File: invert_geometry.pyx

package info (click to toggle)
pyfai 0.20.0%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 78,460 kB
  • sloc: python: 49,743; lisp: 7,059; sh: 225; ansic: 165; makefile: 119
file content (152 lines) | stat: -rw-r--r-- 6,250 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# -*- coding: utf-8 -*-
#cython: embedsignature=True, language_level=3
#cython: boundscheck=False, wraparound=False, cdivision=True, initializedcheck=False,
## This is for developping:
##cython: profile=True, warn.undeclared=True, warn.unused=True, warn.unused_result=False, warn.unused_arg=True
#
#    Project: Fast Azimuthal integration
#             https://github.com/silx-kit/pyFAI
#
#    Copyright (C) 2012-2020 European Synchrotron Radiation Facility, Grenoble, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
#  Permission is hereby granted, free of charge, to any person obtaining a copy
#  of this software and associated documentation files (the "Software"), to deal
#  in the Software without restriction, including without limitation the rights
#  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#  copies of the Software, and to permit persons to whom the Software is
#  furnished to do so, subject to the following conditions:
#  .
#  The above copyright notice and this permission notice shall be included in
#  all copies or substantial portions of the Software.
#  .
#  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
#  THE SOFTWARE.


"""
Module providing inversion transformation from pixel coordinate to radial/azimuthal
coordinate.
"""

__author__ = "Jerome Kieffer"
__license__ = "MIT"
__date__ = "30/04/2020"
__copyright__ = "2018-2018, ESRF"
__contact__ = "jerome.kieffer@esrf.fr"

include "regrid_common.pxi"

import logging
logger = logging.getLogger("pyFAI.ext.invert_geometry")


cdef class InvertGeometry:
    """
    Class to inverse the geometry: takes the nearest pixel then use linear interpolation

    :param radius: 2D array with radial position
    :param angle: 2D array with azimuthal position

    Call it with (r,chi) to retrieve the pixel where it comes from.
    """
    cdef:
        position_t[:, ::1] radius, angle
        int dim0, dim1
        position_t rad_min, rad_max, rad_scale, ang_min, ang_max, ang_scale

    def __cinit__(self, radius, angle):
        """Constructor of the class

        :param radius: 2D array with the radius for every position
        :param angle:  2D array with the azimuth for every position
        """
        cdef:
            int id0, id1
            position_t rad_min, rad_max, ang_min, ang_max, ang, rad
        self.dim0 = radius.shape[0]
        self.dim1 = radius.shape[1]

        assert angle.shape[0] == self.dim0, "the two array have the same shape"
        assert angle.shape[1] == self.dim1, "the two array have the same shape"

        self.radius = numpy.ascontiguousarray(radius, position_d)
        self.angle = numpy.ascontiguousarray(angle, position_d)
        rad_min = rad_max = self.radius[0, 0]
        ang_min = ang_max = self.angle[0, 0]
        for id0 in range(self.dim0):
            for id1 in range(self.dim1):
                ang = self.angle[id0, id1]
                rad = self.radius[id0, id1]
                if ang > ang_max:
                    ang_max = ang
                elif ang < ang_min:
                    ang_min = ang
                if rad > rad_max:
                    rad_max = rad
                elif rad < rad_min:
                    rad_min = rad
        self.rad_min = rad_min
        self.rad_max = rad_max
        self.rad_scale = 1.0 / (rad_max - rad_min) ** 2
        self.ang_min = ang_min
        self.ang_max = ang_max
        self.ang_scale = 1.0 / (ang_max - ang_min) ** 2

    def __dealloc__(self):
        self.radius = None
        self.angle = None

    def __call__(self, position_t rad, position_t ang, bint refined=True):
        """Calculate the pixel coordinate leading to the value (rad, angle)

        :param rad: radial value
        :param ang: angular value
        :param refined: if True: use linear interpolation, else provide nearest pixel
        :return p0, p1: pixel coordinates
        """
        cdef:
            int id0, id1, best0, best1
            position_t cost, min_cost, gr0, ga0, gr1, ga1, cor0, cor1, target_ang, target_rad, det
        with nogil:
            best0 = best1 = 0
            cor0 = cor1 = 0.0
            cost = self.ang_scale * (self.angle[0, 0] - ang) ** 2 \
                 + self.rad_scale * (self.radius[0, 0] - rad) ** 2
            min_cost = cost
            for id0 in range(self.dim0):
                for id1 in range(self.dim1):
                    cost = self.ang_scale * (self.angle[id0, id1] - ang) ** 2 \
                         + self.rad_scale * (self.radius[id0, id1] - rad) ** 2
                    if cost < min_cost:
                        min_cost = cost
                        best0 = id0
                        best1 = id1
            if refined and \
                    (best0 > 0) and (best0 < self.dim0 - 1) and\
                    (best1 > 0) and (best1 < self.dim1 - 1):

                # First order Taylor expansion
                gr0 = 0.5 * (self.radius[best0 + 1, best1] - self.radius[best0 - 1, best1])
                ga0 = 0.5 * (self.angle[best0 + 1, best1] - self.angle[best0 - 1, best1])

                gr1 = 0.5 * (self.radius[best0, best1 + 1] - self.radius[best0, best1 - 1])
                ga1 = 0.5 * (self.angle[best0, best1 + 1] - self.angle[best0, best1 - 1])
                target_ang = ang - self.angle[best0, best1]
                target_rad = rad - self.radius[best0, best1]

                # inversion of the matrix
                det = ga1 * gr0 - ga0 * gr1
                if det == 0.0:
                    with gil:
                        logger.info("Impossible to invert the matrix")
                else:
                    cor0 = (target_rad * ga1 - target_ang * gr1) / det
                    cor1 = (-target_rad * ga0 + target_ang * gr0) / det
        return (best0 + cor0, best1 + cor1)