1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
|
# -*- coding: utf-8 -*-
#cython: embedsignature=True, language_level=3
#cython: boundscheck=False, wraparound=False, cdivision=True, initializedcheck=False,
## This is for developping:
##cython: profile=True, warn.undeclared=True, warn.unused=True, warn.unused_result=False, warn.unused_arg=True
#
# Project: Fast Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2013-2020 European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# .
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# .
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""
Distortion correction are correction are applied by look-up table (or CSR)
"""
__author__ = "Jerome Kieffer"
__license__ = "MIT"
__date__ = "14/01/2021"
__copyright__ = "2011-2021, ESRF"
__contact__ = "jerome.kieffer@esrf.fr"
include "regrid_common.pxi"
import cython
import numpy
from cython cimport view, floating
from cython.parallel import prange
from cpython.ref cimport PyObject, Py_XDECREF
from libc.string cimport memset, memcpy
from libc.math cimport floor, ceil, fabs, copysign, sqrt
import logging
import threading
import types
import os
import sys
import time
logger = logging.getLogger(__name__)
from ..detectors import detector_factory
from ..utils import expand2d
import fabio
from .sparse_builder cimport SparseBuilder
cdef bint NEED_DECREF = sys.version_info < (2, 7) and numpy.version.version < "1.5"
cpdef inline float calc_area(float I1, float I2, float slope, float intercept) nogil:
"Calculate the area between I1 and I2 of a line with a given slope & intercept"
return 0.5 * (I2 - I1) * (slope * (I2 + I1) + 2 * intercept)
cpdef inline int clip(int value, int min_val, int max_val) nogil:
"Limits the value to bounds"
if value < min_val:
return min_val
elif value > max_val:
return max_val
else:
return value
cdef inline float _floor_min4(float a, float b, float c, float d) nogil:
"return floor(min(a,b,c,d))"
cdef float res
if (b < a):
res = b
else:
res = a
if (c < res):
res = c
if (d < res):
res = d
return floor(res)
cdef inline float _ceil_max4(float a, float b, float c, float d) nogil:
"return ceil(max(a,b,c,d))"
cdef float res
if (b > a):
res = b
else:
res = a
if (c > res):
res = c
if (d > res):
res = d
return ceil(res)
cdef inline void integrate(float32_t[:, ::1] box, float start, float stop, float slope, float intercept) nogil:
"""Integrate in a box a line between start and stop, line defined by its slope & intercept
:param box: buffer
"""
cdef:
int i, h = 0
float P, dP, segment_area, abs_area, dA
# , sign
if start < stop: # positive contribution
P = ceil(start)
dP = P - start
if P > stop: # start and stop are in the same unit
segment_area = calc_area(start, stop, slope, intercept)
if segment_area != 0.0:
abs_area = fabs(segment_area)
dA = (stop - start) # always positive
h = 0
while abs_area > 0:
if dA > abs_area:
dA = abs_area
abs_area = -1
box[(<int> start), h] += copysign(dA, segment_area)
abs_area -= dA
h += 1
else:
if dP > 0:
segment_area = calc_area(start, P, slope, intercept)
if segment_area != 0.0:
abs_area = fabs(segment_area)
h = 0
dA = dP
while abs_area > 0:
if dA > abs_area:
dA = abs_area
abs_area = -1
box[(<int> P) - 1, h] += copysign(dA, segment_area)
abs_area -= dA
h += 1
# subsection P1->Pn
for i in range((<int> floor(P)), (<int> floor(stop))):
segment_area = calc_area(i, i + 1, slope, intercept)
if segment_area != 0:
abs_area = fabs(segment_area)
h = 0
dA = 1.0
while abs_area > 0:
if dA > abs_area:
dA = abs_area
abs_area = -1
box[i, h] += copysign(dA, segment_area)
abs_area -= dA
h += 1
# Section Pn->B
P = floor(stop)
dP = stop - P
if dP > 0:
segment_area = calc_area(P, stop, slope, intercept)
if segment_area != 0:
abs_area = fabs(segment_area)
h = 0
dA = fabs(dP)
while abs_area > 0:
if dA > abs_area:
dA = abs_area
abs_area = -1
box[(<int> P), h] += copysign(dA, segment_area)
abs_area -= dA
h += 1
elif start > stop: # negative contribution. Nota if start==stop: no contribution
P = floor(start)
if stop > P: # start and stop are in the same unit
segment_area = calc_area(start, stop, slope, intercept)
if segment_area != 0:
abs_area = fabs(segment_area)
# sign = segment_area / abs_area
dA = (start - stop) # always positive
h = 0
while abs_area > 0:
if dA > abs_area:
dA = abs_area
abs_area = -1
box[(<int> start), h] += copysign(dA, segment_area)
abs_area -= dA
h += 1
else:
dP = P - start
if dP < 0:
segment_area = calc_area(start, P, slope, intercept)
if segment_area != 0:
abs_area = fabs(segment_area)
h = 0
dA = fabs(dP)
while abs_area > 0:
if dA > abs_area:
dA = abs_area
abs_area = -1
box[(<int> P), h] += copysign(dA, segment_area)
abs_area -= dA
h += 1
# subsection P1->Pn
for i in range((<int> start), (<int> ceil(stop)), -1):
segment_area = calc_area(i, i - 1, slope, intercept)
if segment_area != 0:
abs_area = fabs(segment_area)
h = 0
dA = 1
while abs_area > 0:
if dA > abs_area:
dA = abs_area
abs_area = -1
box[i - 1, h] += copysign(dA, segment_area)
abs_area -= dA
h += 1
# Section Pn->B
P = ceil(stop)
dP = stop - P
if dP < 0:
segment_area = calc_area(P, stop, slope, intercept)
if segment_area != 0:
abs_area = fabs(segment_area)
h = 0
dA = fabs(dP)
while abs_area > 0:
if dA > abs_area:
dA = abs_area
abs_area = -1
box[(<int> stop), h] += copysign(dA, segment_area)
abs_area -= dA
h += 1
################################################################################
# Functions used in python classes from PyFAI.distortion
################################################################################
def calc_pos(floating[:, :, :, ::1] pixel_corners not None,
float pixel1, float pixel2, shape_out=None):
"""Calculate the pixel boundary position on the regular grid
:param pixel_corners: pixel corner coordinate as detector.get_pixel_corner()
:param shape: requested output shape. If None, it is calculated
:param pixel1, pixel2: pixel size along row and column coordinates
:return: pos, delta1, delta2, shape_out, offset
"""
cdef:
float32_t[:, :, :, ::1] pos
int i, j, k, dim0, dim1, nb_corners
bint do_shape = (shape_out is None)
float BIG = numpy.finfo(numpy.float32).max
float min0, min1, max0, max1, delta0, delta1
float all_min0, all_max0, all_max1, all_min1
float p0, p1
if (pixel1 == 0.0) or (pixel2 == 0.0):
raise RuntimeError("Pixel size cannot be null -> Zero division error")
dim0 = pixel_corners.shape[0]
dim1 = pixel_corners.shape[1]
nb_corners = pixel_corners.shape[2]
pos = numpy.zeros((dim0, dim1, 4, 2), dtype=numpy.float32)
with nogil:
delta0 = -BIG
delta1 = -BIG
all_min0 = BIG
all_min1 = BIG
all_max0 = -BIG
all_max1 = -BIG
for i in range(dim0):
for j in range(dim1):
min0 = BIG
min1 = BIG
max0 = -BIG
max1 = -BIG
for k in range(nb_corners):
p0 = pixel_corners[i, j, k, 1] / pixel1
p1 = pixel_corners[i, j, k, 2] / pixel2
pos[i, j, k, 0] = p0
pos[i, j, k, 1] = p1
min0 = p0 if p0 < min0 else min0
min1 = p1 if p1 < min1 else min1
max0 = p0 if p0 > max0 else max0
max1 = p1 if p1 > max1 else max1
delta0 = max(delta0, ceil(max0) - floor(min0))
delta1 = max(delta1, ceil(max1) - floor(min1))
if do_shape:
all_min0 = min0 if min0 < all_min0 else all_min0
all_min1 = min1 if min1 < all_min1 else all_min1
all_max0 = max0 if max0 > all_max0 else all_max0
all_max1 = max1 if max1 > all_max1 else all_max1
res = numpy.asarray(pos), int(delta0), int(delta1), \
(int(ceil(all_max0 - all_min0)), int(ceil(all_max1 - all_min1))) if do_shape else shape_out, \
(float(all_min0), float(all_min1)) if do_shape else (0.0, 0.0)
return res
def calc_size(floating[:, :, :, ::1] pos not None,
shape,
int8_t[:, ::1] mask=None,
offset=None):
"""Calculate the number of items per output pixel
:param pos: 4D array with position in space
:param shape: shape of the output array
:param mask: input data mask
:param offset: 2-tuple of float with the minimal index of
:return: number of input element per output elements
"""
cdef:
int i, j, k, l, shape_out0, shape_out1, shape_in0, shape_in1, min0, min1, max0, max1
int32_t[:, ::1] lut_size = numpy.zeros(shape, dtype=numpy.int32)
float A0, A1, B0, B1, C0, C1, D0, D1, offset0, offset1
bint do_mask = mask is not None
int8_t[:, ::1] cmask
shape_in0, shape_in1 = pos.shape[0], pos.shape[1]
shape_out0, shape_out1 = shape
if do_mask:
if ((mask.shape[0] != shape_in0) or (mask.shape[1] != shape_in1)):
err = 'Mismatch between shape of detector (%s, %s) and shape of mask (%s, %s)' % (shape_in0, shape_in1, mask.shape[0], mask.shape[1])
logger.error(err)
raise RuntimeError(err)
else:
cmask = numpy.ascontiguousarray(mask, dtype=numpy.int8)
if offset is not None:
offset0, offset1 = offset
with nogil:
for i in range(shape_in0):
for j in range(shape_in1):
if do_mask and cmask[i, j]:
continue
A0 = pos[i, j, 0, 0] - offset0
A1 = pos[i, j, 0, 1] - offset1
B0 = pos[i, j, 1, 0] - offset0
B1 = pos[i, j, 1, 1] - offset1
C0 = pos[i, j, 2, 0] - offset0
C1 = pos[i, j, 2, 1] - offset1
D0 = pos[i, j, 3, 0] - offset0
D1 = pos[i, j, 3, 1] - offset1
min0 = clip(<int> _floor_min4(A0, B0, C0, D0), 0, shape_out0)
min1 = clip(<int> _floor_min4(A1, B1, C1, D1), 0, shape_out1)
max0 = clip(<int> _ceil_max4(A0, B0, C0, D0) + 1, 0, shape_out0)
max1 = clip(<int> _ceil_max4(A1, B1, C1, D1) + 1, 0, shape_out1)
for k in range(min0, max0):
for l in range(min1, max1):
lut_size[k, l] += 1
return numpy.asarray(lut_size)
def calc_LUT(float32_t[:, :, :, ::1] pos not None, shape, bin_size, max_pixel_size,
int8_t[:, :] mask=None):
"""
:param pos: 4D position array
:param shape: output shape
:param bin_size: number of input element per output element (numpy array)
:param max_pixel_size: (2-tuple of int) size of a buffer covering the largest pixel
:param mask: arry with bad pixels marked as True
:return: look-up table
"""
cdef:
int i, j, ms, ml, ns, nl, shape0, shape1, delta0, delta1
int offset0, offset1, box_size0, box_size1, size, k
int32_t idx = 0
int err_cnt = 0
float A0, A1, B0, B1, C0, C1, D0, D1, pAB, pBC, pCD, pDA, cAB, cBC, cCD, cDA,
float area, value, foffset0, foffset1
lut_t[:, :, :] lut
bint do_mask = mask is not None
float32_t[:, ::1] buffer
size = bin_size.max()
shape0, shape1 = shape
if do_mask:
assert shape0 == mask.shape[0], "mask shape dim0"
assert shape1 == mask.shape[1], "mask shape dim1"
delta0, delta1 = max_pixel_size
cdef int32_t[:, :] outMax = numpy.zeros((shape0, shape1), dtype=numpy.int32)
buffer = numpy.empty((delta0, delta1), dtype=numpy.float32)
#buffer_nbytes = buffer.nbytes
if (size == 0): # fix 271
raise RuntimeError("The look-up table has dimension 0 which is a non-sense." +
" Did you mask out all pixel or is your image out of the geometry range?")
lut = view.array(shape=(shape0, shape1, size), itemsize=sizeof(lut_t), format="if")
lut_total_size = shape0 * shape1 * size * sizeof(lut_t)
memset(&lut[0, 0, 0], 0, lut_total_size)
logger.info("LUT shape: (%i,%i,%i) %.3f MByte" % (lut.shape[0], lut.shape[1], lut.shape[2], lut_total_size / 1.0e6))
logger.info("Max pixel size: %ix%i; Max source pixel in target: %i" % (delta1, delta0, size))
with nogil:
# i,j, idx are indexes of the raw image uncorrected
for i in range(shape0):
for j in range(shape1):
if do_mask and mask[i, j]:
continue
# reset buffer
buffer[:, :] = 0.0
A0 = pos[i, j, 0, 0]
A1 = pos[i, j, 0, 1]
B0 = pos[i, j, 1, 0]
B1 = pos[i, j, 1, 1]
C0 = pos[i, j, 2, 0]
C1 = pos[i, j, 2, 1]
D0 = pos[i, j, 3, 0]
D1 = pos[i, j, 3, 1]
foffset0 = _floor_min4(A0, B0, C0, D0)
foffset1 = _floor_min4(A1, B1, C1, D1)
offset0 = (<int> foffset0)
offset1 = (<int> foffset1)
box_size0 = (<int> _ceil_max4(A0, B0, C0, D0)) - offset0
box_size1 = (<int> _ceil_max4(A1, B1, C1, D1)) - offset1
if (box_size0 > delta0) or (box_size1 > delta1):
# Increase size of the buffer
delta0 = offset0 if offset0 > delta0 else delta0
delta1 = offset1 if offset1 > delta1 else delta1
with gil:
buffer = numpy.zeros((delta0, delta1), dtype=numpy.float32)
A0 -= foffset0
A1 -= foffset1
B0 -= foffset0
B1 -= foffset1
C0 -= foffset0
C1 -= foffset1
D0 -= foffset0
D1 -= foffset1
if B0 != A0:
pAB = (B1 - A1) / (B0 - A0)
cAB = A1 - pAB * A0
else:
pAB = cAB = 0.0
if C0 != B0:
pBC = (C1 - B1) / (C0 - B0)
cBC = B1 - pBC * B0
else:
pBC = cBC = 0.0
if D0 != C0:
pCD = (D1 - C1) / (D0 - C0)
cCD = C1 - pCD * C0
else:
pCD = cCD = 0.0
if A0 != D0:
pDA = (A1 - D1) / (A0 - D0)
cDA = D1 - pDA * D0
else:
pDA = cDA = 0.0
# ABCD is trigonometric order: order input position accordingly
integrate(buffer, B0, A0, pAB, cAB)
integrate(buffer, C0, B0, pBC, cBC)
integrate(buffer, D0, C0, pCD, cCD)
integrate(buffer, A0, D0, pDA, cDA)
area = 0.5 * ((C0 - A0) * (D1 - B1) - (C1 - A1) * (D0 - B0))
for ms in range(box_size0):
ml = ms + offset0
if ml < 0 or ml >= shape0:
continue
for ns in range(box_size1):
# ms,ns are indexes of the corrected image in short form, ml & nl are the same
nl = ns + offset1
if nl < 0 or nl >= shape1:
continue
value = buffer[ms, ns] / area
if value == 0:
continue
if value < 0 or value > 1.0001:
# here we print pathological cases for debugging
if err_cnt < 1000:
with gil:
print(i, j, ms, box_size0, ns, box_size1, buffer[ms, ns], area, value, buffer[0, 0], buffer[0, 1], buffer[1, 0], buffer[1, 1])
print(" A0=%s; A1=%s; B0=%s; B1=%s; C0=%s; C1=%s; D0=%s; D1=%s" % (A0, A1, B0, B1, C0, C1, D0, D1))
err_cnt += 1
continue
k = outMax[ml, nl]
lut[ml, nl, k].idx = idx
lut[ml, nl, k].coef = value
outMax[ml, nl] = k + 1
idx += 1
# Hack to prevent memory leak !!!
cdef float64_t[:, ::1] tmp_ary = numpy.empty(shape=(shape0 * shape1, size), dtype=numpy.float64)
memcpy(&tmp_ary[0, 0], &lut[0, 0, 0], tmp_ary.nbytes)
return numpy.core.records.array(numpy.asarray(tmp_ary).view(dtype=lut_d),
shape=(shape0 * shape1, size), dtype=lut_d,
copy=True)
def calc_CSR(float32_t[:, :, :, :] pos not None, shape, bin_size, max_pixel_size,
int8_t[:, ::1] mask=None):
"""Calculate the Look-up table as CSR format
:param pos: 4D position array
:param shape: output shape
:param bin_size: number of input element per output element (as numpy array)
:param max_pixel_size: (2-tuple of int) size of a buffer covering the largest pixel
:return: look-up table in CSR format: 3-tuple of array"""
cdef:
int shape0, shape1, delta0, delta1, bins
shape0, shape1 = shape
delta0, delta1 = max_pixel_size
bins = shape0 * shape1
cdef:
int i, j, k, ms, ml, ns, nl, idx = 0, tmp_index, err_cnt = 0
int lut_size, offset0, offset1, box_size0, box_size1
float A0, A1, B0, B1, C0, C1, D0, D1, pAB, pBC, pCD, pDA, cAB, cBC, cCD, cDA,
float area, value, foffset0, foffset1
int32_t[::1] indptr, indices
float32_t[::1] data
int32_t[:, ::1] outMax = numpy.zeros((shape0, shape1), dtype=numpy.int32)
float32_t[:, ::1] buffer
bint do_mask = mask is not None
if do_mask:
assert shape0 == mask.shape[0], "mask shape dim0"
assert shape1 == mask.shape[1], "mask shape dim1"
indptr = numpy.concatenate(([numpy.int32(0)], bin_size.cumsum(dtype=numpy.int32)))
lut_size = indptr[bins]
indices = numpy.zeros(shape=lut_size, dtype=numpy.int32)
data = numpy.zeros(shape=lut_size, dtype=numpy.float32)
logger.info("CSR matrix: %.3f MByte" % ((indices.nbytes + data.nbytes + indptr.nbytes) / 1.0e6))
buffer = numpy.empty((delta0, delta1), dtype=numpy.float32)
logger.info("Max pixel size: %ix%i; Max source pixel in target: %i" % (buffer.shape[1], buffer.shape[0], lut_size))
with nogil:
# i,j, idx are indices of the raw image uncorrected
for i in range(shape0):
for j in range(shape1):
if do_mask and mask[i, j]:
continue
# reinit of buffer
buffer[:, :] = 0
A0 = pos[i, j, 0, 0]
A1 = pos[i, j, 0, 1]
B0 = pos[i, j, 1, 0]
B1 = pos[i, j, 1, 1]
C0 = pos[i, j, 2, 0]
C1 = pos[i, j, 2, 1]
D0 = pos[i, j, 3, 0]
D1 = pos[i, j, 3, 1]
foffset0 = _floor_min4(A0, B0, C0, D0)
foffset1 = _floor_min4(A1, B1, C1, D1)
offset0 = (<int> foffset0)
offset1 = (<int> foffset1)
box_size0 = (<int> _ceil_max4(A0, B0, C0, D0)) - offset0
box_size1 = (<int> _ceil_max4(A1, B1, C1, D1)) - offset1
if (box_size0 > delta0) or (box_size1 > delta1):
# Increase size of the buffer
delta0 = offset0 if offset0 > delta0 else delta0
delta1 = offset1 if offset1 > delta1 else delta1
with gil:
buffer = numpy.zeros((delta0, delta1), dtype=numpy.float32)
A0 -= foffset0
A1 -= foffset1
B0 -= foffset0
B1 -= foffset1
C0 -= foffset0
C1 -= foffset1
D0 -= foffset0
D1 -= foffset1
if B0 != A0:
pAB = (B1 - A1) / (B0 - A0)
cAB = A1 - pAB * A0
else:
pAB = cAB = 0.0
if C0 != B0:
pBC = (C1 - B1) / (C0 - B0)
cBC = B1 - pBC * B0
else:
pBC = cBC = 0.0
if D0 != C0:
pCD = (D1 - C1) / (D0 - C0)
cCD = C1 - pCD * C0
else:
pCD = cCD = 0.0
if A0 != D0:
pDA = (A1 - D1) / (A0 - D0)
cDA = D1 - pDA * D0
else:
pDA = cDA = 0.0
integrate(buffer, B0, A0, pAB, cAB)
integrate(buffer, A0, D0, pDA, cDA)
integrate(buffer, D0, C0, pCD, cCD)
integrate(buffer, C0, B0, pBC, cBC)
area = 0.5 * ((C0 - A0) * (D1 - B1) - (C1 - A1) * (D0 - B0))
for ms in range(box_size0):
ml = ms + offset0
if ml < 0 or ml >= shape0:
continue
for ns in range(box_size1):
# ms,ns are indexes of the corrected image in short form, ml & nl are the same
nl = ns + offset1
if nl < 0 or nl >= shape1:
continue
value = buffer[ms, ns] / area
if value == 0.0:
continue
if value < 0.0 or value > 1.0001:
# here we print pathological cases for debugging
if err_cnt < 1000:
with gil:
print(i, j, ms, box_size0, ns, box_size1, buffer[ms, ns], area, value, buffer[0, 0], buffer[0, 1], buffer[1, 0], buffer[1, 1])
print(" A0=%s; A1=%s; B0=%s; B1=%s; C0=%s; C1=%s; D0=%s; D1=%s" % (A0, A1, B0, B1, C0, C1, D0, D1))
err_cnt += 1
continue
k = outMax[ml, nl]
tmp_index = indptr[ml * shape1 + nl]
indices[tmp_index + k] = idx
data[tmp_index + k] = value
outMax[ml, nl] = k + 1
idx += 1
return (numpy.asarray(data), numpy.asarray(indices), numpy.asarray(indptr))
def calc_sparse(float32_t[:, :, :, ::1] pos not None,
shape,
max_pixel_size=(8, 8),
int8_t[:, ::1] mask=None,
format="csr",
int bins_per_pixel=8):
"""Calculate the look-up table (or CSR) using OpenMP
:param pos: 4D position array
:param shape: output shape
:param max_pixel_size: (2-tuple of int) size of a buffer covering the largest pixel
:param format: can be "CSR" or "LUT"
:param bins_per_pixel: average splitting factor (number of pixels per bin)
:return: look-up table in CSR/LUT format
"""
cdef:
int shape_in0, shape_in1, shape_out0, shape_out1, size_in, delta0, delta1, bins, large_size
format = format.lower()
shape_out0, shape_out1 = shape
delta0, delta1 = max_pixel_size
bins = shape_out0 * shape_out1
large_size = bins * bins_per_pixel
shape_in0 = pos.shape[0]
shape_in1 = pos.shape[1]
size_in = shape_in0 * shape_in1
cdef:
int i, j, ms, ml, ns, nl
int lut_size, offset0, offset1, box_size0, box_size1
int counter, bin_number
int idx, err_cnt = 0
float A0, A1, B0, B1, C0, C1, D0, D1, pAB, pBC, pCD, pDA, cAB, cBC, cCD, cDA,
float area, value, foffset0, foffset1
int32_t[::1] indptr, indices, idx_bin, idx_pixel, pixel_count
float32_t[::1] data, large_data
float32_t[:, ::1] buffer
bint do_mask = mask is not None
lut_t[:, :] lut
if do_mask:
assert shape_in0 == mask.shape[0], "shape_in0 == mask.shape[0]"
assert shape_in1 == mask.shape[1], "shape_in1 == mask.shape[1]"
# count the number of pixel falling into every single bin
pixel_count = numpy.zeros(bins, dtype=numpy.int32)
idx_pixel = numpy.zeros(large_size, dtype=numpy.int32)
idx_bin = numpy.zeros(large_size, dtype=numpy.int32)
large_data = numpy.zeros(large_size, dtype=numpy.float32)
logger.info("Temporary storage: %.3fMB",
(large_data.nbytes + pixel_count.nbytes + idx_pixel.nbytes + idx_bin.nbytes) / 1e6)
buffer = numpy.empty((delta0, delta1), dtype=numpy.float32)
counter = -1 # bin index
with nogil:
# i, j, idx are indices of the raw image uncorrected
for idx in range(size_in):
i = idx // shape_in1
j = idx % shape_in1
if do_mask and mask[i, j]:
continue
idx = i * shape_in1 + j # pixel index
buffer[:, :] = 0.0
A0 = pos[i, j, 0, 0]
A1 = pos[i, j, 0, 1]
B0 = pos[i, j, 1, 0]
B1 = pos[i, j, 1, 1]
C0 = pos[i, j, 2, 0]
C1 = pos[i, j, 2, 1]
D0 = pos[i, j, 3, 0]
D1 = pos[i, j, 3, 1]
foffset0 = _floor_min4(A0, B0, C0, D0)
foffset1 = _floor_min4(A1, B1, C1, D1)
offset0 = <int> foffset0
offset1 = <int> foffset1
box_size0 = (<int> _ceil_max4(A0, B0, C0, D0)) - offset0
box_size1 = (<int> _ceil_max4(A1, B1, C1, D1)) - offset1
if (box_size0 > delta0) or (box_size1 > delta1):
# Increase size of the buffer
delta0 = offset0 if offset0 > delta0 else delta0
delta1 = offset1 if offset1 > delta1 else delta1
with gil:
buffer = numpy.zeros((delta0, delta1), dtype=numpy.float32)
A0 = A0 - foffset0
A1 = A1 - foffset1
B0 = B0 - foffset0
B1 = B1 - foffset1
C0 = C0 - foffset0
C1 = C1 - foffset1
D0 = D0 - foffset0
D1 = D1 - foffset1
if B0 != A0:
pAB = (B1 - A1) / (B0 - A0)
cAB = A1 - pAB * A0
else:
pAB = cAB = 0.0
if C0 != B0:
pBC = (C1 - B1) / (C0 - B0)
cBC = B1 - pBC * B0
else:
pBC = cBC = 0.0
if D0 != C0:
pCD = (D1 - C1) / (D0 - C0)
cCD = C1 - pCD * C0
else:
pCD = cCD = 0.0
if A0 != D0:
pDA = (A1 - D1) / (A0 - D0)
cDA = D1 - pDA * D0
else:
pDA = cDA = 0.0
integrate(buffer, B0, A0, pAB, cAB)
integrate(buffer, A0, D0, pDA, cDA)
integrate(buffer, D0, C0, pCD, cCD)
integrate(buffer, C0, B0, pBC, cBC)
area = 0.5 * ((C0 - A0) * (D1 - B1) - (C1 - A1) * (D0 - B0))
for ms in range(box_size0):
ml = ms + offset0
if ml < 0 or ml >= shape_out0:
continue
for ns in range(box_size1):
# ms,ns are indexes of the corrected image in short form, ml & nl are the same
nl = ns + offset1
if nl < 0 or nl >= shape_out1:
continue
value = buffer[ms, ns] / area
if value == 0.0:
continue
if value < 0.0 or value > 1.0001:
# here we print pathological cases for debugging
if err_cnt < 1000:
with gil:
print(i, j, ms, box_size0, ns, box_size1, buffer[ms, ns], area, value, buffer[0, 0], buffer[0, 1], buffer[1, 0], buffer[1, 1])
print(" A0=%s; A1=%s; B0=%s; B1=%s; C0=%s; C1=%s; D0=%s; D1=%s" % (A0, A1, B0, B1, C0, C1, D0, D1))
err_cnt += 1
continue
bin_number = ml * shape_out1 + nl
# with gil: #Use the gil to perform an atomic operation
counter += 1
pixel_count[bin_number] += 1
if counter >= large_size:
with gil:
raise RuntimeError("Provided temporary space for storage is not enough. " +
"Please increase bins_per_pixel=%s. " % bins_per_pixel +
"The suggested value is %i or greater." % ceil(1.1 * bins_per_pixel * size_in / idx))
idx_pixel[counter] += idx
idx_bin[counter] += bin_number
large_data[counter] += value
logger.info("number of elements: %s, average per bin %.3f allocated max: %s",
counter, counter / size_in, bins_per_pixel)
if format == "csr":
indptr = numpy.zeros(bins + 1, dtype=numpy.int32)
# cumsum
j = 0
for i in range(bins):
indptr[i] = j
j += pixel_count[i]
indptr[bins] = j
# indptr[1:] = numpy.asarray(pixel_count).cumsum(dtype=numpy.int32)
pixel_count[:] = 0
lut_size = indptr[bins]
indices = numpy.zeros(shape=lut_size, dtype=numpy.int32)
data = numpy.zeros(shape=lut_size, dtype=numpy.float32)
logger.info("CSR matrix: %.3f MByte; Max source pixel in target: %i, average splitting: %.2f",
(indices.nbytes + data.nbytes + indptr.nbytes) / 1.0e6, lut_size, (1.0 * counter / bins))
for idx in range(counter + 1):
bin_number = idx_bin[idx]
i = indptr[bin_number] + pixel_count[bin_number]
pixel_count[bin_number] += 1
indices[i] = idx_pixel[idx]
data[i] = large_data[idx]
res = (numpy.asarray(data), numpy.asarray(indices), numpy.asarray(indptr))
elif format == "lut":
lut_size = numpy.asarray(pixel_count).max()
lut = numpy.zeros(shape=(bins, lut_size), dtype=lut_d)
pixel_count[:] = 0
logger.info("LUT matrix: %.3f MByte; Max source pixel in target: %i, average splitting: %.2f",
(lut.nbytes) / 1.0e6, lut_size, (1.0 * counter / bins))
for idx in range(counter + 1):
bin_number = idx_bin[idx]
i = pixel_count[bin_number]
lut[bin_number, i].idx = idx_pixel[idx]
lut[bin_number, i].coef = large_data[idx]
pixel_count[bin_number] += 1
res = numpy.asarray(lut)
else:
raise RuntimeError("Unimplemented sparse matrix format: %s", format)
return res
def calc_sparse_v2(float32_t[:, :, :, ::1] pos not None,
shape,
max_pixel_size=(8, 8),
int8_t[:, ::1] mask=None,
format="csr",
int bins_per_pixel=8,
builder_config=None):
"""Calculate the look-up table (or CSR) using OpenMP
:param pos: 4D position array
:param shape: output shape
:param max_pixel_size: (2-tuple of int) size of a buffer covering the largest pixel
:param format: can be "CSR" or "LUT"
:param bins_per_pixel: average splitting factor (number of pixels per bin) #deprecated
:return: look-up table in CSR/LUT format
"""
cdef:
int shape_in0, shape_in1, shape_out0, shape_out1, size_in, delta0, delta1, bins, large_size
format = format.lower()
shape_out0, shape_out1 = shape
delta0, delta1 = max_pixel_size
bins = shape_out0 * shape_out1
large_size = bins * bins_per_pixel
shape_in0 = pos.shape[0]
shape_in1 = pos.shape[1]
size_in = shape_in0 * shape_in1
cdef:
int i, j, ms, ml, ns, nl
int offset0, offset1, box_size0, box_size1
int counter, bin_number
int idx, err_cnt = 0
float A0, A1, B0, B1, C0, C1, D0, D1, pAB, pBC, pCD, pDA, cAB, cBC, cCD, cDA,
float area, value, foffset0, foffset1
float32_t[:, ::1] buffer
bint do_mask = mask is not None
if do_mask:
assert shape_in0 == mask.shape[0], "shape_in0 == mask.shape[0]"
assert shape_in1 == mask.shape[1], "shape_in1 == mask.shape[1]"
# Here we create a builder:
if builder_config is None:
builder = SparseBuilder(bins, block_size=6, heap_size=bins)
else:
builder = SparseBuilder(bins, **builder_config)
buffer = numpy.empty((delta0, delta1), dtype=numpy.float32)
counter = -1 # bin index
with nogil:
# i, j, idx are indices of the raw image uncorrected
for idx in range(size_in):
i = idx // shape_in1
j = idx % shape_in1
if do_mask and mask[i, j]:
continue
idx = i * shape_in1 + j # pixel index
buffer[:, :] = 0.0
A0 = pos[i, j, 0, 0]
A1 = pos[i, j, 0, 1]
B0 = pos[i, j, 1, 0]
B1 = pos[i, j, 1, 1]
C0 = pos[i, j, 2, 0]
C1 = pos[i, j, 2, 1]
D0 = pos[i, j, 3, 0]
D1 = pos[i, j, 3, 1]
foffset0 = _floor_min4(A0, B0, C0, D0)
foffset1 = _floor_min4(A1, B1, C1, D1)
offset0 = <int> foffset0
offset1 = <int> foffset1
box_size0 = (<int> _ceil_max4(A0, B0, C0, D0)) - offset0
box_size1 = (<int> _ceil_max4(A1, B1, C1, D1)) - offset1
if (box_size0 > delta0) or (box_size1 > delta1):
# Increase size of the buffer
delta0 = offset0 if offset0 > delta0 else delta0
delta1 = offset1 if offset1 > delta1 else delta1
with gil:
buffer = numpy.zeros((delta0, delta1), dtype=numpy.float32)
A0 = A0 - foffset0
A1 = A1 - foffset1
B0 = B0 - foffset0
B1 = B1 - foffset1
C0 = C0 - foffset0
C1 = C1 - foffset1
D0 = D0 - foffset0
D1 = D1 - foffset1
if B0 != A0:
pAB = (B1 - A1) / (B0 - A0)
cAB = A1 - pAB * A0
else:
pAB = cAB = 0.0
if C0 != B0:
pBC = (C1 - B1) / (C0 - B0)
cBC = B1 - pBC * B0
else:
pBC = cBC = 0.0
if D0 != C0:
pCD = (D1 - C1) / (D0 - C0)
cCD = C1 - pCD * C0
else:
pCD = cCD = 0.0
if A0 != D0:
pDA = (A1 - D1) / (A0 - D0)
cDA = D1 - pDA * D0
else:
pDA = cDA = 0.0
integrate(buffer, B0, A0, pAB, cAB)
integrate(buffer, A0, D0, pDA, cDA)
integrate(buffer, D0, C0, pCD, cCD)
integrate(buffer, C0, B0, pBC, cBC)
area = 0.5 * ((C0 - A0) * (D1 - B1) - (C1 - A1) * (D0 - B0))
for ms in range(box_size0):
ml = ms + offset0
if ml < 0 or ml >= shape_out0:
continue
for ns in range(box_size1):
# ms,ns are indexes of the corrected image in short form, ml & nl are the same
nl = ns + offset1
if nl < 0 or nl >= shape_out1:
continue
value = buffer[ms, ns] / area
if value == 0.0:
continue
if value < 0.0 or value > 1.0001:
# here we print pathological cases for debugging
if err_cnt < 1000:
with gil:
print(i, j, ms, box_size0, ns, box_size1, buffer[ms, ns], area, value, buffer[0, 0], buffer[0, 1], buffer[1, 0], buffer[1, 1])
print(" A0=%s; A1=%s; B0=%s; B1=%s; C0=%s; C1=%s; D0=%s; D1=%s" % (A0, A1, B0, B1, C0, C1, D0, D1))
err_cnt += 1
continue
bin_number = ml * shape_out1 + nl
# with gil: #Use the gil to perform an atomic operation
counter += 1
if counter >= large_size:
with gil:
raise RuntimeError("Provided temporary space for storage is not enough. " +
"Please increase bins_per_pixel=%s. " % bins_per_pixel +
"The suggested value is %i or greater." % ceil(1.1 * bins_per_pixel * size_in / idx))
builder.cinsert(bin_number, idx, value)
logger.info("number of elements: %s, average per bin %.3f allocated max: %s",
counter, counter / size_in, bins_per_pixel)
if format == "csr":
res = builder.to_csr()
elif format == "lut":
raise NotImplementedError("")
else:
raise RuntimeError("Unimplemented sparse matrix format: %s", format)
return res
def resize_image_2D(image not None,
shape=None):
"""
Reshape the image in such a way it has the required shape
:param image: 2D-array with the image
:param shape: expected shape of input image
:return: 2D image with the proper shape
"""
if shape is None:
return image
assert image.ndim == 2, "image is 2D"
shape_in0, shape_in1 = shape
shape_img0, shape_img1 = image.shape
if (shape_img0 == shape_in0) and (shape_img1 == shape_in1):
return image
new_image = numpy.zeros((shape_in0, shape_in1), dtype=numpy.float32)
if shape_img0 < shape_in0:
if shape_img1 < shape_in1:
new_image[:shape_img0, :shape_img1] = image
else:
new_image[:shape_img0, :] = image[:, :shape_in1]
else:
if shape_img1 < shape_in1:
new_image[:, :shape_img1] = image[:shape_in0, :]
else:
new_image[:, :] = image[:shape_in0, :shape_in1]
logger.warning("Patching image of shape %ix%i on expected size of %ix%i",
shape_img1, shape_img0, shape_in1, shape_in0)
return new_image
def resize_image_3D(image not None,
shape=None):
"""
Reshape the image in such a way it has the required shape
This version is optimized for n-channel images used after preprocesing like:
nlines * ncolumn * (value, variance, normalization)
:param image: 3D-array with the preprocessed image
:param shape: expected shape of input image (2D only)
:return: 3D image with the proper shape
"""
if shape is None:
return image
assert image.ndim == 3, "image is 3D"
shape_in0, shape_in1 = shape
shape_img0, shape_img1, nchan = image.shape
if (shape_img0 == shape_in0) and (shape_img1 == shape_in1):
return image
new_image = numpy.zeros((shape_in0, shape_in1, nchan), dtype=numpy.float32)
if shape_img0 < shape_in0:
if shape_img1 < shape_in1:
new_image[:shape_img0, :shape_img1, :] = image
else:
new_image[:shape_img0, :, :] = image[:, :shape_in1, :]
else:
if shape_img1 < shape_in1:
new_image[:, :shape_img1, :] = image[:shape_in0, :, :]
else:
new_image[:, :, :] = image[:shape_in0, :shape_in1, :]
logger.warning("Patching image of shape %ix%i on expected size of %ix%i",
shape_img1, shape_img0, shape_in1, shape_in0)
return new_image
def correct(image, shape_in, shape_out, LUT not None, dummy=None, delta_dummy=None,
method="double"):
"""Correct an image based on the look-up table calculated ...
dispatch according to LUT type
:param image: 2D-array with the image
:param shape_in: shape of input image
:param shape_out: shape of output image
:param LUT: Look up table, here a 2D-array of struct
:param dummy: value for invalid pixels
:param delta_dummy: precision for invalid pixels
:param method: integration method: can be "kahan" using single precision
compensated for error or "double" in double precision (64 bits)
:return: corrected 2D image
"""
if (image.ndim == 3):
# new generation of processing with (signal, variance, normalization)
preprocessed_data = True
image = resize_image_3D(image, shape_in)
else:
preprocessed_data = False
image = resize_image_2D(image, shape_in)
if len(LUT) == 3:
# CSR format:
if preprocessed_data:
return correct_CSR_preproc_double(image, shape_out, LUT, dummy, delta_dummy)
else:
return correct_CSR(image, shape_in, shape_out, LUT, dummy, delta_dummy, method)
else:
# LUT format
if preprocessed_data:
shape_out0, shape_out1 = shape_out
assert shape_out0 * shape_out1 == LUT.shape[0], "shape_out0 * shape_out1 == LUT.shape[0]"
# if method == "kahan":
# return correct_LUT_preproc_kahan(image, shape_out, LUT, dummy, delta_dummy)
# else:
# return correct_LUT_preproc_double(image, shape_out, LUT, dummy, delta_dummy)
return correct_LUT_preproc_double(image, shape_out, LUT, dummy, delta_dummy)
else:
return correct_LUT(image, shape_in, shape_out, LUT, dummy, delta_dummy, method)
def correct_LUT(image, shape_in, shape_out, lut_t[:, ::1] LUT not None,
dummy=None, delta_dummy=None, method="double"):
"""Correct an image based on the look-up table calculated ...
dispatch between kahan and double
:param image: 2D-array with the image
:param shape_in: shape of input image
:param shape_out: shape of output image
:param LUT: Look up table, here a 2D-array of struct
:param dummy: value for invalid pixels
:param delta_dummy: precision for invalid pixels
:param method: integration method: can be "kahan" using single precision
compensated for error or "double" in double precision (64 bits)
:return: corrected 2D image
"""
shape_out0, shape_out1 = shape_out
assert shape_out0 * shape_out1 == LUT.shape[0], "shape_out0 * shape_out1 == LUT.shape[0]"
image = resize_image_2D(image, shape_in)
if method == "kahan":
return correct_LUT_kahan(image, shape_out, LUT, dummy, delta_dummy)
else:
return correct_LUT_double(image, shape_out, LUT, dummy, delta_dummy)
def correct_LUT_kahan(image, shape_out, lut_t[:, ::1] LUT not None,
dummy=None, delta_dummy=None):
"""Correct an image based on the look-up table calculated ...
:param image: 2D-array with the image
:param shape_in: shape of input image
:param shape_out: shape of output image
:param LUT: Look up table, here a 2D-array of struct
:param dummy: value for invalid pixels
:param delta_dummy: precision for invalid pixels
:return: corrected 2D image
"""
cdef:
int i, j, idx, size
float coef, sum, error, t, y, value, cdummy, cdelta_dummy
float32_t[::1] lout, lin
bint do_dummy = dummy is not None
if do_dummy:
cdummy = dummy
if delta_dummy is None:
cdelta_dummy = 0.0
else:
cdummy = cdelta_dummy = numpy.Nan
assert numpy.prod(shape_out) == LUT.shape[0], "shape_out0 * shape_out1 == LUT.shape[0]"
out = numpy.zeros(shape_out, dtype=numpy.float32)
lout = out.ravel()
lin = numpy.ascontiguousarray(image.ravel(), dtype=numpy.float32)
size = lin.size
for i in prange(LUT.shape[0], nogil=True, schedule="static"):
sum = 0.0
error = 0.0 # Implement Kahan summation
for j in range(LUT.shape[1]):
idx = LUT[i, j].idx
coef = LUT[i, j].coef
if coef <= 0:
continue
if idx >= size:
with gil:
logger.warning("Accessing %i >= %i !!!" % (idx, size))
continue
value = lin[idx]
if do_dummy and fabs(value - cdummy) <= cdelta_dummy:
continue
y = value * coef - error
t = sum + y
error = (t - sum) - y
sum = t
if do_dummy and (sum == 0.0):
sum = cdummy
lout[i] += sum # this += is for Cython's reduction
return out
def correct_LUT_double(image, shape_out, lut_t[:, ::1] LUT not None,
dummy=None, delta_dummy=None):
"""Correct an image based on the look-up table calculated ...
double precision accumulated
:param image: 2D-array with the image
:param shape_in: shape of input image
:param shape_out: shape of output image
:param LUT: Look up table, here a 2D-array of struct
:param dummy: value for invalid pixels
:param delta_dummy: precision for invalid pixels
:return: corrected 2D image
"""
cdef:
int i, j, idx, size
float value, cdummy, cdelta_dummy
double sum, coef
float32_t[::1] lout, lin
bint do_dummy = dummy is not None
if do_dummy:
cdummy = dummy
if delta_dummy is None:
cdelta_dummy = 0.0
else:
cdummy = numpy.NaN
cdelta_dummy = 0.0
assert numpy.prod(shape_out) == LUT.shape[0], "shape_out0 * shape_out1 == LUT.shape[0]"
out = numpy.zeros(shape_out, dtype=numpy.float32)
lout = out.ravel()
lin = numpy.ascontiguousarray(image.ravel(), dtype=numpy.float32)
size = lin.size
for i in prange(LUT.shape[0], nogil=True, schedule="static"):
sum = 0.0
for j in range(LUT.shape[1]):
idx = LUT[i, j].idx
coef = LUT[i, j].coef
if coef <= 0:
continue
if idx >= size:
with gil:
logger.warning("Accessing %i >= %i !!!" % (idx, size))
continue
value = lin[idx]
if do_dummy and fabs(value - cdummy) <= cdelta_dummy:
continue
sum = value * coef + sum
if do_dummy and (sum == 0.0):
sum = cdummy
lout[i] += sum # this += is for Cython's reduction
return out
def correct_CSR(image, shape_in, shape_out, LUT, dummy=None, delta_dummy=None,
variance=None, method="double"):
"""
Correct an image based on the look-up table calculated ...
:param image: 2D-array with the image
:param shape_in: shape of input image
:param shape_out: shape of output image
:param LUT: Look up table, here a 3-tuple array of ndarray
:param dummy: value for invalid pixels
:param delta_dummy: precision for invalid pixels
:param variance: unused for now ... TODO: propagate variance.
:param method: integration method: can be "kahan" using single precision compensated for error or "double" in double precision (64 bits)
:return: corrected 2D image
Nota: patch image on proper buffer size if needed.
"""
image = resize_image_2D(image, shape_in)
if method == "kahan":
return correct_CSR_kahan(image, shape_out, LUT, dummy, delta_dummy)
else:
return correct_CSR_double(image, shape_out, LUT, dummy, delta_dummy)
def correct_CSR_kahan(image, shape_out, LUT, dummy=None, delta_dummy=None):
"""
Correct an image based on the look-up table calculated ...
using kahan's error compensated algorithm
:param image: 2D-array with the image
:param shape_in: shape of input image
:param shape_out: shape of output image
:param LUT: Look up table, here a 3-tuple array of ndarray
:param dummy: value for invalid pixels
:param delta_dummy: precision for invalid pixels
:return: corrected 2D image
"""
cdef:
int i, j, idx, size, bins
float coef, error, sum, y, t, value, cdummy, cdelta_dummy
float32_t[::1] lout, lin, data
int[::1] indices, indptr
bint do_dummy = dummy is not None
if do_dummy:
cdummy = dummy
if delta_dummy is None:
cdelta_dummy = 0.0
else:
cdummy = numpy.NaN
cdelta_dummy = 0.0
data, indices, indptr = LUT
bins = indptr.shape[0] - 1
out = numpy.zeros(shape_out, dtype=numpy.float32)
lout = out.ravel()
lin = numpy.ascontiguousarray(image.ravel(), dtype=numpy.float32)
size = image.size
for i in prange(bins, nogil=True, schedule="static"):
sum = 0.0 # Implement Kahan summation
error = 0.0
for j in range(indptr[i], indptr[i + 1]):
idx = indices[j]
coef = data[j]
if coef <= 0:
continue
if idx >= size:
with gil:
logger.warning("Accessing %i >= %i !!!" % (idx, size))
continue
value = lin[idx]
if do_dummy and fabs(value - cdummy) <= cdelta_dummy:
continue
y = value * coef - error
t = sum + y
error = (t - sum) - y
sum = t
if do_dummy and (sum == 0.0):
sum = cdummy
lout[i] += sum # this += is for Cython's reduction
return out
def correct_CSR_double(image, shape_out, LUT, dummy=None, delta_dummy=None):
"""
Correct an image based on the look-up table calculated ...
using double precision accumulator
:param image: 2D-array with the image
:param shape_in: shape of input image
:param shape_out: shape of output image
:param LUT: Look up table, here a 3-tuple array of ndarray
:param dummy: value for invalid pixels
:param delta_dummy: precision for invalid pixels
:return: corrected 2D image
"""
cdef:
int i, j, idx, size, bins
float value, cdummy, cdelta_dummy
double coef, sum
float32_t[::1] lout, lin, data
int[::1] indices, indptr
bint do_dummy = dummy is not None
if do_dummy:
cdummy = dummy
if delta_dummy is None:
cdelta_dummy = 0.0
else:
cdummy = numpy.NaN
cdelta_dummy = 0.0
data, indices, indptr = LUT
bins = indptr.size - 1
assert numpy.prod(shape_out) == bins, "shape_out0*shape_out1 == indptr.size-1"
out = numpy.zeros(shape_out, dtype=numpy.float32)
lout = out.ravel()
lin = numpy.ascontiguousarray(image.ravel(), dtype=numpy.float32)
size = image.size
for i in prange(bins, nogil=True, schedule="static"):
sum = 0.0 # double precision
for j in range(indptr[i], indptr[i + 1]):
idx = indices[j]
coef = data[j]
if coef <= 0.0:
continue
if idx >= size:
with gil:
logger.warning("Accessing %i >= %i !!!" % (idx, size))
continue
value = lin[idx]
if do_dummy and fabs(value - cdummy) <= cdelta_dummy:
continue
sum = sum + value * coef # += operator not allowed in // sections
if do_dummy and (sum == 0.0):
sum = cdummy
lout[i] += sum # this += is for Cython's reduction
return out
def correct_LUT_preproc_double(image, shape_out,
lut_t[:, ::1] LUT not None,
dummy=None, delta_dummy=None,
empty=numpy.NaN):
"""Correct an image based on the look-up table calculated ...
implementation using double precision accumulator
:param image: 2D-array with the image (signal, variance, normalization)
:param shape_in: shape of input image
:param shape_out: shape of output image
:param LUT: Look up table, here a 2D-array of struct
:param dummy: value for invalid pixels
:param delta_dummy: precision for invalid pixels
:param empty: numerical value for empty pixels (if dummy is not provided)
:param method: integration method: can be "kahan" using single precision
compensated for error or "double" in double precision (64 bits)
:return: corrected 2D image + array with (signal, variance, norm)
"""
cdef:
int i, j, idx, size, nchan
float value, cdummy, cdelta_dummy
double sum_sig, sum_var, sum_norm, coef
float32_t[::1] lout, lerr
float32_t[:, ::1] lin, lprop
bint do_dummy = dummy is not None
if do_dummy:
cdummy = dummy
if delta_dummy is None:
cdelta_dummy = 0.0
else:
cdummy = empty
assert numpy.prod(shape_out) == LUT.shape[0], "shape_out0 * shape_out1 == LUT.shape[0]"
nchan = image.shape[2]
shape_out0, shape_out1 = shape_out
prop = numpy.zeros((shape_out0, shape_out1, nchan), dtype=numpy.float32)
lprop = prop.reshape((-1, nchan))
out = numpy.zeros((shape_out0, shape_out1), dtype=numpy.float32)
lout = out.ravel()
lin = numpy.ascontiguousarray(image, dtype=numpy.float32).reshape((-1, nchan))
if nchan == 3:
err = numpy.zeros((shape_out0, shape_out1), dtype=numpy.float32)
lerr = err.ravel()
size = lin.shape[0]
for i in prange(LUT.shape[0], nogil=True, schedule="static"):
sum_sig = 0.0
sum_var = 0.0
sum_norm = 0.0
for j in range(LUT.shape[1]):
idx = LUT[i, j].idx
coef = LUT[i, j].coef
if coef <= 0:
continue
if idx >= size:
with gil:
logger.warning("Accessing %i >= %i !!!" % (idx, size))
continue
value = lin[idx, 0]
if do_dummy and fabs(value - cdummy) <= cdelta_dummy:
continue
sum_sig = value * coef + sum_sig
if nchan == 2:
# case (signal, norm)
sum_norm = coef * lin[idx, 1] + sum_norm
elif nchan == 3:
# case (signal, variance, normalization)
sum_var = coef * coef * lin[idx, 1] + sum_var
sum_norm = coef * lin[idx, 2] + sum_norm
else:
sum_norm = sum_norm + coef
if sum_norm == 0.0: # No contribution to this output pixel
lout[i] += cdummy # this += is for Cython's reduction
if nchan == 3:
lerr[i] += cdummy
else:
lprop[i, 0] += sum_sig
if nchan == 2:
# case (signal, norm)
lprop[i, 1] += sum_norm
lout[i] += sum_sig / sum_norm
elif nchan == 3:
# case (signal, variance, normalization)
lprop[i, 1] += sum_var
lprop[i, 2] += sum_norm
lout[i] += sum_sig / sum_norm
lerr[i] += sqrt(sum_var) / sum_norm
else:
# Case signal only. No normalization to behave like FIT2D does
lout[i] += sum_sig
if nchan == 3:
return out, err, prop
else:
return out, prop
def correct_CSR_preproc_double(image, shape_out,
LUT not None,
dummy=None, delta_dummy=None,
empty=numpy.NaN):
"""Correct an image based on the look-up table calculated ...
implementation using double precision accumulator
:param image: 2D-array with the image (signal, variance, normalization)
:param shape_in: shape of input image
:param shape_out: shape of output image
:param LUT: Look up table, here a 3-tuple array of ndarray
:param dummy: value for invalid pixels
:param delta_dummy: precision for invalid pixels
:param empty: numerical value for empty pixels (if dummy is not provided)
:param method: integration method: can be "kahan" using single precision
compensated for error or "double" in double precision (64 bits)
:return: corrected 2D image + array with (signal, variance, norm)
"""
cdef:
int i, j, idx, size, bins, nchan
float value, cdummy, cdelta_dummy
double sum_sig, sum_var, sum_norm, coef
float32_t[::1] lout, lerr, data
float32_t[:, ::1] lin, lprop
int[::1] indices, indptr
bint do_dummy = dummy is not None
if do_dummy:
cdummy = dummy
if delta_dummy is None:
cdelta_dummy = 0.0
else:
cdummy = empty
data, indices, indptr = LUT
bins = indptr.size - 1
assert numpy.prod(shape_out) == bins, "shape_out0*shape_out1 == indptr.size-1"
nchan = image.shape[2]
shape_out0, shape_out1 = shape_out
prop = numpy.zeros((shape_out0, shape_out1, nchan), dtype=numpy.float32)
lprop = prop.reshape((-1, nchan))
out = numpy.zeros((shape_out0, shape_out1), dtype=numpy.float32)
lout = out.ravel()
lin = numpy.ascontiguousarray(image, dtype=numpy.float32).reshape((-1, nchan))
if nchan == 3:
err = numpy.zeros((shape_out0, shape_out1), dtype=numpy.float32)
lerr = err.ravel()
size = lin.shape[0]
for i in prange(bins, nogil=True, schedule="static"):
sum_sig = 0.0
sum_var = 0.0
sum_norm = 0.0
for j in range(indptr[i], indptr[i + 1]):
idx = indices[j]
coef = data[j]
if coef <= 0.0:
continue
if idx >= size:
with gil:
logger.warning("Accessing %i >= %i !!!" % (idx, size))
continue
value = lin[idx, 0]
if do_dummy and fabs(value - cdummy) <= cdelta_dummy:
continue
sum_sig = value * coef + sum_sig
if nchan == 2:
# case (signal, norm)
sum_norm = coef * lin[idx, 1] + sum_norm
elif nchan == 3:
# case (signal, variance, normalization)
sum_var = coef * coef * lin[idx, 1] + sum_var
sum_norm = coef * lin[idx, 2] + sum_norm
else:
sum_norm = sum_norm + coef
if sum_norm == 0.0: # No contribution to this output pixel
lout[i] += cdummy # this += is for Cython's reduction
if nchan == 3:
lerr[i] += cdummy
else:
lprop[i, 0] += sum_sig
if nchan == 2:
# case (signal, norm)
lout[i] += sum_sig / sum_norm
lprop[i, 1] += sum_norm
elif nchan == 3:
# case (signal, variance, normalization)
lprop[i, 1] += sum_var
lprop[i, 2] += sum_norm
lout[i] += sum_sig / sum_norm
lerr[i] += sqrt(sum_var) / sum_norm
else:
# Case signal only. No normalization to behave like FIT2D does
lout[i] += sum_sig
if nchan == 3:
return out, err, prop
else:
return out, prop
def uncorrect_LUT(image, shape, lut_t[:, :]LUT):
"""
Take an image which has been corrected and transform it into it's raw (with loss of information)
:param image: 2D-array with the image
:param shape: shape of output image
:param LUT: Look up table, here a 2D-array of struct
:return: uncorrected 2D image and a mask (pixels in raw image not existing)
"""
cdef:
int idx, j
float total, coef
int8_t[::1] lmask
float32_t[::1] lout, lin
lin = numpy.ascontiguousarray(image, dtype=numpy.float32).ravel()
out = numpy.zeros(shape, dtype=numpy.float32)
mask = numpy.zeros(shape, dtype=numpy.int8)
lmask = mask.ravel()
lout = out.ravel()
for idx in range(LUT.shape[0]):
total = 0.0
for j in range(LUT.shape[1]):
coef = LUT[idx, j].coef
if coef > 0:
total += coef
if total <= 0:
lmask[idx] = 1
continue
val = lin[idx] / total
for j in range(LUT.shape[1]):
coef = LUT[idx, j].coef
if coef > 0:
lout[LUT[idx, j].idx] += val * coef
return out, mask
def uncorrect_CSR(image, shape, LUT):
"""Take an image which has been corrected and transform it into it's raw (with loss of information)
:param image: 2D-array with the image
:param shape: shape of output image
:param LUT: Look up table, here a 3-tuple of ndarray
:return: uncorrected 2D image and a mask (pixels in raw image not existing)
"""
cdef:
int idx, j, nbins
float total, coef
int8_t[:] lmask
float32_t[::1] lout, lin, data
int32_t[::1] indices = LUT[1]
int32_t[::1] indptr = LUT[2]
out = numpy.zeros(shape, dtype=numpy.float32)
lout = out.ravel()
lin = numpy.ascontiguousarray(image, dtype=numpy.float32).ravel()
mask = numpy.zeros(shape, dtype=numpy.int8)
lmask = mask.ravel()
data = LUT[0]
nbins = indptr.size - 1
for idx in range(nbins):
total = 0.0
for j in range(indptr[idx], indptr[idx + 1]):
coef = data[j]
if coef > 0:
total += coef
if total <= 0:
lmask[idx] = 1
continue
val = lin[idx] / total
for j in range(indptr[idx], indptr[idx + 1]):
coef = data[j]
if coef > 0:
lout[indices[j]] += val * coef
return out, mask
###########################################################################
# Deprecated but used to give correct results in the case of spline
###########################################################################
class Distortion(object):
"""
This class applies a distortion correction on an image.
It is also able to apply an inversion of the correction.
"""
def __init__(self, detector="detector", shape=None):
"""
:param detector: detector instance or detector name
"""
if isinstance(detector, str):
self.detector = detector_factory(detector)
else: # we assume it is a Detector instance
self.detector = detector
if shape:
self.shape = shape
elif "max_shape" in dir(self.detector):
self.shape = self.detector.max_shape
self.shape = tuple([int(i) for i in self.shape])
self._sem = threading.Semaphore()
self.lut_size = None
self.pos = None
self.LUT = None
self.delta0 = self.delta1 = None # max size of an pixel on a regular grid ...
def __repr__(self):
return os.linesep.join(["Distortion correction for detector:",
self.detector.__repr__()])
def calc_pos(self):
if self.pos is None:
with self._sem:
if self.pos is None:
pos_corners = numpy.empty((self.shape[0] + 1, self.shape[1] + 1, 2), dtype=numpy.float64)
d1 = expand2d(numpy.arange(self.shape[0] + 1.0), self.shape[1] + 1, False) - 0.5
d2 = expand2d(numpy.arange(self.shape[1] + 1.0), self.shape[0] + 1, True) - 0.5
p = self.detector.calc_cartesian_positions(d1, d2)
if p[2] is not None:
logger.warning("makes little sense to correct for distortion non-flat detectors: %s",
self.detector)
pos_corners[:, :, 0], pos_corners[:, :, 1] = p[:2]
pos_corners[:, :, 0] /= self.detector.pixel1
pos_corners[:, :, 1] /= self.detector.pixel2
pos = numpy.empty((self.shape[0], self.shape[1], 4, 2), dtype=numpy.float32)
pos[:, :, 0, :] = pos_corners[:-1, :-1]
pos[:, :, 1, :] = pos_corners[:-1, 1:]
pos[:, :, 2, :] = pos_corners[1:, 1:]
pos[:, :, 3, :] = pos_corners[1:, :-1]
self.pos = pos
self.delta0 = int((numpy.ceil(pos_corners[1:, :, 0]) - numpy.floor(pos_corners[:-1, :, 0])).max())
self.delta1 = int((numpy.ceil(pos_corners[:, 1:, 1]) - numpy.floor(pos_corners[:, :-1, 1])).max())
return self.pos
def calc_LUT_size(self):
"""
Considering the "half-CCD" spline from ID11 which describes a (1025,2048) detector,
the physical location of pixels should go from:
[-17.48634 : 1027.0543, -22.768829 : 2028.3689]
We chose to discard pixels falling outside the [0:1025,0:2048] range with a lose of intensity
We keep self.pos: pos_corners will not be compatible with systems showing non adjacent pixels (like some xpads)
"""
cdef int i, j, k, l, shape0, shape1
cdef int[:, ::1] pos0min, pos1min, pos0max, pos1max
cdef int32_t[:, ::1] lut_size
if self.pos is None:
pos = self.calc_pos()
else:
pos = self.pos
if self.lut_size is None:
with self._sem:
if self.lut_size is None:
shape0, shape1 = self.shape
pos0min = numpy.floor(pos[:, :, :, 0].min(axis=-1)).astype(numpy.int32).clip(0, self.shape[0])
pos1min = numpy.floor(pos[:, :, :, 1].min(axis=-1)).astype(numpy.int32).clip(0, self.shape[1])
pos0max = (numpy.ceil(pos[:, :, :, 0].max(axis=-1)).astype(numpy.int32) + 1).clip(0, self.shape[0])
pos1max = (numpy.ceil(pos[:, :, :, 1].max(axis=-1)).astype(numpy.int32) + 1).clip(0, self.shape[1])
lut_size = numpy.zeros(self.shape, dtype=numpy.int32)
with nogil:
for i in range(shape0):
for j in range(shape1):
for k in range(pos0min[i, j], pos0max[i, j]):
for l in range(pos1min[i, j], pos1max[i, j]):
lut_size[k, l] += 1
np_lut_size = numpy.asarray(lut_size)
self.lut_size = np_lut_size.max()
return np_lut_size
def calc_LUT(self):
cdef:
int i, j, ms, ml, ns, nl, shape0, shape1, size
int offset0, offset1, box_size0, box_size1
int32_t k, idx = 0
float A0, A1, B0, B1, C0, C1, D0, D1, pAB, pBC, pCD, pDA, cAB, cBC, cCD, cDA, area, value
float32_t[:, :, :, ::1] pos
lut_t[:, :, ::1] lut
int32_t[:, ::1] outMax = numpy.zeros(self.shape, dtype=numpy.int32)
float32_t[:, ::1] buffer
shape0, shape1 = self.shape
if self.lut_size is None:
self.calc_LUT_size()
if self.LUT is None:
with self._sem:
if self.LUT is None:
pos = self.pos
lut = numpy.recarray(shape=(self.shape[0], self.shape[1], self.lut_size), dtype=lut_d)
size = self.shape[0] * self.shape[1] * self.lut_size * sizeof(lut_t)
memset(&lut[0, 0, 0], 0, size)
logger.info("LUT shape: (%i,%i,%i) %.3f MByte" % (lut.shape[0], lut.shape[1], lut.shape[2], size / 1.0e6))
buffer = numpy.empty((self.delta0, self.delta1), dtype=numpy.float32)
#buffer_size = self.delta0 * self.delta1 * sizeof(float)
logger.info("Max pixel size: %ix%i; Max source pixel in target: %i" % (buffer.shape[1], buffer.shape[0], self.lut_size))
with nogil:
# i,j, idx are indexes of the raw image uncorrected
for i in range(shape0):
for j in range(shape1):
# reinit of buffer
buffer[:, :] = 0
A0 = pos[i, j, 0, 0]
A1 = pos[i, j, 0, 1]
B0 = pos[i, j, 1, 0]
B1 = pos[i, j, 1, 1]
C0 = pos[i, j, 2, 0]
C1 = pos[i, j, 2, 1]
D0 = pos[i, j, 3, 0]
D1 = pos[i, j, 3, 1]
offset0 = (<int> floor(min(A0, B0, C0, D0)))
offset1 = (<int> floor(min(A1, B1, C1, D1)))
box_size0 = (<int> ceil(max(A0, B0, C0, D0))) - offset0
box_size1 = (<int> ceil(max(A1, B1, C1, D1))) - offset1
A0 -= <float> offset0
A1 -= <float> offset1
B0 -= <float> offset0
B1 -= <float> offset1
C0 -= <float> offset0
C1 -= <float> offset1
D0 -= <float> offset0
D1 -= <float> offset1
if B0 != A0:
pAB = (B1 - A1) / (B0 - A0)
cAB = A1 - pAB * A0
else:
pAB = cAB = 0.0
if C0 != B0:
pBC = (C1 - B1) / (C0 - B0)
cBC = B1 - pBC * B0
else:
pBC = cBC = 0.0
if D0 != C0:
pCD = (D1 - C1) / (D0 - C0)
cCD = C1 - pCD * C0
else:
pCD = cCD = 0.0
if A0 != D0:
pDA = (A1 - D1) / (A0 - D0)
cDA = D1 - pDA * D0
else:
pDA = cDA = 0.0
# ABCD is ANTI-trigonometric order: order input position accordingly
integrate(buffer, B0, A0, pAB, cAB)
integrate(buffer, A0, D0, pDA, cDA)
integrate(buffer, D0, C0, pCD, cCD)
integrate(buffer, C0, B0, pBC, cBC)
area = 0.5 * ((C0 - A0) * (D1 - B1) - (C1 - A1) * (D0 - B0))
for ms in range(box_size0):
ml = ms + offset0
if ml < 0 or ml >= shape0:
continue
for ns in range(box_size1):
# ms,ns are indexes of the corrected image in short form, ml & nl are the same
nl = ns + offset1
if nl < 0 or nl >= shape1:
continue
value = buffer[ms, ns] / area
if value <= 0:
continue
k = outMax[ml, nl]
lut[ml, nl, k].idx = idx
lut[ml, nl, k].coef = value
outMax[ml, nl] = k + 1
idx += 1
self.LUT = numpy.asarray(lut).reshape(self.shape[0] * self.shape[1], self.lut_size)
return self.LUT
################################################################################
# TODO: profile for select between ArrayBuilder and SparseBuilder
################################################################################
# def demo_ArrayBuilder(self, int n=10):
# "this just ensures the shared C-library works"
# cdef:
# ArrayBuilder ab
# int i
#
# ab = ArrayBuilder(n)
# for i in range(n):
# ab._append(i, i, 1.0)
# return ab
def correct(self, image):
"""
Correct an image based on the look-up table calculated ...
:param image: 2D-array with the image
:return: corrected 2D image
"""
cdef:
int i, j, idx, size
float coef
lut_t[:, ::1] LUT
float32_t[::1] lout, lin
if self.LUT is None:
self.calc_LUT()
LUT = self.LUT
img_shape = image.shape
if (img_shape[0] < self.shape[0]) or (img_shape[1] < self.shape[1]):
new_image = numpy.zeros(self.shape, dtype=numpy.float32)
new_image[:img_shape[0], :img_shape[1]] = image
image = new_image
logger.warning("Patching image as image is %ix%i and spline is %ix%i" % (img_shape[1], img_shape[0], self.shape[1], self.shape[0]))
out = numpy.zeros(self.shape, dtype=numpy.float32)
lout = out.ravel()
lin = numpy.ascontiguousarray(image.ravel(), dtype=numpy.float32)
size = lin.size
for i in prange(LUT.shape[0], nogil=True, schedule="static"):
for j in range(LUT.shape[1]):
idx = LUT[i, j].idx
coef = LUT[i, j].coef
if coef <= 0:
continue
if idx >= size:
with gil:
logger.warning("Accessing %i >= %i !!!" % (idx, size))
continue
lout[i] += lin[idx] * coef
return out[:img_shape[0], :img_shape[1]]
def uncorrect(self, image):
"""
Take an image which has been corrected and transform it into it's raw (with loss of information)
:param image: 2D-array with the image
:return: uncorrected 2D image and a mask (pixels in raw image
"""
if self.LUT is None:
self.calc_LUT()
out = numpy.zeros(self.shape, dtype=numpy.float32)
mask = numpy.zeros(self.shape, dtype=numpy.int8)
lmask = mask.ravel()
lout = out.ravel()
lin = image.ravel()
tot = self.LUT.coef.sum(axis=-1)
for idx in range(self.LUT.shape[0]):
t = tot[idx]
if t <= 0:
lmask[idx] = 1
continue
val = lin[idx] / t
lout[self.LUT[idx].idx] += val * self.LUT[idx].coef
return out, mask
|