File: _geometry.pyx

package info (click to toggle)
pyfai 0.20.0%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 78,460 kB
  • sloc: python: 49,743; lisp: 7,059; sh: 225; ansic: 165; makefile: 119
file content (622 lines) | stat: -rw-r--r-- 26,738 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
# -*- coding: utf-8 -*-
#cython: embedsignature=True, language_level=3
#cython: boundscheck=False, wraparound=False, cdivision=True, initializedcheck=False,
## This is for developping
## cython: profile=True, warn.undeclared=True, warn.unused=True, warn.unused_result=False, warn.unused_arg=True
#
#    Project: Fast Azimuthal integration
#             https://github.com/silx-kit/pyFAI
#
#    Copyright (C) 2012-2018 European Synchrotron Radiation Facility, Grenoble, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.

"""
This extension is a fast-implementation for calculating the geometry, i.e. where
every pixel of an array stays in space (x,y,z) or its (r, :math:`\\chi`)
coordinates.
"""

__author__ = "Jerome Kieffer"
__license__ = "MIT"
__date__ = "11/01/2021"
__copyright__ = "2011-2020, ESRF"
__contact__ = "jerome.kieffer@esrf.fr"

cimport cython
import numpy
from cython.parallel cimport prange
from libc.math cimport sin, cos, atan2, sqrt, M_PI

cdef double twopi = 2.0 * M_PI

# We declare a second cython.floating so that it behaves like an actual template
ctypedef fused float_or_double:
    cython.double
    cython.float

cdef inline double f_t1(double p1, double p2, double p3, double sinRot1, double cosRot1, double sinRot2, double cosRot2, double sinRot3, double cosRot3) nogil:
    """Calculate t2 (aka y) for 1 pixel

    :param p1:distances in meter along dim1 from PONI
    :param p2: distances in meter along dim2 from PONI
    :param p3: distance sample - PONI
    :param sinRot1,sinRot2,sinRot3: sine of the angles
    :param cosRot1,cosRot2,cosRot3: cosine of the angles
    """
    return (p1 * cosRot2 * cosRot3 +
            p2 * (cosRot3 * sinRot1 * sinRot2 - cosRot1 * sinRot3) -
            p3 * (cosRot1 * cosRot3 * sinRot2 + sinRot1 * sinRot3))


cdef inline double f_t2(double p1, double p2, double p3, double sinRot1, double cosRot1, double sinRot2, double cosRot2, double sinRot3, double cosRot3) nogil:
    """Calculate t2 (aka y) for 1 pixel

    :param p1:distances in meter along dim1 from PONI
    :param p2: distances in meter along dim2 from PONI
    :param p3: distance sample - PONI
    :param sinRot1,sinRot2,sinRot3: sine of the angles
    :param cosRot1,cosRot2,cosRot3: cosine of the angles
    """
    return (p1 * cosRot2 * sinRot3 +
            p2 * (cosRot1 * cosRot3 + sinRot1 * sinRot2 * sinRot3) -
            p3 * (-(cosRot3 * sinRot1) + cosRot1 * sinRot2 * sinRot3))


cdef inline double f_t3(double p1, double p2, double p3, double sinRot1, double cosRot1, double sinRot2, double cosRot2, double sinRot3, double cosRot3) nogil:
    """Calculate t3 (aka -z) for 1 pixel

    :param p1:distances in meter along dim1 from PONI
    :param p2: distances in meter along dim2 from PONI
    :param p3: distance sample - PONI
    :param sinRot1,sinRot2,sinRot3: sine of the angles
    :param cosRot1,cosRot2,cosRot3: cosine of the angles
    """

    return p1 * sinRot2 - p2 * cosRot2 * sinRot1 + p3 * cosRot1 * cosRot2


cdef inline double f_tth(double p1, double p2, double L, double sinRot1, double cosRot1, double sinRot2, double cosRot2, double sinRot3, double cosRot3) nogil:
    """Calculate 2 theta for 1 pixel

    :param p1:distances in meter along dim1 from PONI
    :param p2: distances in meter along dim2 from PONI
    :param L: distance sample - PONI
    :param sinRot1,sinRot2,sinRot3: sine of the angles
    :param cosRot1,cosRot2,cosRot3: cosine of the angles
    :return: 2 theta
    """
    cdef:
        double t1 = f_t1(p1, p2, L, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
        double t2 = f_t2(p1, p2, L, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
        double t3 = f_t3(p1, p2, L, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
    return atan2(sqrt(t1 * t1 + t2 * t2), t3)


cdef inline double f_q(double p1, double p2, double L, double sinRot1, double cosRot1, double sinRot2, double cosRot2, double sinRot3, double cosRot3, double wavelength) nogil:
    """
    Calculate the scattering vector q for 1 pixel

    :param p1:distances in meter along dim1 from PONI
    :param p2: distances in meter along dim2 from PONI
    :param L: distance sample - PONI
    :param sinRot1,sinRot2,sinRot3: sine of the angles
    :param cosRot1,cosRot2,cosRot3: cosine of the angles
    """
    return 4.0e-9 * M_PI / wavelength * sin(f_tth(p1, p2, L, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3) / 2.0)


cdef inline double f_chi(double p1, double p2, double L, double sinRot1, double cosRot1, double sinRot2, double cosRot2, double sinRot3, double cosRot3) nogil:
    """
    calculate chi for 1 pixel
    :param p1:distances in meter along dim1 from PONI
    :param p2: distances in meter along dim2 from PONI
    :param L: distance sample - PONI
    :param sinRot1,sinRot2,sinRot3: sine of the angles
    :param cosRot1,cosRot2,cosRot3: cosine of the angles
    """
    cdef:
        double t1 = f_t1(p1, p2, L, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
        double t2 = f_t2(p1, p2, L, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
    return atan2(t1, t2)


cdef inline double f_r(double p1, double p2, double L, double sinRot1, double cosRot1, double sinRot2, double cosRot2, double sinRot3, double cosRot3) nogil:
    """
    calculate r for 1 pixel, radius from beam center to current
    :param p1:distances in meter along dim1 from PONI
    :param p2: distances in meter along dim2 from PONI
    :param L: distance sample - PONI
    :param sinRot1,sinRot2,sinRot3: sine of the angles
    :param cosRot1,cosRot2,cosRot3: cosine of the angles
    """
    cdef:
        double t1 = f_t1(p1, p2, L, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
        double t2 = f_t2(p1, p2, L, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
        # double t3 = f_t3(p1, p2, L, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
    return sqrt(t1 * t1 + t2 * t2)
    # Changed 10/03/2016 ... the radius is in the pixel position.
    # return L * sqrt(t1 * t1 + t2 * t2) / (t3 * cosRot1 * cosRot2)


cdef inline double f_cosa(double p1, double p2, double L) nogil:
    """
    calculate cosine of the incidence angle for 1 pixel

    :param p1:distances in meter along dim1 from PONI
    :param p2: distances in meter along dim2 from PONI
    :param L: distance sample - PONI
    """
    return L / sqrt((L * L) + (p1 * p1) + (p2 * p2))


################################################################################
# End of pure cython function declaration
################################################################################


def calc_pos_zyx(double L, double poni1, double poni2,
                 double rot1, double rot2, double rot3,
                 pos1 not None,
                 pos2 not None,
                 pos3=None):
    """Calculate the 3D coordinates in the sample's referential

    :param L: distance sample - PONI
    :param poni1: PONI coordinate along y axis
    :param poni2: PONI coordinate along x axis
    :param rot1: angle1
    :param rot2: angle2
    :param rot3: angle3
    :param pos1: numpy array with distances in meter along dim1 from PONI (Y)
    :param pos2: numpy array with distances in meter along dim2 from PONI (X)
    :param pos3: numpy array with distances in meter along Sample->PONI (Z), positive behind the detector
    :return: 3-tuple of ndarray of double with same shape and size as pos1

    """
    cdef:
        double sinRot1 = sin(rot1)
        double cosRot1 = cos(rot1)
        double sinRot2 = sin(rot2)
        double cosRot2 = cos(rot2)
        double sinRot3 = sin(rot3)
        double cosRot3 = cos(rot3)
        ssize_t  size = pos1.size, i = 0
        double p1, p2, p3
    assert pos2.size == size, "pos2.size == size"
    cdef:
        double[::1] c1 = numpy.ascontiguousarray(pos1.ravel(), dtype=numpy.float64)
        double[::1] c2 = numpy.ascontiguousarray(pos2.ravel(), dtype=numpy.float64)
        double[::1] c3
        double[::1] t1 = numpy.empty(size, dtype=numpy.float64)
        double[::1] t2 = numpy.empty(size, dtype=numpy.float64)
        double[::1] t3 = numpy.empty(size, dtype=numpy.float64)

    if pos3 is None:
        for i in prange(size, nogil=True, schedule="static"):
            p1 = c1[i] - poni1
            p2 = c2[i] - poni2
            t1[i] = f_t1(p1, p2, L, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
            t2[i] = f_t2(p1, p2, L, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
            t3[i] = f_t3(p1, p2, L, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
    else:
        assert pos3.size == size, "pos3.size == size"
        c3 = numpy.ascontiguousarray(pos3.ravel(), dtype=numpy.float64)
        for i in prange(size, nogil=True, schedule="static"):
            p1 = c1[i] - poni1
            p2 = c2[i] - poni2
            p3 = c3[i] + L
            t1[i] = f_t1(p1, p2, p3, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
            t2[i] = f_t2(p1, p2, p3, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
            t3[i] = f_t3(p1, p2, p3, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)

    r1 = numpy.asarray(t1)
    r2 = numpy.asarray(t2)
    r3 = numpy.asarray(t3)

    if pos1.ndim == 3:
        return (r3.reshape(pos1.shape[0], pos1.shape[1], pos1.shape[2]),
                r1.reshape(pos1.shape[0], pos1.shape[1], pos1.shape[2]),
                r2.reshape(pos1.shape[0], pos1.shape[1], pos1.shape[2]))

    if pos1.ndim == 2:
        return (r3.reshape(pos1.shape[0], pos1.shape[1]),
                r1.reshape(pos1.shape[0], pos1.shape[1]),
                r2.reshape(pos1.shape[0], pos1.shape[1]))
    else:
        return r3, r1, r2


def calc_tth(double L, double rot1, double rot2, double rot3,
             pos1 not None,
             pos2 not None,
             pos3=None):
    """
    Calculate the 2theta array (radial angle) in parallel

    :param L: distance sample - PONI
    :param rot1: angle1
    :param rot2: angle2
    :param rot3: angle3
    :param pos1: numpy array with distances in meter along dim1 from PONI (Y)
    :param pos2: numpy array with distances in meter along dim2 from PONI (X)
    :param pos3: numpy array with distances in meter along Sample->PONI (Z), positive behind the detector
    :return: ndarray of double with same shape and size as pos1
    """
    cdef:
        double sinRot1 = sin(rot1)
        double cosRot1 = cos(rot1)
        double sinRot2 = sin(rot2)
        double cosRot2 = cos(rot2)
        double sinRot3 = sin(rot3)
        double cosRot3 = cos(rot3)
        ssize_t  size = pos1.size, i = 0
    assert pos2.size == size, "pos2.size == size"
    cdef:
        double[::1] c1 = numpy.ascontiguousarray(pos1.ravel(), dtype=numpy.float64)
        double[::1] c2 = numpy.ascontiguousarray(pos2.ravel(), dtype=numpy.float64)
        double[::1] c3
        double[::1] out = numpy.empty(size, dtype=numpy.float64)

    if pos3 is None:
        for i in prange(size, nogil=True, schedule="static"):
            out[i] = f_tth(c1[i], c2[i], L, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
    else:
        assert pos3.size == size, "pos3.size == size"
        c3 = numpy.ascontiguousarray(pos3.ravel(), dtype=numpy.float64)
        for i in prange(size, nogil=True, schedule="static"):
            out[i] = f_tth(c1[i], c2[i], L + c3[i], sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)

    if pos1.ndim == 2:
        return numpy.asarray(out).reshape(pos1.shape[0], pos1.shape[1])
    else:
        return numpy.asarray(out)


def calc_chi(double L, double rot1, double rot2, double rot3,
             pos1 not None,
             pos2 not None,
             pos3=None,
             bint chi_discontinuity_at_pi=True):
    """Calculate the chi array (azimuthal angles) using OpenMP

    X1 = p1*cos(rot2)*cos(rot3) + p2*(cos(rot3)*sin(rot1)*sin(rot2) - cos(rot1)*sin(rot3)) -  L*(cos(rot1)*cos(rot3)*sin(rot2) + sin(rot1)*sin(rot3))
    X2 = p1*cos(rot2)*sin(rot3) - L*(-(cos(rot3)*sin(rot1)) + cos(rot1)*sin(rot2)*sin(rot3)) +  p2*(cos(rot1)*cos(rot3) + sin(rot1)*sin(rot2)*sin(rot3))
    X3 = -(L*cos(rot1)*cos(rot2)) + p2*cos(rot2)*sin(rot1) - p1*sin(rot2)
    tan(Chi) =  X2 / X1


    :param L: distance sample - PONI
    :param rot1: angle1
    :param rot2: angle2
    :param rot3: angle3
    :param pos1: numpy array with distances in meter along dim1 from PONI (Y)
    :param pos2: numpy array with distances in meter along dim2 from PONI (X)
    :param pos3: numpy array with distances in meter along Sample->PONI (Z), positive behind the detector
    :param chi_discontinuity_at_pi: set to False to obtain chi in the range [0, 2pi[ instead of [-pi, pi[
    :return: ndarray of double with same shape and size as pos1
    """
    cdef:
        double sinRot1 = sin(rot1)
        double cosRot1 = cos(rot1)
        double sinRot2 = sin(rot2)
        double cosRot2 = cos(rot2)
        double sinRot3 = sin(rot3)
        double cosRot3 = cos(rot3)
        double chi
    cdef ssize_t  size = pos1.size, i = 0
    assert pos2.size == size, "pos2.size == size"
    cdef:
        double[::1] c1 = numpy.ascontiguousarray(pos1.ravel(), dtype=numpy.float64)
        double[::1] c2 = numpy.ascontiguousarray(pos2.ravel(), dtype=numpy.float64)
        double[::1] c3
        double[::1] out = numpy.empty(size, dtype=numpy.float64)

    if pos3 is None:
        for i in prange(size, nogil=True, schedule="static"):
            out[i] = f_chi(c1[i], c2[i], L, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
    else:
        assert pos3.size == size, "pos3.size == size"
        c3 = numpy.ascontiguousarray(pos3.ravel(), dtype=numpy.float64)
        for i in prange(size, nogil=True, schedule="static"): 
            chi = f_chi(c1[i], c2[i], L + c3[i], sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
            if chi_discontinuity_at_pi:
                out[i] = chi
            else:
                out[i] = (chi + twopi) % twopi
    if pos1.ndim == 2:
        return numpy.asarray(out).reshape(pos1.shape[0], pos1.shape[1])
    else:
        return numpy.asarray(out)


def calc_q(double L, double rot1, double rot2, double rot3,
           pos1 not None,
           pos2 not None,
           double wavelength, pos3=None):
    """
    Calculate the q (scattering vector) array using OpenMP

    X1 = p1*cos(rot2)*cos(rot3) + p2*(cos(rot3)*sin(rot1)*sin(rot2) - cos(rot1)*sin(rot3)) -  L*(cos(rot1)*cos(rot3)*sin(rot2) + sin(rot1)*sin(rot3))
    X2 = p1*cos(rot2)*sin(rot3) - L*(-(cos(rot3)*sin(rot1)) + cos(rot1)*sin(rot2)*sin(rot3)) +  p2*(cos(rot1)*cos(rot3) + sin(rot1)*sin(rot2)*sin(rot3))
    X3 = -(L*cos(rot1)*cos(rot2)) + p2*cos(rot2)*sin(rot1) - p1*sin(rot2)
    tan(Chi) =  X2 / X1


    :param L: distance sample - PONI
    :param rot1: angle1
    :param rot2: angle2
    :param rot3: angle3
    :param pos1: numpy array with distances in meter along dim1 from PONI (Y)
    :param pos2: numpy array with distances in meter along dim2 from PONI (X)
    :param pos3: numpy array with distances in meter along Sample->PONI (Z), positive behind the detector
    :param wavelength: in meter to get q in nm-1
    :return: ndarray of double with same shape and size as pos1
    """
    cdef:
        double sinRot1 = sin(rot1)
        double cosRot1 = cos(rot1)
        double sinRot2 = sin(rot2)
        double cosRot2 = cos(rot2)
        double sinRot3 = sin(rot3)
        double cosRot3 = cos(rot3)
        ssize_t  size = pos1.size, i = 0
    assert pos2.size == size, "pos2.size == size"
    cdef:
        double[::1] c1 = numpy.ascontiguousarray(pos1.ravel(), dtype=numpy.float64)
        double[::1] c2 = numpy.ascontiguousarray(pos2.ravel(), dtype=numpy.float64)
        double[::1] c3
        double[::1] out = numpy.empty(size, dtype=numpy.float64)

    if pos3 is None:
        for i in prange(size, nogil=True, schedule="static"):
            out[i] = f_q(c1[i], c2[i], L, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3, wavelength)
    else:
        assert pos3.size == size, "pos3.size == size"
        c3 = numpy.ascontiguousarray(pos3.ravel(), dtype=numpy.float64)
        for i in prange(size, nogil=True, schedule="static"):
            out[i] = f_q(c1[i], c2[i], L + c3[i], sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3, wavelength)

    if pos1.ndim == 2:
        return numpy.asarray(out).reshape(pos1.shape[0], pos1.shape[1])
    else:
        return numpy.asarray(out)


def calc_r(double L, double rot1, double rot2, double rot3,
           pos1 not None, pos2 not None,
           pos3=None):
    """
    Calculate the radius array (radial direction) in parallel

    :param L: distance sample - PONI
    :param rot1: angle1
    :param rot2: angle2
    :param rot3: angle3
    :param pos1: numpy array with distances in meter along dim1 from PONI (Y)
    :param pos2: numpy array with distances in meter along dim2 from PONI (X)
    :param pos3: numpy array with distances in meter along Sample->PONI (Z), positive behind the detector
    :return: ndarray of double with same shape and size as pos1
    """
    cdef:
        double sinRot1 = sin(rot1)
        double cosRot1 = cos(rot1)
        double sinRot2 = sin(rot2)
        double cosRot2 = cos(rot2)
        double sinRot3 = sin(rot3)
        double cosRot3 = cos(rot3)
        ssize_t  size = pos1.size, i = 0
    assert pos2.size == size, "pos2.size == size"
    cdef:
        double[::1] c1 = numpy.ascontiguousarray(pos1.ravel(), dtype=numpy.float64)
        double[::1] c2 = numpy.ascontiguousarray(pos2.ravel(), dtype=numpy.float64)
        double[::1] c3
        double[::1] out = numpy.empty(size, dtype=numpy.float64)

    if pos3 is None:
        for i in prange(size, nogil=True, schedule="static"):
            out[i] = f_r(c1[i], c2[i], L, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
    else:
        assert pos3.size == size, "pos3.size == size"
        c3 = numpy.ascontiguousarray(pos3.ravel(), dtype=numpy.float64)
        for i in prange(size, nogil=True, schedule="static"):
            out[i] = f_r(c1[i], c2[i], L + c3[i], sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)

    if pos1.ndim == 2:
        return numpy.asarray(out).reshape(pos1.shape[0], pos1.shape[1])
    else:
        return numpy.asarray(out)


def calc_cosa(double L,
              pos1 not None,
              pos2 not None,
              pos3=None):
    """Calculate the cosine of the incidence angle using OpenMP.
    Used for sensors thickness effect corrections

    :param L: distance sample - PONI
    :param pos1: numpy array with distances in meter along dim1 from PONI (Y)
    :param pos2: numpy array with distances in meter along dim2 from PONI (X)
    :param pos3: numpy array with distances in meter along Sample->PONI (Z), positive behind the detector
    :return: ndarray of double with same shape and size as pos1
    """
    cdef ssize_t  size = pos1.size, i = 0
    assert pos2.size == size, "pos2.size == size"
    cdef:
        double[::1] c1 = numpy.ascontiguousarray(pos1.ravel(), dtype=numpy.float64)
        double[::1] c2 = numpy.ascontiguousarray(pos2.ravel(), dtype=numpy.float64)
        double[::1] c3
        double[::1] out = numpy.empty(size, dtype=numpy.float64)

    if pos3 is None:
        for i in prange(size, nogil=True, schedule="static"):
            out[i] = f_cosa(c1[i], c2[i], L)
    else:
        assert pos3.size == size, "pos3.size == size"
        c3 = numpy.ascontiguousarray(pos3.ravel(), dtype=numpy.float64)
        for i in prange(size, nogil=True, schedule="static"):
            out[i] = f_cosa(c1[i], c2[i], L + c3[i])

    if pos1.ndim == 2:
        return numpy.asarray(out).reshape(pos1.shape[0], pos1.shape[1])
    else:
        return numpy.asarray(out)


def calc_rad_azim(double L,
                  double poni1,
                  double poni2,
                  double rot1,
                  double rot2,
                  double rot3,
                  pos1 not None,
                  pos2 not None,
                  pos3=None,
                  space="2th",
                  wavelength=None, 
                  bint chi_discontinuity_at_pi=True
                  ):
    """Calculate the radial & azimutal position for each pixel from pos1, pos2, pos3.

    :param L: distance sample - PONI
    :param poni1: PONI coordinate along y axis
    :param poni2: PONI coordinate along x axis
    :param rot1: angle1
    :param rot2: angle2
    :param rot3: angle3
    :param pos1: numpy array with distances in meter along dim1 from PONI (Y)
    :param pos2: numpy array with distances in meter along dim2 from PONI (X)
    :param pos3: numpy array with distances in meter along Sample->PONI (Z), positive behind the detector
    :param space: can be "2th", "q" or "r" for radial units. Azimuthal units are radians
    :param chi_discontinuity_at_pi: set to False to obtain chi in the range [0, 2pi[ instead of [-pi, pi[
    :return: ndarray of double with same shape and size as pos1 + (2,),
    :raise: KeyError when space is bad !
            ValueError when wavelength is missing

    """
    cdef ssize_t  size = pos1.size, i = 0
    assert pos2.size == size, "pos2.size == size"
    cdef:
        double sinRot1 = sin(rot1)
        double cosRot1 = cos(rot1)
        double sinRot2 = sin(rot2)
        double cosRot2 = cos(rot2)
        double sinRot3 = sin(rot3)
        double cosRot3 = cos(rot3)
        int cspace = 0
        double[::1] c1 = numpy.ascontiguousarray(pos1.ravel(), dtype=numpy.float64)
        double[::1] c2 = numpy.ascontiguousarray(pos2.ravel(), dtype=numpy.float64)
        double[::1] c3
        float[:, ::1] out = numpy.empty((size, 2), dtype=numpy.float32)
        double t1, t2, t3, fwavelength, chi

    if space == "2th":
        cspace = 1
    elif space == "q":
        cspace = 2
        if not wavelength:
            raise ValueError("wavelength is needed for q calculation")
        else:
            fwavelength = float(wavelength)
    elif space == "r":
        cspace = 3
    else:
        raise KeyError("Not implemented space %s in cython" % space)

    if pos3 is None:
        for i in prange(size, nogil=True, schedule="static"):
            t1 = f_t1(c1[i] - poni1, c2[i] - poni2, L, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
            t2 = f_t2(c1[i] - poni1, c2[i] - poni2, L, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
            t3 = f_t3(c1[i] - poni1, c2[i] - poni2, L, sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
            if cspace == 1:
                out[i, 0] = atan2(sqrt(t1 * t1 + t2 * t2), t3)
            elif cspace == 2:
                out[i, 0] = 4.0e-9 * M_PI / fwavelength * sin(atan2(sqrt(t1 * t1 + t2 * t2), t3) / 2.0)
            elif cspace == 3:
                out[i, 0] = sqrt(t1 * t1 + t2 * t2)
            chi = atan2(t1, t2)
            if chi_discontinuity_at_pi:
                out[i, 1] = chi
            else:
                out[i, 1] = (chi + twopi) % twopi
    else:
        assert pos3.size == size, "pos3.size == size"
        c3 = numpy.ascontiguousarray(pos3.ravel(), dtype=numpy.float64)
        for i in prange(size, nogil=True, schedule="static"):
            t1 = f_t1(c1[i] - poni1, c2[i] - poni2, L + c3[i], sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
            t2 = f_t2(c1[i] - poni1, c2[i] - poni2, L + c3[i], sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
            t3 = f_t3(c1[i] - poni1, c2[i] - poni2, L + c3[i], sinRot1, cosRot1, sinRot2, cosRot2, sinRot3, cosRot3)
            if cspace == 1:
                out[i, 0] = atan2(sqrt(t1 * t1 + t2 * t2), t3)
            elif cspace == 2:
                out[i, 0] = 4.0e-9 * M_PI / fwavelength * sin(atan2(sqrt(t1 * t1 + t2 * t2), t3) / 2.0)
            elif cspace == 3:
                out[i, 0] = sqrt(t1 * t1 + t2 * t2)
            chi = atan2(t1, t2)
            if chi_discontinuity_at_pi:
                out[i, 1] = chi
            else:
                out[i, 1] = (chi + twopi) % twopi

    nout = numpy.asarray(out)
    if pos1.ndim == 3:
        return nout.reshape(pos1.shape[0], pos1.shape[1], pos1.shape[2], 2)
    if pos1.ndim == 2:
        return nout.reshape(pos1.shape[0], pos1.shape[1], 2)
    else:
        return nout


def calc_delta_chi(cython.floating[:, ::1] centers,
                   float_or_double[:, :, :, ::1] corners):
    """Calculate the delta chi array (azimuthal angles) using OpenMP

    :param centers: numpy array with chi angles of the center of the pixels
    :param corners: numpy array with chi angles of the corners of the pixels
    :return: ndarray of double with same shape and size as centers woth the delta chi per pixel
    """
    cdef:
        int width, height, row, col, corn, nbcorn
        double co, ce, delta0, delta1, delta2, delta
        double[:, ::1] res

    height = centers.shape[0]
    width = centers.shape[1]
    assert corners.shape[0] == height, "height match"
    assert corners.shape[1] == width, "width match"
    nbcorn = corners.shape[2]

    res = numpy.empty((height, width), dtype=numpy.float64)
    with nogil:
        for row in prange(height):
            for col in range(width):
                ce = centers[row, col]
                delta = 0.0
                for corn in range(nbcorn):
                    co = corners[row, col, corn, 1]
                    delta1 = (co - ce + twopi) % twopi
                    delta2 = (ce - co + twopi) % twopi
                    delta0 = min(delta1, delta2)
                    if delta0 > delta:
                        delta = delta0
                res[row, col] = delta
    return numpy.asarray(res)