File: CSR_engine.py

package info (click to toggle)
pyfai 0.20.0%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 78,460 kB
  • sloc: python: 49,743; lisp: 7,059; sh: 225; ansic: 165; makefile: 119
file content (421 lines) | stat: -rw-r--r-- 17,911 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
#
#    Copyright (C) 2017-2018 European Synchrotron Radiation Facility, Grenoble, France
#
#  Permission is hereby granted, free of charge, to any person obtaining a copy
#  of this software and associated documentation files (the "Software"), to deal
#  in the Software without restriction, including without limitation the rights
#  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#  copies of the Software, and to permit persons to whom the Software is
#  furnished to do so, subject to the following conditions:
#  .
#  The above copyright notice and this permission notice shall be included in
#  all copies or substantial portions of the Software.
#  .
#  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
#  THE SOFTWARE.

"""CSR rebinning engine implemented in pure python (with bits of scipy !) 
"""

__author__ = "Jerome Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "19/01/2021"
__status__ = "development"

import logging
logger = logging.getLogger(__name__)
import numpy
from scipy.sparse import csr_matrix
from .preproc import preproc as preproc_np
try:
    from ..ext.preproc import preproc as preproc_cy
except ImportError as err:
    logger.warning("ImportError pyFAI.ext.preproc %s", err)
    preproc = preproc_np
else:
    preproc = preproc_cy

from ..containers import Integrate1dtpl, Integrate2dtpl


class CSRIntegrator(object):

    def __init__(self,
                 image_size,
                 lut=None,
                 empty=0.0):
        """Constructor of the abstract class
        
        :param size: input image size
        :param lut: tuple of 3 arrays with data, indices and indptr,
                     index of the start of line in the CSR matrix
        :param empty: value for empty pixels
        """
        self.size = image_size
        self.empty = empty
        self.bins = None
        self._csr = None
        self._csr2 = None  # Used for propagating variance
        self.lut_size = 0  # actually nnz
        self.data = None
        self.indices = None
        self.indptr = None
        if lut is not None:
            assert len(lut) == 3
            self.set_matrix(*lut)

    def set_matrix(self, data, indices, indptr):
        """Actually set the CSR sparse matrix content
        
        :param data: the non zero values NZV
        :param indices: the column number of the NZV
        :param indptr: the index of the start of line"""
        self.data = data
        self.indices = indices
        self.indptr = indptr
        self.lut_size = len(indices)
        self.bins = len(indptr) - 1
        self._csr = csr_matrix((data, indices, indptr), shape=(self.bins, self.size))
        self._csr2 = csr_matrix((data * data, indices, indptr), shape=(self.bins, self.size))  # contains the coef squared, used for variance propagation

    def integrate(self,
                  signal,
                  variance=None,
                  dummy=None,
                  delta_dummy=None,
                  dark=None,
                  flat=None,
                  solidangle=None,
                  polarization=None,
                  absorption=None,
                  normalization_factor=1.0,
                  ):
        """Actually perform the CSR matrix multiplication after preprocessing.
        
        :param signal: array of the right size with the signal in it.
        :param variance: Variance associated with the signal
        :param dummy: values which have to be discarded (dynamic mask)
        :param delta_dummy: precision for dummy values
        :param dark: noise to be subtracted from signal
        :param flat: flat-field normalization array
        :param flat: solidangle normalization array
        :param polarization: :solidangle normalization array
        :param absorption: :absorption normalization array
        :param normalization_factor: scale all normalization with this scalar
        :return: the preprocessed data integrated as array nbins x 4 which contains:
                    regrouped signal, variance, normalization and pixel count 

        Nota: all normalizations are grouped in the preprocessing step.
        """
        shape = signal.shape
        prep = preproc(signal,
                       dark=dark,
                       flat=flat,
                       solidangle=solidangle,
                       polarization=polarization,
                       absorption=absorption,
                       mask=None,
                       dummy=dummy,
                       delta_dummy=delta_dummy,
                       normalization_factor=normalization_factor,
                       empty=self.empty,
                       split_result=4,
                       variance=variance,
                       dtype=numpy.float32)
        prep.shape = numpy.prod(shape), -1
        # logger.warning("prep.shape %s lut_size %s, image_size %s, bins %s", prep.shape, self.lut_size, self.size, self.bins)
        res = numpy.empty((numpy.prod(self.bins), 4), dtype=numpy.float32)
        # logger.warning(self._csr.shape)
        res[:, 0] = self._csr.dot(prep[:, 0])
        if variance is not None:
            res[:, 1] = self._csr2.dot(prep[:, 1])
        res[:, 2] = self._csr.dot(prep[:, 2])
        res[:, 3] = self._csr.dot(prep[:, 3])
        return res


class CsrIntegrator1d(CSRIntegrator):

    def __init__(self,
                 image_size,
                 lut=None,
                 empty=0.0,
                 unit=None,
                 bin_centers=None,
                 ):
        """Constructor of the abstract class for 1D integration
        
        :param image_size: size of the image 
        :param lut: (data, indices, indptr) of the CSR matrix
        :param empty: value for empty pixels
        :param unit: the kind of radial units
        :param bin_center: position of the bin center
        
        Nota: bins are deduced from bin_centers 


        TODO: 
        ~/workspace-400/pyFAI/build/lib.linux-x86_64-3.7/pyFAI/azimuthalIntegrator.py in sigma_clip_ng(self, data, npt, correctSolidAngle, polarization_factor, variance, error_model, dark, flat, method, unit, thres, max_iter, dummy, delta_dummy, mask, normalization_factor, metadata, safe, **kwargs)
   3508                         elif (mask is None) and (integr.check_mask):
   3509                             reset = "no mask but CSR has mask"
-> 3510                         elif (mask is not None) and (integr.mask_checksum != mask_crc):
   3511                             reset = "mask changed"
   3512 #                         if (radial_range is None) and (integr.pos0Range is not None):

AttributeError: 'CsrIntegrator1d' object has no attribute 'mask_checksum'

        """
        self.bin_centers = bin_centers
        CSRIntegrator.__init__(self, image_size, lut, empty)
        self.pos0_range = self.pos1_range = self._geometry = None
        self.unit = unit

    def set_geometry(self, geometry):
        from pyFAI.geometry import Geometry
        assert numpy.prod(geometry.detector.shape) == self.size
        assert isinstance(geometry, Geometry)
        self._geometry = geometry

    def set_matrix(self, data, indices, indptr):
        """Actually set the CSR sparse matrix content
        
        :param data: the non zero values NZV
        :param indices: the column number of the NZV
        :param indptr: the index of the start of line"""

        CSRIntegrator.set_matrix(self, data, indices, indptr)
        assert len(self.bin_centers) == self.bins

    def integrate(self,
                  signal,
                  variance=None,
                  dummy=None,
                  delta_dummy=None,
                  dark=None,
                  flat=None,
                  solidangle=None,
                  polarization=None,
                  absorption=None,
                  normalization_factor=1.0,
                  ):
        """Actually perform the 1D integration 
        
        :param signal: array of the right size with the signal in it.
        :param variance: Variance associated with the signal
        :param dummy: values which have to be discarded (dynamic mask)
        :param delta_dummy: precision for dummy values
        :param dark: noise to be subtracted from signal
        :param flat: flat-field normalization array
        :param flat: solidangle normalization array
        :param polarization: :solidangle normalization array
        :param absorption: :absorption normalization array
        :param normalization_factor: scale all normalization with this scalar
        :return: Integrate1dResult or Integrate1dWithErrorResult object depending on variance 
        
        """
        if variance is None:
            do_variance = False
        else:
            do_variance = True
        trans = CSRIntegrator.integrate(self, signal, variance, dummy, delta_dummy,
                                        dark, flat, solidangle, polarization,
                                        absorption, normalization_factor)
        signal = trans[:, 0]
        variance = trans[:, 1]
        normalization = trans[:, 2]
        count = trans[..., -1]  # should be 3
        mask = (normalization == 0)
        with numpy.errstate(divide='ignore', invalid='ignore'):
            intensity = signal / normalization
            intensity[mask] = self.empty
            if do_variance:
                error = numpy.sqrt(variance) / normalization
                error[mask] = self.empty
            else:
                variance = error = None
        return Integrate1dtpl(self.bin_centers,
                              intensity, error,
                              signal, variance, normalization, count)

    integrate_ng = integrate

    def sigma_clip(self, data, dark=None, dummy=None, delta_dummy=None,
                   variance=None, dark_variance=None,
                   flat=None, solidangle=None, polarization=None, absorption=None,
                   safe=True, error_model=None,
                   normalization_factor=1.0,
                   cutoff=4.0, cycle=5):
        """
        Perform a sigma-clipping iterative filter within each along each row. 
        see the doc of scipy.stats.sigmaclip for more descriptions.
        
        If the error model is "azimuthal": the variance is the variance within a bin,
        which is refined at each iteration, can be costly !
        
        Else, the error is propagated according to:

        .. math::

            signal = (raw - dark)
            variance = variance + dark_variance
            normalization  = normalization_factor*(flat * solidangle * polarization * absortoption)
            count = number of pixel contributing

        Integration is performed using the CSR representation of the look-up table on all
        arrays: signal, variance, normalization and count

        :param dark: array of same shape as data for pre-processing
        :param dummy: value for invalid data
        :param delta_dummy: precesion for dummy assessement
        :param variance: array of same shape as data for pre-processing
        :param dark_variance: array of same shape as data for pre-processing
        :param flat: array of same shape as data for pre-processing
        :param solidangle: array of same shape as data for pre-processing
        :param polarization: array of same shape as data for pre-processing
        :param safe: if True (default) compares arrays on GPU according to their checksum, unless, use the buffer location is used
        :param normalization_factor: divide raw signal by this value
        :param cutoff: discard all points with |value - avg| > cutoff * sigma. 3-4 is quite common 
        :param cycle: perform at maximum this number of cycles. 5 is common.
        :return: namedtuple with "position intensity error signal variance normalization count"
        """
        shape = data.shape
        error_model = error_model.lower() if error_model else ""

        if self._geometry is None:
            raise RuntimeError("Set geometry first")

        prep = preproc(data,
                       dark=dark,
                       flat=flat,
                       solidangle=solidangle,
                       polarization=polarization,
                       absorption=absorption,
                       mask=None,
                       dummy=dummy,
                       delta_dummy=delta_dummy,
                       normalization_factor=normalization_factor,
                       empty=self.empty,
                       split_result=4,
                       variance=variance,
                       dtype=numpy.float32,
                       poissonian=error_model.startswith("pois"))
        prep_flat = prep.reshape((numpy.prod(shape), 4))
        res = self._csr.dot(prep_flat)
        print(cycle)
        for _ in range(cycle):
            msk = res[:, 2] == 0
            avg = res[:, 0] / res[:, 2]
            std = numpy.sqrt(res[:, 1] / res[:, 2])
            avg[msk] = 0
            std[msk] = 0

            avg2d = self._geometry.calcfrom1d(self.bin_centers, avg, shape=shape,
                    dim1_unit=self.unit, correctSolidAngle=False, dummy=0.0)
            std2d = self._geometry.calcfrom1d(self.bin_centers, std, shape=shape,
                    dim1_unit=self.unit, correctSolidAngle=False, dummy=0.0)
            cnt = abs(prep[..., 0] / prep[..., 2] - avg2d) / std2d
            msk2d = numpy.logical_and(numpy.logical_not(numpy.isfinite(cnt)), cnt > cutoff)
            prep[msk2d,:] = 0
            res = self._csr.dot(prep_flat)
        msk = res[:, 2] == 0
        avg = res[:, 0] / res[:, 2]
        std = numpy.sqrt(res[:, 1] / res[:, 2])
        avg[msk] = 0
        std[msk] = 0

        return Integrate1dtpl(self.bin_centers, avg, std, res[:, 0], res[:, 1], res[:, 2], res[:, 3])


class CsrIntegrator2d(CSRIntegrator):

    def __init__(self,
                 image_size,
                 lut=None,
                 empty=0.0,
                 bin_centers0=None,
                 bin_centers1=None):
        """Constructor of the abstract class for 2D integration
        
        :param size: input image size
        :param lut: tuple of 3 arrays with data, indices and indptr,
                     index of the start of line in the CSR matrix
        :param empty: value for empty pixels
        :param bin_center: position of the bin center

        Nota: bins are deduced from bin_centers0, bin_centers1 
    
        """
        self.bin_centers0 = bin_centers0
        self.bin_centers1 = bin_centers1
        CSRIntegrator.__init__(self, image_size, lut, empty)

    def set_matrix(self, data, indices, indptr):
        """Actually set the CSR sparse matrix content
        
        :param data: the non zero values NZV
        :param indices: the column number of the NZV
        :param indptr: the index of the start of line"""

        CSRIntegrator.set_matrix(self, data, indices, indptr)
        assert len(self.bin_centers0) * len(self.bin_centers1) == len(indptr) - 1
        self.bins = (len(self.bin_centers0), len(self.bin_centers1))

    def integrate(self,
                  signal,
                  variance=None,
                  dummy=None,
                  delta_dummy=None,
                  dark=None,
                  flat=None,
                  solidangle=None,
                  polarization=None,
                  absorption=None,
                  normalization_factor=1.0):
        """Actually perform the 2D integration 
        
        :param signal: array of the right size with the signal in it.
        :param variance: Variance associated with the signal
        :param dummy: values which have to be discarded (dynamic mask)
        :param delta_dummy: precision for dummy values
        :param dark: noise to be subtracted from signal
        :param flat: flat-field normalization array
        :param flat: solidangle normalization array
        :param polarization: :solidangle normalization array
        :param absorption: :absorption normalization array
        :param normalization_factor: scale all normalization with this scalar
        :return: Integrate2dtpl namedtuple: "radial azimuthal intensity error signal variance normalization count"
        
        """
        if variance is None:
            do_variance = False
        else:
            do_variance = True
        trans = CSRIntegrator.integrate(self, signal, variance, dummy, delta_dummy,
                                        dark, flat, solidangle, polarization,
                                        absorption, normalization_factor)
        trans.shape = self.bins + (-1,)

        signal = trans[..., 0]
        variance = trans[..., 1]
        normalization = trans[..., 2]
        count = trans[..., -1]  # should be 3
        mask = (normalization == 0)
        with numpy.errstate(divide='ignore', invalid='ignore'):
            intensity = signal / normalization
            intensity[mask] = self.empty
            if do_variance:
                error = numpy.sqrt(variance) / normalization
                error[mask] = self.empty
            else:
                variance = error = None
        return Integrate2dtpl(self.bin_centers0, self.bin_centers1,
                              intensity, error,
                              signal, variance, normalization, count)