1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
# -*- coding: utf-8 -*-
#cython: embedsignature=True, language_level=3
#cython: boundscheck=False, wraparound=False, cdivision=True, initializedcheck=False,
## This is for developping:
## cython: profile=True, warn.undeclared=True, warn.unused=True, warn.unused_result=False, warn.unused_arg=True
#
# Project: Fast Azimuthal Integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2014-2020 European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Zubair Nawaz <zubair.nawaz@gmail.com>
# Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# .
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# .
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""Module containing a re-implementation of bi-cubic spline evaluation from
scipy."""
__authors__ = ["Zubair Nawaz", "Jerome Kieffer"]
__contact__ = "Jerome.kieffer@esrf.fr"
__date__ = "15/12/2020"
__status__ = "stable"
__license__ = "MIT"
import numpy
from libc.stdint cimport int32_t
import cython
cimport cython
from cython.parallel import prange
# copied bisplev function from fitpack.bisplev
def bisplev(x, y, tck, dx=0, dy=0):
"""
Evaluate a bivariate B-spline and its derivatives.
Return a rank-2 array of spline function values (or spline derivative
values) at points given by the cross-product of the rank-1 arrays x and
y. In special cases, return an array or just a float if either x or y or
both are floats. Based on BISPEV from FITPACK.
See :func:`bisplrep` to generate the `tck` representation.
See also :func:`splprep`, :func:`splrep`, :func:`splint`, :func:`sproot`,
:func:`splev`, :func:`UnivariateSpline`, :func:`BivariateSpline`
References: [1]_, [2]_, [3]_.
.. [1] Dierckx P. : An algorithm for surface fitting
with spline functions
Ima J. Numer. Anal. 1 (1981) 267-283.
.. [2] Dierckx P. : An algorithm for surface fitting
with spline functions
report tw50, Dept. Computer Science,K.U.Leuven, 1980.
.. [3] Dierckx P. : Curve and surface fitting with splines,
Monographs on Numerical Analysis, Oxford University Press, 1993.
:param ndarray x: Rank-1 arrays specifying the domain over which to evaluate
the spline or its derivative.
:param ndarray y: Rank-1 arrays specifying the domain over which to evaluate
the spline or its derivative.
:param tuple tck: A sequence of length 5 returned by `bisplrep` containing
the knot locations, the coefficients, and the degree of the spline:
[tx, ty, c, kx, ky].
:param int dx: The orders of the partial derivatives in `x`.
This version does not implement derivatives.
:param int dy: The orders of the partial derivatives in `y`.
This version does not implement derivatives.
:rtype: ndarray
:return: The B-spline or its derivative evaluated over the set formed by
the cross-product of `x` and `y`.
"""
cdef:
int kx, ky
float[::1] tx, ty, c, cy_x, cy_y
tx = numpy.ascontiguousarray(tck[0], dtype=numpy.float32)
ty = numpy.ascontiguousarray(tck[1], dtype=numpy.float32)
c = numpy.ascontiguousarray(tck[2], dtype=numpy.float32)
kx = tck[3]
ky = tck[4]
if not (0 <= dx < kx):
raise ValueError("0 <= dx = %d < kx = %d must hold" % (dx, kx))
if not (0 <= dy < ky):
raise ValueError("0 <= dy = %d < ky = %d must hold" % (dy, ky))
x = numpy.atleast_1d(x)
y = numpy.atleast_1d(y)
if (len(x.shape) != 1) or (len(y.shape) != 1):
raise ValueError("First two entries should be rank-1 arrays.")
cy_x = numpy.ascontiguousarray(x, dtype=numpy.float32)
cy_y = numpy.ascontiguousarray(y, dtype=numpy.float32)
z = cy_bispev(tx, ty, c, kx, ky, cy_x, cy_y)
z.shape = len(y), len(x)
# Transpose again afterwards to retrieve a memory-contiguous object
if len(z) > 1:
return z.T
if len(z[0]) > 1:
return z[0]
return z[0][0]
cdef void fpbspl(float[::1]t,
int n,
int k,
float x,
int l,
float[::1] h,
float[::1] hh) nogil:
"""
subroutine fpbspl evaluates the (k+1) non-zero b-splines of
degree k at t(l) <= x < t(l+1) using the stable recurrence
relation of de boor and cox.
TODO: Unused argument 'n' !
"""
cdef int i, j
cdef float f
h[0] = 1.00
for j in range(1, k + 1):
for i in range(j):
hh[i] = h[i]
h[0] = 0.00
for i in range(j):
f = hh[i] / (t[l + i] - t[l + i - j])
h[i] = h[i] + f * (t[l + i] - x)
h[i + 1] = f * (x - t[l + i - j])
cdef void init_w(float[::1] t, int k, float[::1] x, int32_t[::1] lx, float[:, ::1] w) nogil:
"""
Initialize w array for a 1D array
:param t:
:param k: order of the spline
:param x: position of the evaluation
:param w:
"""
cdef:
int i, l1, l2, n, m, j
float arg, tb, te
float[::1] h, hh
tb = t[k]
with gil:
n = t.size
m = x.size
h = numpy.empty(6, dtype=numpy.float32)
hh = numpy.empty(5, dtype=numpy.float32)
te = t[n - k - 1]
l1 = k + 1
l2 = l1 + 1
for i in range(m):
arg = x[i]
if arg < tb:
arg = tb
if arg > te:
arg = te
while not (arg < t[l1] or l1 == (n - k - 1)):
l1 = l2
l2 = l1 + 1
fpbspl(t, n, k, arg, l1, h, hh)
lx[i] = l1 - k - 1
for j in range(k + 1):
w[i, j] = h[j]
cdef cy_bispev(float[::1] tx,
float[::1] ty,
float[::1] c,
int kx,
int ky,
float[::1] x,
float[::1] y):
"""
Actual implementation of bispev in Cython
:param tx: array of float size nx containing position of knots in x
:param ty: array of float size ny containing position of knots in y
"""
cdef:
#int nx = tx.shape[0]
int ny = ty.shape[0]
int mx = x.shape[0]
int my = y.shape[0]
int kx1 = kx + 1
int ky1 = ky + 1
#int nkx1 = nx - kx1
int nky1 = ny - ky1
# initializing scratch space
float[:, ::1] wx = numpy.empty((mx, kx1), dtype=numpy.float32)
float[:, ::1] wy = numpy.empty((my, ky1), dtype=numpy.float32)
int32_t[::1] lx = numpy.empty(mx, dtype=numpy.int32)
int32_t[::1] ly = numpy.empty(my, dtype=numpy.int32)
int i, j, i1, l2, j1
int size_z = mx * my
# initializing z and h
float[::1] z = numpy.zeros(size_z, dtype=numpy.float32)
float sp, err, tmp, a
with nogil:
# cannot be initialized in parallel, why ? segfaults on MacOSX
init_w(tx, kx, x, lx, wx)
init_w(ty, ky, y, ly, wy)
for j in prange(my):
for i in range(mx):
sp = 0.0
err = 0.0
for i1 in range(kx1):
for j1 in range(ky1):
# Implements Kahan summation
l2 = lx[i] * nky1 + ly[j] + i1 * nky1 + j1
a = c[l2] * wx[i, i1] * wy[j, j1] - err
tmp = sp + a
err = (tmp - sp) - a
sp = tmp
z[j * mx + i] += sp
return numpy.asarray(z)
|