1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
# coding: utf-8
#
# Project: Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2015-2018 European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""Common Look-Up table/CSR object creation tools"""
__author__ = "Jerome Kieffer"
__contact__ = "Jerome.kieffer@esrf.fr"
__date__ = "14/01/2021"
__status__ = "stable"
__license__ = "MIT"
import cython
from cython.parallel import prange
import numpy
from .preproc import preproc
from ..containers import Integrate1dtpl
cdef class CsrIntegrator(object):
"""Abstract class which implements only the integrator...
Now uses CSR (Compressed Sparse raw) with main attributes:
* nnz: number of non zero elements
* data: coefficient of the matrix in a 1D vector of float32
* indices: Column index position for the data (same size as
* indptr: row pointer indicates the start of a given row. len nrow+1
Nota: nnz = indptr[-1]+1 = len(indices) = len(data)
"""
cdef:
readonly index_t input_size, output_size, nnz
readonly data_t empty
readonly data_t[::1] _data
readonly index_t[::1] _indices, _indptr
def __init__(self,
tuple lut,
int image_size,
data_t empty=0.0):
"""Constructor for a CSR generic integrator
:param lut: Sparse matrix in CSR format, tuple of 3 arrays with (data, indices, indptr)
:param size: input image size
:param empty: value for empty pixels
"""
self.empty = empty
self.input_size = image_size
assert len(lut) == 3, "Sparse matrix is expected as 3-tuple CSR with (data, indices, indptr)"
assert len(lut[1]) == len(lut[0]), "Sparse matrix in CSR format is expected to have len(data) == len(indices) is expected as 3-tuple CSR with (data, indices, indptr)"
self._data = numpy.ascontiguousarray(lut[0], dtype=data_d)
self._indices = numpy.ascontiguousarray(lut[1], dtype=numpy.int32)
self._indptr = numpy.ascontiguousarray(lut[2], dtype=numpy.int32)
self.nnz = len(lut[1])
self.output_size = len(lut[2])-1
def __dealloc__(self):
self._data = None
self._indices = None
self._indpts = None
self.empty = 0
self.input_size = 0
self.output_size = 0
self.nnz = 0
@property
def data(self):
return numpy.asarray(self._data)
@property
def indices(self):
return numpy.asarray(self._indices)
@property
def indptr(self):
return numpy.asarray(self._indptr)
def integrate_legacy(self,
weights,
dummy=None,
delta_dummy=None,
dark=None,
flat=None,
solidAngle=None,
polarization=None,
double normalization_factor=1.0,
int coef_power=1):
"""
Actually perform the integration which in this case looks more like a matrix-vector product
:param weights: input image
:type weights: ndarray
:param dummy: value for dead pixels (optional)
:type dummy: float
:param delta_dummy: precision for dead-pixel value in dynamic masking
:type delta_dummy: float
:param dark: array with the dark-current value to be subtracted (if any)
:type dark: ndarray
:param flat: array with the dark-current value to be divided by (if any)
:type flat: ndarray
:param solidAngle: array with the solid angle of each pixel to be divided by (if any)
:type solidAngle: ndarray
:param polarization: array with the polarization correction values to be divided by (if any)
:type polarization: ndarray
:param normalization_factor: divide the valid result by this value
:param coef_power: set to 2 for variance propagation, leave to 1 for mean calculation
:return: positions, pattern, weighted_histogram and unweighted_histogram
:rtype: 4-tuple of ndarrays
"""
cdef:
index_t i = 0, j = 0, idx = 0, bins = self.output_size, size = self.input_size
acc_t acc_data = 0.0, acc_count = 0.0, epsilon = 1e-10, coef = 0.0
data_t data = 0.0, cdummy = 0.0, cddummy = 0.0
bint do_dummy = False, do_dark = False, do_flat = False, do_polarization = False, do_solidAngle = False
acc_t[::1] sum_data = numpy.zeros(self.bins, dtype=acc_d)
acc_t[::1] sum_count = numpy.zeros(self.bins, dtype=acc_d)
data_t[::1] merged = numpy.zeros(self.bins, dtype=data_d)
data_t[::1] cdata, tdata, cflat, cdark, csolidAngle, cpolarization
assert weights.size == size, "weights size"
if dummy is not None:
do_dummy = True
cdummy = <data_t> float(dummy)
if delta_dummy is None:
cddummy = <data_t> 0.0
else:
cddummy = <data_t> float(delta_dummy)
else:
do_dummy = False
cdummy = <data_t> self.empty
if flat is not None:
do_flat = True
assert flat.size == size, "flat-field array size"
cflat = numpy.ascontiguousarray(flat.ravel(), dtype=data_d)
if dark is not None:
do_dark = True
assert dark.size == size, "dark current array size"
cdark = numpy.ascontiguousarray(dark.ravel(), dtype=data_d)
if solidAngle is not None:
do_solidAngle = True
assert solidAngle.size == size, "Solid angle array size"
csolidAngle = numpy.ascontiguousarray(solidAngle.ravel(), dtype=data_d)
if polarization is not None:
do_polarization = True
assert polarization.size == size, "polarization array size"
cpolarization = numpy.ascontiguousarray(polarization.ravel(), dtype=data_d)
if (do_dark + do_flat + do_polarization + do_solidAngle):
tdata = numpy.ascontiguousarray(weights.ravel(), dtype=data_d)
cdata = numpy.empty(size, dtype=data_d)
if do_dummy:
for i in prange(size, nogil=True, schedule="static"):
data = tdata[i]
if ((cddummy != 0) and (fabs(data - cdummy) > cddummy)) or ((cddummy == 0) and (data != cdummy)):
# Nota: -= and /= operatore are seen as reduction in cython parallel.
if do_dark:
data = data - cdark[i]
if do_flat:
data = data / cflat[i]
if do_polarization:
data = data / cpolarization[i]
if do_solidAngle:
data = data / csolidAngle[i]
cdata[i] = data
else: # set all dummy_like values to cdummy. simplifies further processing
cdata[i] = cdummy
else:
for i in prange(size, nogil=True, schedule="static"):
data = tdata[i]
if do_dark:
data = data - cdark[i]
if do_flat:
data = data / cflat[i]
if do_polarization:
data = data / cpolarization[i]
if do_solidAngle:
data = data / csolidAngle[i]
cdata[i] = data
else:
if do_dummy:
tdata = numpy.ascontiguousarray(weights.ravel(), dtype=data_d)
cdata = numpy.zeros(size, dtype=data_d)
for i in prange(size, nogil=True, schedule="static"):
data = tdata[i]
if ((cddummy != 0) and (fabs(data - cdummy) > cddummy)) or ((cddummy == 0) and (data != cdummy)):
cdata[i] = data
else:
cdata[i] = cdummy
else:
cdata = numpy.ascontiguousarray(weights.ravel(), dtype=data_d)
for i in prange(bins, nogil=True, schedule="guided"):
acc_data = 0.0
acc_count = 0.0
for j in range(self._indptr[i], self._indptr[i + 1]):
idx = self._indices[j]
coef = self._data[j]
if coef == 0.0:
continue
data = cdata[idx]
if do_dummy and (data == cdummy):
continue
acc_data = acc_data + (coef ** coef_power) * data
acc_count = acc_count + coef
sum_data[i] = acc_data
sum_count[i] = acc_count
if acc_count > epsilon:
merged[i] = acc_data / acc_count / normalization_factor
else:
merged[i] = cdummy
return (self.bin_centers,
numpy.asarray(merged),
numpy.asarray(sum_data),
numpy.asarray(sum_count))
integrate = integrate_legacy
def integrate_ng(self,
weights,
variance=None,
dummy=None,
delta_dummy=None,
dark=None,
flat=None,
solidangle=None,
polarization=None,
absorption=None,
data_t normalization_factor=1.0,
):
"""
Actually perform the integration which in this case consists of:
* Calculate the signal, variance and the normalization parts
* Perform the integration which is here a matrix-vector product
:param weights: input image
:type weights: ndarray
:param variance: the variance associate to the image
:type variance: ndarray
:param dummy: value for dead pixels (optional)
:type dummy: float
:param delta_dummy: precision for dead-pixel value in dynamic masking
:type delta_dummy: float
:param dark: array with the dark-current value to be subtracted (if any)
:type dark: ndarray
:param flat: array with the dark-current value to be divided by (if any)
:type flat: ndarray
:param solidAngle: array with the solid angle of each pixel to be divided by (if any)
:type solidAngle: ndarray
:param polarization: array with the polarization correction values to be divided by (if any)
:type polarization: ndarray
:param absorption: Apparent efficiency of a pixel due to parallax effect
:type absorption: ndarray
:param normalization_factor: divide the valid result by this value
:return: positions, pattern, weighted_histogram and unweighted_histogram
:rtype: Integrate1dtpl 4-named-tuple of ndarrays
"""
cdef:
int32_t i, j, idx = 0, bins = self.bins, size = self.size
acc_t acc_sig = 0.0, acc_var = 0.0, acc_norm = 0.0, acc_count = 0.0, coef = 0.0
data_t empty
acc_t[::1] sum_sig = numpy.empty(bins, dtype=acc_d)
acc_t[::1] sum_var = numpy.empty(bins, dtype=acc_d)
acc_t[::1] sum_norm = numpy.empty(bins, dtype=acc_d)
acc_t[::1] sum_count = numpy.empty(bins, dtype=acc_d)
data_t[::1] merged = numpy.empty(bins, dtype=data_d)
data_t[::1] error = numpy.empty(bins, dtype=data_d)
data_t[:, ::1] preproc4
assert weights.size == size, "weights size"
empty = dummy if dummy is not None else self.empty
#Call the preprocessor ...
preproc4 = preproc(weights.ravel(),
dark=dark,
flat=flat,
solidangle=solidangle,
polarization=polarization,
absorption=absorption,
mask=self.cmask if self.check_mask else None,
dummy=dummy,
delta_dummy=delta_dummy,
normalization_factor=normalization_factor,
empty=self.empty,
split_result=4,
variance=variance,
dtype=data_d)
for i in prange(bins, nogil=True, schedule="guided"):
acc_sig = 0.0
acc_var = 0.0
acc_norm = 0.0
acc_count = 0.0
for j in range(self._indptr[i], self._indptr[i + 1]):
idx = self._indices[j]
coef = self._data[j]
if coef == 0.0:
continue
acc_sig = acc_sig + coef * preproc4[idx, 0]
acc_var = acc_var + coef * coef * preproc4[idx, 1]
acc_norm = acc_norm + coef * preproc4[idx, 2]
acc_count = acc_count + coef * preproc4[idx, 3]
sum_sig[i] = acc_sig
sum_var[i] = acc_var
sum_norm[i] = acc_norm
sum_count[i] = acc_count
if acc_count > 0.0:
merged[i] = acc_sig / acc_norm
error[i] = sqrt(acc_var) / acc_norm
else:
merged[i] = empty
error[i] = empty
#"position intensity error signal variance normalization count"
return Integrate1dtpl(self.bin_centers,
numpy.asarray(merged),numpy.asarray(error) ,
numpy.asarray(sum_sig),numpy.asarray(sum_var),
numpy.asarray(sum_norm), numpy.asarray(sum_count))
|