1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
# coding: utf-8
#cython: embedsignature=True, language_level=3
#cython: boundscheck=False, wraparound=False, cdivision=True, initializedcheck=False,
## This is for developping
## cython: profile=True, warn.undeclared=True, warn.unused=True, warn.unused_result=False, warn.unused_arg=True
#
# Project: Fast Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2012-2021 European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# .
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# .
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""Module with makes a discrete 2D-array appear like a continuous function thanks
to bilinear interpolations.
"""
__author__ = "Jerome Kieffer"
__license__ = "MIT"
__date__ = "14/01/2021"
__copyright__ = "2011-2021, ESRF"
__contact__ = "jerome.kieffer@esrf.fr"
import cython
import numpy
from cython cimport floating
from cython.parallel import prange
import logging
logger = logging.getLogger("pyFAI.ext.bilinear")
from libc.stdint cimport int8_t, uint8_t, int16_t, uint16_t, \
int32_t, uint32_t, int64_t, uint64_t
ctypedef double float64_t
ctypedef float float32_t
def calc_cartesian_positions(floating[::1] d1, floating[::1] d2,
float[:, :, :, ::1] pos,
bint is_flat=True):
"""Calculate the Cartesian position for array of position (d1, d2)
with pixel coordinated stored in array pos.
This is bilinear interpolation.
:param d1: position in dim1
:param d2: position in dim2
:param pos: array with position of pixels corners
:return: 3-tuple of position.
"""
cdef:
int64_t i, p1, p2, dim1, dim2, size = d1.size
float32_t delta1, delta2, f1, f2, A0, A1, A2, B0, B1, B2, C1, C0, C2, D0, D1, D2
float32_t[::1] out1 = numpy.zeros(size, dtype=numpy.float32)
float32_t[::1] out2 = numpy.zeros(size, dtype=numpy.float32)
float32_t[::1] out3
if not is_flat:
out3 = numpy.zeros(size, dtype=numpy.float32)
dim1 = pos.shape[0]
dim2 = pos.shape[1]
assert size == d2.size, "d2.size == size"
for i in prange(size, nogil=True, schedule="static"):
f1 = floor(d1[i])
f2 = floor(d2[i])
p1 = <int> f1
p2 = <int> f2
delta1 = d1[i] - f1
delta2 = d2[i] - f2
if p1 < 0:
with gil:
logger.warning("Negative index along dim1: f1= %s", f1)
p1 = 0
f1 = 0.0
delta1 = d1[i]
if p2 < 0:
with gil:
logger.warning("Negative index along dim2: f2= %s", f2)
p2 = 0
f2 = 0.0
delta2 = d2[i]
if p1 >= dim1:
if p1 > dim1:
with gil:
logger.warning("Overflow on dim1: d1= %s, f1=%s, p1=%s, delta1=%s", d1[i], f1, p1, delta1)
p1 = dim1 - 1
delta1 = d1[i] - p1
if p2 >= dim2:
if p2 > dim2:
with gil:
logger.warning("Overflow on dim2: d2= %s, f2=%s, p2=%s, delta2=%s", d2[i], f2, p2, delta2)
p2 = dim2 - 1
delta2 = d2[i] - p2
A1 = pos[p1, p2, 0, 1]
A2 = pos[p1, p2, 0, 2]
B1 = pos[p1, p2, 1, 1]
B2 = pos[p1, p2, 1, 2]
C1 = pos[p1, p2, 2, 1]
C2 = pos[p1, p2, 2, 2]
D1 = pos[p1, p2, 3, 1]
D2 = pos[p1, p2, 3, 2]
if not is_flat:
A0 = pos[p1, p2, 0, 0]
B0 = pos[p1, p2, 1, 0]
C0 = pos[p1, p2, 2, 0]
D0 = pos[p1, p2, 3, 0]
out3[i] += A0 * (1.0 - delta1) * (1.0 - delta2) \
+ B0 * delta1 * (1.0 - delta2) \
+ C0 * delta1 * delta2 \
+ D0 * (1.0 - delta1) * delta2
# A and D are on the same: dim1 (Y)
# A and B are on the same: dim2 (X)
# nota: += is needed as well as numpy.zero because of prange: avoid reduction
out1[i] += A1 * (1.0 - delta1) * (1.0 - delta2) \
+ B1 * delta1 * (1.0 - delta2) \
+ C1 * delta1 * delta2 \
+ D1 * (1.0 - delta1) * delta2
out2[i] += A2 * (1.0 - delta1) * (1.0 - delta2) \
+ B2 * delta1 * (1.0 - delta2) \
+ C2 * delta1 * delta2 \
+ D2 * (1.0 - delta1) * delta2
if is_flat:
return numpy.asarray(out1), numpy.asarray(out2), None
else:
return numpy.asarray(out1), numpy.asarray(out2), numpy.asarray(out3)
def convert_corner_2D_to_4D(int ndim,
floating[:, ::1] d1 not None,
floating[:, ::1] d2 not None,
floating[:, ::1] d3=None):
"""
Convert 2 (or 3) arrays of corner position into a 4D array of pixel corner coordinates
:param ndim: 2d or 3D output
:param d1: 2D position in dim1 (shape +1)
:param d2: 2D position in dim2 (shape +1)
:param d3: 2D position in dim3 (z) (shape +1)
:return: pos 4D array with position of pixels corners
"""
cdef int64_t shape0, shape1, i, j
# edges position are n+1 compared to number of pixels
shape0 = d1.shape[0] - 1
shape1 = d2.shape[1] - 1
assert d1.shape[0] == d2.shape[0], "d1.shape[0] == d2.shape[0]"
assert d1.shape[1] == d2.shape[1], "d1.shape[1] == d2.shape[1]"
cdef float32_t[:, :, :, ::1] pos = numpy.zeros((shape0, shape1, 4, ndim),
dtype=numpy.float32)
for i in prange(shape0, nogil=True, schedule="static"):
for j in range(shape1):
pos[i, j, 0, ndim - 2] += d1[i, j]
pos[i, j, 0, ndim - 1] += d2[i, j]
pos[i, j, 1, ndim - 2] += d1[i + 1, j]
pos[i, j, 1, ndim - 1] += d2[i + 1, j]
pos[i, j, 2, ndim - 2] += d1[i + 1, j + 1]
pos[i, j, 2, ndim - 1] += d2[i + 1, j + 1]
pos[i, j, 3, ndim - 2] += d1[i, j + 1]
pos[i, j, 3, ndim - 1] += d2[i, j + 1]
if (d3 is not None) and (ndim == 3):
assert d1.shape[0] == d3.shape[0], "d1.shape[0] == d3.shape[0]"
assert d1.shape[1] == d3.shape[1], "d1.shape[1] == d3.shape[1]"
for i in prange(shape0, nogil=True, schedule="static"):
for j in range(shape1):
pos[i, j, 0, 0] += d3[i, j]
pos[i, j, 1, 0] += d3[i + 1, j]
pos[i, j, 2, 0] += d3[i + 1, j + 1]
pos[i, j, 3, 0] += d3[i, j + 1]
return numpy.asarray(pos)
include "bilinear.pxi"
|