File: bilinear.pyx

package info (click to toggle)
pyfai 0.20.0%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 78,460 kB
  • sloc: python: 49,743; lisp: 7,059; sh: 225; ansic: 165; makefile: 119
file content (196 lines) | stat: -rw-r--r-- 7,599 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# coding: utf-8
#cython: embedsignature=True, language_level=3
#cython: boundscheck=False, wraparound=False, cdivision=True, initializedcheck=False,
## This is for developping
## cython: profile=True, warn.undeclared=True, warn.unused=True, warn.unused_result=False, warn.unused_arg=True
#
#    Project: Fast Azimuthal integration
#             https://github.com/silx-kit/pyFAI
#
#    Copyright (C) 2012-2021 European Synchrotron Radiation Facility, Grenoble, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
#  Permission is hereby granted, free of charge, to any person obtaining a copy
#  of this software and associated documentation files (the "Software"), to deal
#  in the Software without restriction, including without limitation the rights
#  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#  copies of the Software, and to permit persons to whom the Software is
#  furnished to do so, subject to the following conditions:
#  .
#  The above copyright notice and this permission notice shall be included in
#  all copies or substantial portions of the Software.
#  .
#  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
#  THE SOFTWARE.

"""Module with makes a discrete 2D-array appear like a continuous function thanks
to bilinear interpolations.
"""

__author__ = "Jerome Kieffer"
__license__ = "MIT"
__date__ = "14/01/2021"
__copyright__ = "2011-2021, ESRF"
__contact__ = "jerome.kieffer@esrf.fr"

import cython
import numpy
from cython cimport floating
from cython.parallel import prange

import logging
logger = logging.getLogger("pyFAI.ext.bilinear")

from libc.stdint cimport int8_t, uint8_t, int16_t, uint16_t, \
                         int32_t, uint32_t, int64_t, uint64_t

ctypedef double float64_t
ctypedef float float32_t

def calc_cartesian_positions(floating[::1] d1, floating[::1] d2,
                             float[:, :, :, ::1] pos,
                             bint is_flat=True):
    """Calculate the Cartesian position for array of position (d1, d2)
    with pixel coordinated stored in array pos.
    This is bilinear interpolation.

    :param d1: position in dim1
    :param d2: position in dim2
    :param pos: array with position of pixels corners
    :return: 3-tuple of position.
    """
    cdef:
        int64_t i, p1, p2, dim1, dim2, size = d1.size
        float32_t delta1, delta2, f1, f2, A0, A1, A2, B0, B1, B2, C1, C0, C2, D0, D1, D2
        float32_t[::1] out1 = numpy.zeros(size, dtype=numpy.float32)
        float32_t[::1] out2 = numpy.zeros(size, dtype=numpy.float32)
        float32_t[::1] out3
    if not is_flat:
        out3 = numpy.zeros(size, dtype=numpy.float32)
    dim1 = pos.shape[0]
    dim2 = pos.shape[1]
    assert size == d2.size, "d2.size == size"

    for i in prange(size, nogil=True, schedule="static"):
        f1 = floor(d1[i])
        f2 = floor(d2[i])

        p1 = <int> f1
        p2 = <int> f2

        delta1 = d1[i] - f1
        delta2 = d2[i] - f2

        if p1 < 0:
            with gil:
                logger.warning("Negative index along dim1: f1= %s", f1)
            p1 = 0
            f1 = 0.0
            delta1 = d1[i]

        if p2 < 0:
            with gil:
                logger.warning("Negative index along dim2: f2= %s", f2)
            p2 = 0
            f2 = 0.0
            delta2 = d2[i]

        if p1 >= dim1:
            if p1 > dim1:
                with gil:
                    logger.warning("Overflow on dim1: d1= %s, f1=%s, p1=%s, delta1=%s", d1[i], f1, p1, delta1)
            p1 = dim1 - 1
            delta1 = d1[i] - p1

        if p2 >= dim2:
            if p2 > dim2:
                with gil:
                    logger.warning("Overflow on dim2: d2= %s, f2=%s, p2=%s, delta2=%s", d2[i], f2, p2, delta2)
            p2 = dim2 - 1
            delta2 = d2[i] - p2

        A1 = pos[p1, p2, 0, 1]
        A2 = pos[p1, p2, 0, 2]
        B1 = pos[p1, p2, 1, 1]
        B2 = pos[p1, p2, 1, 2]
        C1 = pos[p1, p2, 2, 1]
        C2 = pos[p1, p2, 2, 2]
        D1 = pos[p1, p2, 3, 1]
        D2 = pos[p1, p2, 3, 2]
        if not is_flat:
            A0 = pos[p1, p2, 0, 0]
            B0 = pos[p1, p2, 1, 0]
            C0 = pos[p1, p2, 2, 0]
            D0 = pos[p1, p2, 3, 0]
            out3[i] += A0 * (1.0 - delta1) * (1.0 - delta2) \
                + B0 * delta1 * (1.0 - delta2) \
                + C0 * delta1 * delta2 \
                + D0 * (1.0 - delta1) * delta2

        # A and D are on the same:  dim1 (Y)
        # A and B are on the same:  dim2 (X)
        # nota: += is needed as well as numpy.zero because of prange: avoid reduction
        out1[i] += A1 * (1.0 - delta1) * (1.0 - delta2) \
            + B1 * delta1 * (1.0 - delta2) \
            + C1 * delta1 * delta2 \
            + D1 * (1.0 - delta1) * delta2
        out2[i] += A2 * (1.0 - delta1) * (1.0 - delta2) \
            + B2 * delta1 * (1.0 - delta2) \
            + C2 * delta1 * delta2 \
            + D2 * (1.0 - delta1) * delta2
    if is_flat:
        return numpy.asarray(out1), numpy.asarray(out2), None
    else:
        return numpy.asarray(out1), numpy.asarray(out2), numpy.asarray(out3)


def convert_corner_2D_to_4D(int ndim,
                            floating[:, ::1] d1 not None,
                            floating[:, ::1] d2 not None,
                            floating[:, ::1] d3=None):
    """
    Convert 2 (or 3) arrays of corner position into a 4D array of pixel corner coordinates

    :param ndim: 2d or 3D output
    :param d1: 2D position in dim1 (shape +1)
    :param d2: 2D position in dim2 (shape +1)
    :param d3: 2D position in dim3 (z) (shape +1)
    :return: pos 4D array with position of pixels corners
    """
    cdef int64_t shape0, shape1, i, j
    #  edges position are n+1 compared to number of pixels
    shape0 = d1.shape[0] - 1
    shape1 = d2.shape[1] - 1
    assert d1.shape[0] == d2.shape[0], "d1.shape[0] == d2.shape[0]"
    assert d1.shape[1] == d2.shape[1], "d1.shape[1] == d2.shape[1]"
    cdef float32_t[:, :, :, ::1] pos = numpy.zeros((shape0, shape1, 4, ndim),
                                                   dtype=numpy.float32)
    for i in prange(shape0, nogil=True, schedule="static"):
        for j in range(shape1):
            pos[i, j, 0, ndim - 2] += d1[i, j]
            pos[i, j, 0, ndim - 1] += d2[i, j]
            pos[i, j, 1, ndim - 2] += d1[i + 1, j]
            pos[i, j, 1, ndim - 1] += d2[i + 1, j]
            pos[i, j, 2, ndim - 2] += d1[i + 1, j + 1]
            pos[i, j, 2, ndim - 1] += d2[i + 1, j + 1]
            pos[i, j, 3, ndim - 2] += d1[i, j + 1]
            pos[i, j, 3, ndim - 1] += d2[i, j + 1]
    if (d3 is not None) and (ndim == 3):
        assert d1.shape[0] == d3.shape[0], "d1.shape[0] == d3.shape[0]"
        assert d1.shape[1] == d3.shape[1], "d1.shape[1] == d3.shape[1]"
        for i in prange(shape0, nogil=True, schedule="static"):
            for j in range(shape1):
                pos[i, j, 0, 0] += d3[i, j]
                pos[i, j, 1, 0] += d3[i + 1, j]
                pos[i, j, 2, 0] += d3[i + 1, j + 1]
                pos[i, j, 3, 0] += d3[i, j + 1]
    return numpy.asarray(pos)


include "bilinear.pxi"