1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
# -*- coding: utf-8 -*-
#cython: embedsignature=True, language_level=3
#cython: boundscheck=False, wraparound=False, cdivision=True, initializedcheck=False,
## This is for developping:
##cython: profile=True, warn.undeclared=True, warn.unused=True, warn.unused_result=False, warn.unused_arg=True
#
# Project: Fast Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2012-2020 European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# .
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# .
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""
Module providing inversion transformation from pixel coordinate to radial/azimuthal
coordinate.
"""
__author__ = "Jerome Kieffer"
__license__ = "MIT"
__date__ = "30/04/2020"
__copyright__ = "2018-2018, ESRF"
__contact__ = "jerome.kieffer@esrf.fr"
include "regrid_common.pxi"
import logging
logger = logging.getLogger("pyFAI.ext.invert_geometry")
cdef class InvertGeometry:
"""
Class to inverse the geometry: takes the nearest pixel then use linear interpolation
:param radius: 2D array with radial position
:param angle: 2D array with azimuthal position
Call it with (r,chi) to retrieve the pixel where it comes from.
"""
cdef:
position_t[:, ::1] radius, angle
int dim0, dim1
position_t rad_min, rad_max, rad_scale, ang_min, ang_max, ang_scale
def __cinit__(self, radius, angle):
"""Constructor of the class
:param radius: 2D array with the radius for every position
:param angle: 2D array with the azimuth for every position
"""
cdef:
int id0, id1
position_t rad_min, rad_max, ang_min, ang_max, ang, rad
self.dim0 = radius.shape[0]
self.dim1 = radius.shape[1]
assert angle.shape[0] == self.dim0, "the two array have the same shape"
assert angle.shape[1] == self.dim1, "the two array have the same shape"
self.radius = numpy.ascontiguousarray(radius, position_d)
self.angle = numpy.ascontiguousarray(angle, position_d)
rad_min = rad_max = self.radius[0, 0]
ang_min = ang_max = self.angle[0, 0]
for id0 in range(self.dim0):
for id1 in range(self.dim1):
ang = self.angle[id0, id1]
rad = self.radius[id0, id1]
if ang > ang_max:
ang_max = ang
elif ang < ang_min:
ang_min = ang
if rad > rad_max:
rad_max = rad
elif rad < rad_min:
rad_min = rad
self.rad_min = rad_min
self.rad_max = rad_max
self.rad_scale = 1.0 / (rad_max - rad_min) ** 2
self.ang_min = ang_min
self.ang_max = ang_max
self.ang_scale = 1.0 / (ang_max - ang_min) ** 2
def __dealloc__(self):
self.radius = None
self.angle = None
def __call__(self, position_t rad, position_t ang, bint refined=True):
"""Calculate the pixel coordinate leading to the value (rad, angle)
:param rad: radial value
:param ang: angular value
:param refined: if True: use linear interpolation, else provide nearest pixel
:return p0, p1: pixel coordinates
"""
cdef:
int id0, id1, best0, best1
position_t cost, min_cost, gr0, ga0, gr1, ga1, cor0, cor1, target_ang, target_rad, det
with nogil:
best0 = best1 = 0
cor0 = cor1 = 0.0
cost = self.ang_scale * (self.angle[0, 0] - ang) ** 2 \
+ self.rad_scale * (self.radius[0, 0] - rad) ** 2
min_cost = cost
for id0 in range(self.dim0):
for id1 in range(self.dim1):
cost = self.ang_scale * (self.angle[id0, id1] - ang) ** 2 \
+ self.rad_scale * (self.radius[id0, id1] - rad) ** 2
if cost < min_cost:
min_cost = cost
best0 = id0
best1 = id1
if refined and \
(best0 > 0) and (best0 < self.dim0 - 1) and\
(best1 > 0) and (best1 < self.dim1 - 1):
# First order Taylor expansion
gr0 = 0.5 * (self.radius[best0 + 1, best1] - self.radius[best0 - 1, best1])
ga0 = 0.5 * (self.angle[best0 + 1, best1] - self.angle[best0 - 1, best1])
gr1 = 0.5 * (self.radius[best0, best1 + 1] - self.radius[best0, best1 - 1])
ga1 = 0.5 * (self.angle[best0, best1 + 1] - self.angle[best0, best1 - 1])
target_ang = ang - self.angle[best0, best1]
target_rad = rad - self.radius[best0, best1]
# inversion of the matrix
det = ga1 * gr0 - ga0 * gr1
if det == 0.0:
with gil:
logger.info("Impossible to invert the matrix")
else:
cor0 = (target_rad * ga1 - target_ang * gr1) / det
cor1 = (-target_rad * ga0 + target_ang * gr0) / det
return (best0 + cor0, best1 + cor1)
|