property
def method(self):
if self.worker is not None:
return self.worker.method
return None
@method.setter
def method(self, value):
self.worker.set_method(value)
@property
def unit(self):
return self.worker.unit
@unit.setter
def unit(self, value):
self.worker.unit = value
|