1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
|
# !/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Project: Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2013-2020 European Synchrotron Radiation Facility, Grenoble, France
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# .
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# .
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
__author__ = "Jérôme Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "08/01/2021"
__status__ = "development"
import logging
import threading
import os
import numpy
logger = logging.getLogger(__name__)
from math import ceil, floor
from . import detectors
from .opencl import ocl
if ocl:
from .opencl import azim_lut as ocl_azim_lut
from .opencl import azim_csr as ocl_azim_csr
else:
ocl_azim_lut = ocl_azim_csr = None
try:
from .ext import _distortion
from .ext import sparse_utils
except ImportError:
logger.debug("Backtrace", exc_info=True)
logger.warning("Import _distortion cython implementation failed ... pure python version is terribly slow !!!")
_distortion = None
try:
from scipy.sparse import linalg, csr_matrix, identity
except IOError:
logger.warning("Scipy is missing ... uncorrection will be handled the old way")
linalg = None
else:
import scipy
v = tuple(int(i) for i in scipy.version.short_version.split(".") if i.isdigit())
if v < (0, 11):
logger.warning("Scipy is too old ... uncorrection will be handled the old way")
linalg = None
def resize_image_2D_numpy(image, shape_in):
"numpy implementation of resize_image_2D"
new_img = numpy.zeros(shape_in, dtype=image.dtype)
common_shape = [min(i, j) for i, j in zip(image.shape, shape_in)]
new_img[:common_shape[0],:common_shape[1]] = image[:common_shape[0],:common_shape[1]]
return new_img
if _distortion is None:
resize_image_2D = resize_image_2D_numpy
else:
from .ext._distortion import resize_image_2D
class Distortion(object):
"""
This class applies a distortion correction on an image.
New version compatible both with CSR and LUT...
"""
def __init__(self, detector="detector", shape=None, resize=False, empty=0,
mask=None, method="CSR", device=None, workgroup=32):
"""
:param detector: detector instance or detector name
:param shape: shape of the output image
:param resize: allow the output shape to be different from the input shape
:param empty: value to be given for empty bins
:param method: "lut" or "csr", the former is faster
:param device: Name of the device: None for OpenMP, "cpu" or "gpu" or the id of the OpenCL device a 2-tuple of integer
:param workgroup: workgroup size for CSR on OpenCL
"""
self._shape_out = None
if isinstance(detector, (str,)):
self.detector = detectors.detector_factory(detector)
else: # we assume it is a Detector instance
self.detector = detector
self.shape_in = self.detector.shape
if mask is None:
self.mask = numpy.ascontiguousarray(self.detector.mask, numpy.int8)
elif mask is False:
self.mask = numpy.zeros(self.detector.shape, numpy.int8)
else:
self.mask = numpy.ascontiguousarray(mask, numpy.int8)
self.resize = resize
if shape is not None:
self._shape_out = tuple([int(i) for i in shape])
elif not self.resize:
if self.detector.shape is not None:
self._shape_out = self.detector.shape
else:
raise RuntimeError("You need to provide either the detector or its shape")
self._sem = threading.Semaphore()
self.bin_size = None
self.max_size = None
self.pos = None
if not method:
self.method = "lut"
else:
self.method = method.lower()
if (self.detector.uniform_pixel and self.detector.IS_FLAT):
sparse = identity(numpy.prod(self.detector.shape),
dtype=numpy.float32,
format="coo")
if self.detector.mask is not None:
masked = numpy.where(self.detector.mask.ravel())
sparse.data[masked] = 0.0
sparse.eliminate_zeros()
csr = sparse.tocsr()
if self.method == "lut":
self.lut = sparse_utils.CSR_to_LUT(csr.data, csr.indices, csr.indptr)
else:
self.lut = csr.data, csr.indices, csr.indptr
else:
# initialize the LUT later
self.lut = None
self.delta1 = self.delta2 = None # max size of an pixel on a regular grid ...
self.offset1 = self.offset2 = 0 # position of the first bin
self.integrator = None
self.empty = empty # "dummy" value for empty bins
self.device = device
if not workgroup:
self.workgroup = 1
else:
self.workgroup = int(workgroup)
def __repr__(self):
return os.linesep.join(["Distortion correction %s on device %s for detector shape %s:" % (self.method, self.device, self._shape_out),
self.detector.__repr__()])
def reset(self, method=None, device=None, workgroup=None, prepare=True):
"""
reset the distortion correction and re-calculate the look-up table
:param method: can be "lut" or "csr", "lut" looks faster
:param device: can be None, "cpu" or "gpu" or the id as a 2-tuple of integer
:param worgroup: enforce the workgroup size for CSR.
:param prepare: set to false to only reset and not re-initialize
"""
with self._sem:
self.max_size = None
self.pos = None
self.lut = None
self.delta1 = self.delta2 = None
self.offset1 = self.offset2 = 0
self.integrator = None
if method is not None:
self.method = method.lower()
if device is not None:
self.device = device
if workgroup is not None:
self.workgroup = int(workgroup)
if prepare:
self.calc_init()
@property
def shape_out(self):
"""
Calculate/cache the output shape
:return: output shape
"""
if self._shape_out is None:
self.calc_pos()
return self._shape_out
def calc_pos(self, use_cython=True):
"""Calculate the pixel boundary position on the regular grid
:return: pixel corner positions (in pixel units) on the regular grid
:rtype: ndarray of shape (nrow, ncol, 4, 2)
"""
logger.debug("in Distortion.calc_pos")
if self.delta1 is None:
with self._sem:
if self.delta1 is None:
# TODO: implement equivalent in Cython
if _distortion and use_cython:
self.pos, self.delta1, self.delta2, shape_out, offset = _distortion.calc_pos(self.detector.get_pixel_corners(), self.detector.pixel1, self.detector.pixel2, self._shape_out)
if self._shape_out is None:
self.offset1, self.offset2 = offset
self._shape_out = shape_out
else:
pixel_size = numpy.array([self.detector.pixel1, self.detector.pixel2], dtype=numpy.float32)
# make it a 4D array
pixel_size.shape = 1, 1, 1, 2
pixel_size.strides = 0, 0, 0, pixel_size.strides[-1]
self.pos = self.detector.get_pixel_corners()[..., 1:] / pixel_size
if self._shape_out is None:
# if defined, it is probably because resize=False
corner_pos = self.pos.view()
corner_pos.shape = -1, 2
pos1_min, pos2_min = corner_pos.min(axis=0)
pos1_max, pos2_max = corner_pos.max(axis=0)
self._shape_out = (int(ceil(pos1_max - pos1_min)),
int(ceil(pos2_max - pos2_min)))
self.offset1, self.offset2 = pos1_min, pos2_min
pixel_delta = self.pos.view()
pixel_delta.shape = -1, 4, 2
self.delta1, self.delta2 = ((numpy.ceil(pixel_delta.max(axis=1)) - numpy.floor(pixel_delta.min(axis=1))).max(axis=0)).astype(int)
return self.pos
def calc_size(self, use_cython=True):
"""Calculate the number of pixels falling into every single bin and
:return: max of pixel falling into a single bin
Considering the "half-CCD" spline from ID11 which describes a (1025,2048) detector,
the physical location of pixels should go from:
[-17.48634 : 1027.0543, -22.768829 : 2028.3689]
We chose to discard pixels falling outside the [0:1025,0:2048] range with a lose of intensity
"""
logger.debug("in Distortion.calc_size")
if self.max_size is None:
if self.pos is None:
pos = self.calc_pos()
else:
pos = self.pos
with self._sem:
if self.max_size is None:
if _distortion and use_cython:
self.bin_size = _distortion.calc_size(self.pos, self._shape_out, self.mask, (self.offset1, self.offset2))
else:
mask = self.mask
pos0min = (numpy.floor(pos[:,:,:, 0].min(axis=-1) - self.offset1).astype(numpy.int32)).clip(0, self._shape_out[0])
pos1min = (numpy.floor(pos[:,:,:, 1].min(axis=-1) - self.offset2).astype(numpy.int32)).clip(0, self._shape_out[1])
pos0max = (numpy.ceil(pos[:,:,:, 0].max(axis=-1) - self.offset1 + 1).astype(numpy.int32)).clip(0, self._shape_out[0])
pos1max = (numpy.ceil(pos[:,:,:, 1].max(axis=-1) - self.offset2 + 1).astype(numpy.int32)).clip(0, self._shape_out[1])
self.bin_size = numpy.zeros(self._shape_out, dtype=numpy.int32)
for i in range(self.shape_in[0]):
for j in range(self.shape_in[1]):
if (mask is not None) and mask[i, j]:
continue
self.bin_size[pos0min[i, j]:pos0max[i, j], pos1min[i, j]:pos1max[i, j]] += 1
self.max_size = self.bin_size.max()
return self.bin_size
def calc_init(self):
"""Initialize all arrays
"""
logger.debug("in Distortion.calc_init")
self.calc_LUT()
if ocl and self.device is not None:
if "lower" in dir(self.device):
self.device = self.device.lower()
if self.method == "lut":
self.integrator = ocl_azim_lut.OCL_LUT_Integrator(self.lut,
self._shape_out[0] * self._shape_out[1],
devicetype=self.device)
else:
self.integrator = ocl_azim_csr.OCL_CSR_Integrator(self.lut,
self._shape_out[0] * self._shape_out[1],
devicetype=self.device,
block_size=self.workgroup)
self.integrator.workgroup_size["csr_integrate4"] = 1,
else:
if self.method == "lut":
self.integrator = ocl_azim_lut.OCL_LUT_Integrator(self.lut,
self._shape_out[0] * self._shape_out[1],
platformid=self.device[0],
deviceid=self.device[1])
else:
self.integrator = ocl_azim_csr.OCL_CSR_Integrator(self.lut,
self._shape_out[0] * self._shape_out[1],
platformid=self.device[0], deviceid=self.device[1],
block_size=self.workgroup)
self.integrator.workgroup_size["csr_integrate4"] = 1,
def calc_LUT(self, use_common=True):
"""Calculate the Look-up table
:return: look up table either in CSR or LUT format depending on serl.method
"""
logger.debug("in Distortion.calc_LUT")
if self.lut is None:
if self.pos is None:
self.calc_pos()
if self.max_size is None and not use_common:
self.calc_size()
with self._sem:
if self.lut is None:
mask = self.mask
if _distortion:
if use_common:
self.lut = _distortion.calc_sparse(self.pos, self._shape_out, max_pixel_size=(self.delta1, self.delta2), format=self.method)
else:
if self.method == "lut":
self.lut = _distortion.calc_LUT(self.pos, self._shape_out, self.bin_size, max_pixel_size=(self.delta1, self.delta2))
else:
self.lut = _distortion.calc_CSR(self.pos, self._shape_out, self.bin_size, max_pixel_size=(self.delta1, self.delta2))
else:
lut = numpy.recarray(shape=(self._shape_out[0], self._shape_out[1], self.max_size), dtype=[("idx", numpy.uint32), ("coef", numpy.float32)])
lut[:,:,:].idx = 0
lut[:,:,:].coef = 0.0
outMax = numpy.zeros(self._shape_out, dtype=numpy.uint32)
idx = 0
buffer_ = numpy.empty((self.delta1, self.delta2))
quad = Quad(buffer_)
for i in range(self._shape_out[0]):
for j in range(self._shape_out[1]):
if (mask is not None) and mask[i, j]:
continue
# i,j, idx are indexes of the raw image uncorrected
quad.reinit(*list(self.pos[i, j,:,:].ravel()))
# print(self.pos[i, j, 0, :], self.pos[i, j, 1, :], self.pos[i, j, 2, :], self.pos[i, j, 3, :]
try:
quad.populate_box()
except Exception as error:
print("error in quad.populate_box of pixel %i, %i: %s" % (i, j, error))
print("calc_area_vectorial", quad.calc_area_vectorial())
print(self.pos[i, j, 0,:], self.pos[i, j, 1,:], self.pos[i, j, 2,:], self.pos[i, j, 3,:])
print(quad)
raise
# box = quad.get_box()
for ms in range(quad.get_box_size0()):
ml = ms + quad.get_offset0()
if ml < 0 or ml >= self._shape_out[0]:
continue
for ns in range(quad.get_box_size1()):
# ms,ns are indexes of the corrected image in short form, ml & nl are the same
nl = ns + quad.get_offset1()
if nl < 0 or nl >= self._shape_out[1]:
continue
val = quad.get_box(ms, ns)
if val <= 0:
continue
k = outMax[ml, nl]
lut[ml, nl, k].idx = idx
lut[ml, nl, k].coef = val
outMax[ml, nl] = k + 1
idx += 1
lut.shape = (self._shape_out[0] * self._shape_out[1]), self.max_size
self.lut = lut
return self.lut
def correct(self, image, dummy=None, delta_dummy=None):
"""
Correct an image based on the look-up table calculated ...
:param image: 2D-array with the image
:param dummy: value suggested for bad pixels
:param delta_dummy: precision of the dummy value
:return: corrected 2D image
"""
if image.ndim == 2:
image = resize_image_2D(image, self.shape_in)
else: # assume 2d+nchanel
if _distortion:
image = _distortion.resize_image_3D(image, self.shape_in)
else:
assert image.ndim == 3, "image is 3D"
shape_in0, shape_in1 = self.shape_in
shape_img0, shape_img1, nchan = image.shape
if not ((shape_img0 == shape_in0) and (shape_img1 == shape_in1)):
new_image = numpy.zeros((shape_in0, shape_in1, nchan), dtype=numpy.float32)
if shape_img0 < shape_in0:
if shape_img1 < shape_in1:
new_image[:shape_img0,:shape_img1,:] = image
else:
new_image[:shape_img0,:,:] = image[:,:shape_in1,:]
else:
if shape_img1 < shape_in1:
new_image[:,:shape_img1,:] = image[:shape_in0,:,:]
else:
new_image[:,:,:] = image[:shape_in0,:shape_in1,:]
logger.warning("Patching image of shape %ix%i on expected size of %ix%i",
shape_img1, shape_img0, shape_in1, shape_in0)
image = new_image
if self.device:
if self.integrator is None:
self.calc_init()
out = self.integrator.integrate(image)[1]
else:
if self.lut is None:
self.calc_LUT()
if _distortion is not None:
out = _distortion.correct(image, self.shape_in, self._shape_out, self.lut,
dummy=dummy or self.empty, delta_dummy=delta_dummy)
else:
if self.method == "lut":
big = image.ravel().take(self.lut.idx) * self.lut.coef
out = big.sum(axis=-1)
elif self.method == "csr":
big = self.lut[0] * image.ravel().take(self.lut[1])
indptr = self.lut[2]
out = numpy.zeros(indptr.size - 1)
for i in range(indptr.size - 1):
out[i] = big[indptr[i]:indptr[i + 1]].sum()
try:
if image.ndim == 2:
out.shape = self._shape_out
else:
for ds in out:
if ds.ndim == 2:
ds.shape = self._shape_out
else:
ds.shape = self._shape_out + ds.shape[2:]
except ValueError as _err:
logger.error("Requested in_shape=%s out_shape=%s and ", self.shape_in, self.shape_out)
raise
return out
def correct_ng(self, image,
variance=None,
dark=None,
flat=None,
solidangle=None,
polarization=None,
dummy=None,
delta_dummy=None,
normalization_factor=1.0):
"""
Correct an image based on the look-up table calculated ...
Like the integrate_ng it provides
* Dark current correction
* Normalisation with flatfield (or solid angle, polarization, absorption, ...)
* Error propagation
:param image: 2D-array with the image
:param variance: 2D-array with the associated image
:param dark: array with dark-current values
:param flat: array with values for a flat image
:param solidangle: solid-angle array
:param polarization: numpy array with 2D polarization corrections
:param dummy: value suggested for bad pixels
:param delta_dummy: precision of the dummy value
:param normalization_factor: multiply all normalization with this value
:return: corrected 2D image
"""
assert image.ndim == 2
if variance is not None:
assert variance.shape == image.shape
if image.shape != self.shape_in:
logger.warning("The image shape %s is not the same as the detector %s", image.shape, self.shape_in)
image = resize_image_2D(image, self.shape_in)
if variance is not None:
variance = resize_image_2D(variance, self.shape_in)
if dark is not None:
dark = resize_image_2D(dark, self.shape_in)
if self.device:
if self.integrator is None:
self.calc_init()
res = self.integrator.integrate_ng(image,
variance=variance,
flat=flat,
dark=dark,
solidangle=solidangle,
polarization=polarization,
dummy=dummy,
delta_dummy=delta_dummy,
normalization_factor=normalization_factor,
out_merged=False
)
if variance is None:
if image.ndim == 2:
out = res.intensity.reshape(self._shape_out)
else:
out = res.intensity
else:
if image.ndim == 2:
out = (res.intensity.reshape(self._shape_out), res.error.reshape(self._shape_out))
else:
out = (res.intensity, res.error)
else:
if self.lut is None:
self.calc_LUT()
if _distortion is not None:
out = _distortion.correct(image, self.shape_in, self._shape_out, self.lut,
dummy=dummy or self.empty, delta_dummy=delta_dummy)
else:
if self.method == "lut":
big = image.ravel().take(self.lut.idx) * self.lut.coef
out = big.sum(axis=-1)
elif self.method == "csr":
big = self.lut[0] * image.ravel().take(self.lut[1])
indptr = self.lut[2]
out = numpy.zeros(indptr.size - 1)
for i in range(indptr.size - 1):
out[i] = big[indptr[i]:indptr[i + 1]].sum()
try:
if image.ndim == 2:
out.shape = self._shape_out
else:
for ds in out:
if ds.ndim == 2:
ds.shape = self._shape_out
else:
ds.shape = self._shape_out + ds.shape[2:]
except ValueError as _err:
logger.error("Requested in_shape=%s out_shape=%s and ", self.shape_in, self.shape_out)
raise
return out
def uncorrect(self, image, use_cython=False):
"""
Take an image which has been corrected and transform it into it's raw (with loss of information)
:param image: 2D-array with the image
:return: uncorrected 2D image
Nota: to retrieve the input mask on can do:
>>> msk = dis.uncorrect(numpy.ones(dis._shape_out)) <= 0
"""
assert image.shape == self._shape_out
if self.lut is None:
self.calc_LUT()
if (linalg is not None) and (use_cython is False):
if self.method == "lut":
csr = csr_matrix(sparse_utils.LUT_to_CSR(self.lut))
else:
csr = csr_matrix(self.lut)
res = linalg.lsmr(csr, image.ravel())
out = res[0].reshape(self.shape_in)
else: # This is deprecated and does not work with resise=True
if self.method == "lut":
if _distortion is not None:
out, _mask = _distortion.uncorrect_LUT(image, self.shape_in, self.lut)
else:
out = numpy.zeros(self.shape_in, dtype=numpy.float32)
lout = out.ravel()
lin = image.ravel()
tot = self.lut.coef.sum(axis=-1)
for idx in range(self.lut.shape[0]):
t = tot[idx]
if t <= 0:
continue
val = lin[idx] / t
lout[self.lut[idx].idx] += val * self.lut[idx].coef
elif self.method == "csr":
if _distortion is not None:
out, _mask = _distortion.uncorrect_CSR(image, self.shape_in, self.lut)
else:
raise NotImplementedError()
return out
class Quad(object):
"""
Quad modelisation.
.. image:: ../img/quad_model.svg
:alt: Modelization of the quad
"""
def __init__(self, buffer):
self.box = buffer
self.A0 = self.A1 = None
self.B0 = self.B1 = None
self.C0 = self.C1 = None
self.D0 = self.D1 = None
self.offset0 = self.offset1 = None
self.box_size0 = self.box_size1 = None
self.pAB = self.pBC = self.pCD = self.pDA = None
self.cAB = self.cBC = self.cCD = self.cDA = None
self.area = None
def get_idx(self, i, j):
pass
def get_box(self, i, j):
return self.box[i, j]
def get_offset0(self):
return self.offset0
def get_offset1(self):
return self.offset1
def get_box_size0(self):
return self.box_size0
def get_box_size1(self):
return self.box_size1
def reinit(self, A0, A1, B0, B1, C0, C1, D0, D1):
self.box[:,:] = 0.0
self.A0 = A0
self.A1 = A1
self.B0 = B0
self.B1 = B1
self.C0 = C0
self.C1 = C1
self.D0 = D0
self.D1 = D1
self.offset0 = int(floor(min(self.A0, self.B0, self.C0, self.D0)))
self.offset1 = int(floor(min(self.A1, self.B1, self.C1, self.D1)))
self.box_size0 = int(ceil(max(self.A0, self.B0, self.C0, self.D0))) - self.offset0
self.box_size1 = int(ceil(max(self.A1, self.B1, self.C1, self.D1))) - self.offset1
self.A0 -= self.offset0
self.A1 -= self.offset1
self.B0 -= self.offset0
self.B1 -= self.offset1
self.C0 -= self.offset0
self.C1 -= self.offset1
self.D0 -= self.offset0
self.D1 -= self.offset1
self.pAB = self.pBC = self.pCD = self.pDA = None
self.cAB = self.cBC = self.cCD = self.cDA = None
self.area = None
def __repr__(self):
return os.linesep.join(["offset %i,%i size %i, %i" % (self.offset0, self.offset1, self.box_size0, self.box_size1), "box: %s" % self.box[:self.box_size0,:self.box_size1]])
def init_slope(self):
if self.pAB is None:
if self.B0 == self.A0:
self.pAB = numpy.inf
else:
self.pAB = (self.B1 - self.A1) / (self.B0 - self.A0)
if self.C0 == self.B0:
self.pBC = numpy.inf
else:
self.pBC = (self.C1 - self.B1) / (self.C0 - self.B0)
if self.D0 == self.C0:
self.pCD = numpy.inf
else:
self.pCD = (self.D1 - self.C1) / (self.D0 - self.C0)
if self.A0 == self.D0:
self.pDA = numpy.inf
else:
self.pDA = (self.A1 - self.D1) / (self.A0 - self.D0)
self.cAB = self.A1 - self.pAB * self.A0
self.cBC = self.B1 - self.pBC * self.B0
self.cCD = self.C1 - self.pCD * self.C0
self.cDA = self.D1 - self.pDA * self.D0
def calc_area_AB(self, I1, I2):
if numpy.isfinite(self.pAB):
return 0.5 * (I2 - I1) * (self.pAB * (I2 + I1) + 2 * self.cAB)
else:
return 0
def calc_area_BC(self, J1, J2):
if numpy.isfinite(self.pBC):
return 0.5 * (J2 - J1) * (self.pBC * (J1 + J2) + 2 * self.cBC)
else:
return 0
def calc_area_CD(self, K1, K2):
if numpy.isfinite(self.pCD):
return 0.5 * (K2 - K1) * (self.pCD * (K2 + K1) + 2 * self.cCD)
else:
return 0
def calc_area_DA(self, L1, L2):
if numpy.isfinite(self.pDA):
return 0.5 * (L2 - L1) * (self.pDA * (L1 + L2) + 2 * self.cDA)
else:
return 0
def calc_area_old(self):
if self.area is None:
if self.pAB is None:
self.init_slope()
self.area = -(self.calc_area_AB(self.A0, self.B0) +
self.calc_area_BC(self.B0, self.C0) +
self.calc_area_CD(self.C0, self.D0) +
self.calc_area_DA(self.D0, self.A0))
return self.area
def calc_area_vectorial(self):
if self.area is None:
self.area = numpy.cross([self.C0 - self.A0, self.C1 - self.A1], [self.D0 - self.B0, self.D1 - self.B1]) / 2.0
return self.area
calc_area = calc_area_vectorial
def populate_box(self):
if self.pAB is None:
self.init_slope()
self.integrateAB(self.B0, self.A0, self.calc_area_AB)
self.integrateAB(self.A0, self.D0, self.calc_area_DA)
self.integrateAB(self.D0, self.C0, self.calc_area_CD)
self.integrateAB(self.C0, self.B0, self.calc_area_BC)
if (self.box / self.calc_area()).min() < 0:
print(self.box)
self.box[:,:] = 0
print("AB")
self.integrateAB(self.B0, self.A0, self.calc_area_AB)
print(self.box)
self.box[:,:] = 0
print("DA")
self.integrateAB(self.A0, self.D0, self.calc_area_DA)
print(self.box)
self.box[:,:] = 0
print("CD")
self.integrateAB(self.D0, self.C0, self.calc_area_CD)
print(self.box)
self.box[:,:] = 0
print("BC")
self.integrateAB(self.C0, self.B0, self.calc_area_BC)
print(self.box)
print(self)
raise RuntimeError()
self.box /= self.calc_area_vectorial()
def integrateAB(self, start, stop, calc_area):
h = 0
# print(start, stop, calc_area(start, stop)
if start < stop: # positive contribution
P = ceil(start)
dP = P - start
# print("Integrate", start, P, stop, calc_area(start, stop)
if P > stop: # start and stop are in the same unit
A = calc_area(start, stop)
if A != 0:
AA = abs(A)
sign = A / AA
dA = (stop - start) # always positive
# print(AA, sign, dA
h = 0
while AA > 0:
if dA > AA:
dA = AA
AA = -1
self.box[int(floor(start)), h] += sign * dA
AA -= dA
h += 1
else:
if dP > 0:
A = calc_area(start, P)
if A != 0:
AA = abs(A)
sign = A / AA
h = 0
dA = dP
while AA > 0:
if dA > AA:
dA = AA
AA = -1
self.box[int(floor(P)) - 1, h] += sign * dA
AA -= dA
h += 1
# subsection P1->Pn
for i in range(int(floor(P)), int(floor(stop))):
A = calc_area(i, i + 1)
if A != 0:
AA = abs(A)
sign = A / AA
h = 0
dA = 1.0
while AA > 0:
if dA > AA:
dA = AA
AA = -1
self.box[i, h] += sign * dA
AA -= dA
h += 1
# Section Pn->B
P = floor(stop)
dP = stop - P
if dP > 0:
A = calc_area(P, stop)
if A != 0:
AA = abs(A)
sign = A / AA
h = 0
dA = abs(dP)
while AA > 0:
if dA > AA:
dA = AA
AA = -1
self.box[int(floor(P)), h] += sign * dA
AA -= dA
h += 1
elif start > stop: # negative contribution. Nota is start=stop: no contribution
P = floor(start)
if stop > P: # start and stop are in the same unit
A = calc_area(start, stop)
if A != 0:
AA = abs(A)
sign = A / AA
dA = (start - stop) # always positive
h = 0
while AA > 0:
if dA > AA:
dA = AA
AA = -1
self.box[int(floor(start)), h] += sign * dA
AA -= dA
h += 1
else:
dP = P - start
if dP < 0:
A = calc_area(start, P)
if A != 0:
AA = abs(A)
sign = A / AA
h = 0
dA = abs(dP)
while AA > 0:
if dA > AA:
dA = AA
AA = -1
self.box[int(floor(P)), h] += sign * dA
AA -= dA
h += 1
# subsection P1->Pn
for i in range(int(start), int(ceil(stop)), -1):
A = calc_area(i, i - 1)
if A != 0:
AA = abs(A)
sign = A / AA
h = 0
dA = 1
while AA > 0:
if dA > AA:
dA = AA
AA = -1
self.box[i - 1, h] += sign * dA
AA -= dA
h += 1
# Section Pn->B
P = ceil(stop)
dP = stop - P
if dP < 0:
A = calc_area(P, stop)
if A != 0:
AA = abs(A)
sign = A / AA
h = 0
dA = abs(dP)
while AA > 0:
if dA > AA:
dA = AA
AA = -1
self.box[int(floor(stop)), h] += sign * dA
AA -= dA
h += 1
|