File: preproc.pyx

package info (click to toggle)
pyfai 0.20.0%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 78,460 kB
  • sloc: python: 49,743; lisp: 7,059; sh: 225; ansic: 165; makefile: 119
file content (636 lines) | stat: -rw-r--r-- 25,864 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
# -*- coding: utf-8 -*-
#cython: embedsignature=True, language_level=3
#cython: boundscheck=False, wraparound=False, cdivision=True, initializedcheck=False,
################################################################################
# #This is for developping
# #cython: profile=True, warn.undeclared=True, warn.unused=True, warn.unused_result=False, warn.unused_arg=True 
################################################################################
#
#    Project: Fast Azimuthal integration
#             https://github.com/silx-kit/pyFAI
#
#    Copyright (C) 2011-2020 European Synchrotron Radiation Facility, Grenoble, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
#  Permission is hereby granted, free of charge, to any person obtaining a copy
#  of this software and associated documentation files (the "Software"), to deal
#  in the Software without restriction, including without limitation the rights
#  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#  copies of the Software, and to permit persons to whom the Software is
#  furnished to do so, subject to the following conditions:
#  .
#  The above copyright notice and this permission notice shall be included in
#  all copies or substantial portions of the Software.
#  .
#  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
#  THE SOFTWARE.

"""
Contains a preprocessing function in charge of the dark-current subtraction,
flat-field normalization... taking care of masked values and normalization.
"""

__author__ = "Jerome Kieffer"
__license__ = "MIT"
__date__ = "29/04/2020"
__copyright__ = "2011-2020, ESRF"
__contact__ = "jerome.kieffer@esrf.fr"

include "regrid_common.pxi"

import cython
from cython.parallel import prange

from libc.math cimport fabs
from .isnan cimport isnan
from cython cimport floating


cdef floating[::1]c1_preproc(floating[::1] data,
                             floating[::1] dark=None,
                             floating[::1] flat=None,
                             floating[::1] solidangle=None,
                             floating[::1] polarization=None,
                             floating[::1] absorption=None,
                             any_int_t[::1] mask=None,
                             floating dummy=0.0,
                             floating delta_dummy=0.0,
                             bint check_dummy=False,
                             floating normalization_factor=1.0,
                             ) with gil:
    """Common preprocessing step for all routines: C-implementation

    :param data: raw value, as a numpy array, 1D or 2D
    :param dark: array containing the value of the dark noise, to be subtracted
    :param flat: Array containing the flatfield image. It is also checked for dummies if relevant.
    :param solidangle: the value of the solid_angle. This processing may be performed during the rebinning instead. left for compatibility
    :param polarization: Correction for polarization of the incident beam
    :param absorption: Correction for absorption in the sensor volume
    :param mask: array non null  where data should be ignored
    :param dummy: value of invalid data
    :param delta_dummy: precision for invalid data
    :param normalization_factor: final value is divided by this

    NaN are always considered as invalid

    if neither empty nor dummy is provided, empty pixels are 0
    """
    cdef:
        int size, i
        bint check_mask, do_dark, do_flat, do_solidangle, do_absorption,
        bint do_polarization, is_valid
        floating[::1] result
        floating one_num, one_den, one_flat

    
    size = data.shape[0]
    do_dark = dark is not None
    do_flat = flat is not None
    do_solidangle = solidangle is not None
    do_absorption = absorption is not None
    do_polarization = polarization is not None
    check_mask = mask is not None
    result = numpy.zeros(size, dtype=data.base.dtype)
    
    for i in prange(size, nogil=True, schedule="static"):
        one_num = data[i]
        one_den = normalization_factor
        is_valid = not isnan(one_num)
        if is_valid and check_mask:
            is_valid = (mask[i] == 0)
        if is_valid and check_dummy:
            if delta_dummy == 0:
                is_valid = (one_num != dummy)
            else:
                is_valid = fabs(one_num - dummy) > delta_dummy

        if is_valid and do_flat:
            one_flat = flat[i]
            if delta_dummy == 0:
                is_valid = (one_flat != dummy)
            else:
                is_valid = fabs(one_flat - dummy) > delta_dummy

        if is_valid:
            # Do not use "/=" as they mean reduction for cython
            if do_dark:
                one_num = one_num - dark[i]
            if do_flat:
                one_den = one_den * one_flat
            if do_polarization:
                one_den = one_den * polarization[i]
            if do_solidangle:
                one_den = one_den * solidangle[i]
            if do_absorption:
                one_den = one_den * absorption[i]
            if (isnan(one_num) or isnan(one_den) or (one_den == 0)):
                result[i] += dummy
            else:
                result[i] += one_num / one_den
        else:
            result[i] += dummy
    return result


cdef floating[:, ::1]c2_preproc(floating[::1] data,
                                floating[::1] dark=None,
                                floating[::1] flat=None,
                                floating[::1] solidangle=None,
                                floating[::1] polarization=None,
                                floating[::1] absorption=None,
                                any_int_t[::1] mask=None,
                                floating dummy=0,
                                floating delta_dummy=0,
                                bint check_dummy=False,
                                floating normalization_factor=1.0,
                                ) with gil:
    """Common preprocessing step for all routines: C-implementation
    with split_result without variance

    :param data: raw value, as a numpy array, 1D or 2D
    :param dark: array containing the value of the dark noise, to be subtracted
    :param flat: Array containing the flatfield image. It is also checked for dummies if relevant.
    :param solidangle: the value of the solid_angle. This processing may be performed during the rebinning instead. left for compatibility
    :param polarization: Correction for polarization of the incident beam
    :param absorption: Correction for absorption in the sensor volume
    :param mask: array non null  where data should be ignored
    :param dummy: value of invalid data
    :param delta_dummy: precision for invalid data
    :param normalization_factor: final value is divided by this

    NaN are always considered as invalid

    Empty pixels are 0 both num and den
    """
    cdef:
        int size, i
        bint check_mask, do_dark, do_flat, do_solidangle, do_absorption, do_polarization
        bint is_valid
        floating[:, ::1] result
        floating one_num, one_flat, one_den

    size = data.shape[0]
    do_dark = dark is not None
    do_flat = flat is not None
    do_solidangle = solidangle is not None
    do_absorption = absorption is not None
    do_polarization = polarization is not None
    check_mask = mask is not None
    result = numpy.zeros((size, 2), dtype=data.base.dtype)

    for i in prange(size, nogil=True, schedule="static"):
        one_num = data[i]
        one_den = normalization_factor
        is_valid = not isnan(one_num)
        if is_valid and check_mask:
            is_valid = (mask[i] == 0)
        if is_valid and check_dummy:
            if delta_dummy == 0:
                is_valid = (one_num != dummy)
            else:
                is_valid = fabs(one_num - dummy) > delta_dummy

        if is_valid and do_flat:
            one_flat = flat[i]
            if delta_dummy == 0:
                is_valid = (one_flat != dummy)
            else:
                is_valid = fabs(one_flat - dummy) > delta_dummy

        if is_valid:
            # Do not use "/=" as they mean reduction for cython
            if do_dark:
                one_num = one_num - dark[i]
            if do_flat:
                one_den = one_den * flat[i]
            if do_polarization:
                one_den = one_den * polarization[i]
            if do_solidangle:
                one_den = one_den * solidangle[i]
            if do_absorption:
                one_den = one_den * absorption[i]
            if (isnan(one_num) or isnan(one_den) or (one_den == 0)):
                one_num = 0.0
                one_den = 0.0
        else:
            one_num = 0.0
            one_den = 0.0

        result[i, 0] += one_num
        result[i, 1] += one_den
    return result


cdef floating[:, ::1]c3_preproc(floating[::1] data,
                                floating[::1] dark=None,
                                floating[::1] flat=None,
                                floating[::1] solidangle=None,
                                floating[::1] polarization=None,
                                floating[::1] absorption=None,
                                any_int_t[::1] mask=None,
                                floating dummy=0.0,
                                floating delta_dummy=0.0,
                                bint check_dummy=False,
                                floating normalization_factor=1.0,
                                floating[::1] variance=None,
                                floating[::1] dark_variance=None,
                                bint poissonian=False,
                                ) with gil:
    """Common preprocessing step for all routines: C-implementation
    with split_result with variance in second position: (signal, variance, normalization)

    :param data: raw value, as a numpy array, 1D or 2D
    :param dark: array containing the value of the dark noise, to be subtracted
    :param flat: Array containing the flatfield image. It is also checked for dummies if relevant.
    :param solidangle: the value of the solid_angle. This processing may be performed during the rebinning instead. left for compatibility
    :param polarization: Correction for polarization of the incident beam
    :param absorption: Correction for absorption in the sensor volume
    :param mask: array non null  where data should be ignored
    :param dummy: value of invalid data
    :param delta_dummy: precision for invalid data
    :param normalization_factor: final value is divided by this, settles on the denominator
    :param variance: variance of the data
    :param dark_variance: variance of the dark
    :param poissonian: if True, the variance is the signal (minimum 1) 
    NaN are always considered as invalid

    Empty pixels are 0.0 for both signal, variance and normalization
    """
    cdef:
        int size, i
        bint check_mask, do_dark, do_flat, do_solidangle, do_absorption,
        bint is_valid, do_polarization, do_variance, do_dark_variance
        floating[:, ::1] result
        floating one_num, one_flat, one_den, one_var

    size = data.shape[0]
    do_dark = dark is not None
    do_flat = flat is not None
    do_solidangle = solidangle is not None
    do_absorption = absorption is not None
    do_polarization = polarization is not None
    check_mask = mask is not None
    do_variance = variance is not None
    do_dark_variance = dark_variance is not None
    result = numpy.zeros((size, 3), dtype=data.base.dtype)

    for i in prange(size, nogil=True, schedule="static"):
        one_num = data[i]
        one_den = normalization_factor
        if poissonian:
            one_var = max(one_num, 1.0)
        elif do_variance:
            one_var = variance[i]
        else:
            one_var = 0.0

        is_valid = not isnan(one_num)
        if is_valid and check_mask:
            is_valid = (mask[i] == 0)
        if is_valid and check_dummy:
            if delta_dummy == 0:
                is_valid = (one_num != dummy)
            else:
                is_valid = fabs(one_num - dummy) > delta_dummy

        if is_valid and do_flat:
            one_flat = flat[i]
            if delta_dummy == 0:
                is_valid = (one_flat != dummy)
            else:
                is_valid = fabs(one_flat - dummy) > delta_dummy

        if is_valid:
            # Do not use "/=" as they mean reduction for cython
            if do_dark:
                one_num = one_num - dark[i]
                if do_dark_variance:
                    one_var = one_var + dark_variance[i]
            if do_flat:
                one_den = one_den * flat[i]
            if do_polarization:
                one_den = one_den * polarization[i]
            if do_solidangle:
                one_den = one_den * solidangle[i]
            if do_absorption:
                one_den = one_den * absorption[i]
            if (isnan(one_num) or isnan(one_den) or isnan(one_var) or (one_den == 0)):
                one_num = 0.0
                one_var = 0.0
                one_den = 0.0
        else:
            one_num = 0.0
            one_var = 0.0
            one_den = 0.0

        result[i, 0] += one_num
        result[i, 1] += one_var
        result[i, 2] += one_den
    return result


cdef floating[:, ::1]c4_preproc(floating[::1] data,
                                floating[::1] dark=None,
                                floating[::1] flat=None,
                                floating[::1] solidangle=None,
                                floating[::1] polarization=None,
                                floating[::1] absorption=None,
                                any_int_t[::1] mask=None,
                                floating dummy=0.0,
                                floating delta_dummy=0.0,
                                bint check_dummy=False,
                                floating normalization_factor=1.0,
                                floating[::1] variance=None,
                                floating[::1] dark_variance=None,
                                bint poissonian=False,
                                ) with gil:
    """Common preprocessing step for all routines: C-implementation
    with split_result to return (signal, variance, normalization, count)

    :param data: raw value, as a numpy array, 1D or 2D
    :param dark: array containing the value of the dark noise, to be subtracted
    :param flat: Array containing the flatfield image. It is also checked for dummies if relevant.
    :param solidangle: the value of the solid_angle. This processing may be performed during the rebinning instead. left for compatibility
    :param polarization: Correction for polarization of the incident beam
    :param absorption: Correction for absorption in the sensor volume
    :param mask: array non null  where data should be ignored
    :param dummy: value of invalid data
    :param delta_dummy: precision for invalid data
    :param normalization_factor: final value is divided by this, settles on the denominator
    :param variance: variance of the data
    :param dark_variance: variance of the dark
    :param poissonian: if True, the variance is the signal (minimum 1) 
    NaN are always considered as invalid

    Empty pixels are 0.0 for both signal, variance, normalization and count
    """
    cdef:
        int size, i
        bint check_mask, do_dark, do_flat, do_solidangle, do_absorption,
        bint is_valid, do_polarization, do_variance, do_dark_variance
        floating[:, ::1] result
        floating one_num, one_flat, one_den, one_var, one_count

    size = data.shape[0]
    do_dark = dark is not None
    do_flat = flat is not None
    do_solidangle = solidangle is not None
    do_absorption = absorption is not None
    do_polarization = polarization is not None
    check_mask = mask is not None
    do_variance = variance is not None
    do_dark_variance = dark_variance is not None
    result = numpy.zeros((size, 4), data.base.dtype)

    for i in prange(size, nogil=True, schedule="static"):
        one_num = data[i]
        one_den = normalization_factor
        if poissonian:
            one_var = max(one_num, 1.0)
        elif do_variance:
            one_var = variance[i]
        else:
            one_var = 0.0

        is_valid = not isnan(one_num)
        if is_valid and check_mask:
            is_valid = (mask[i] == 0)
        if is_valid and check_dummy:
            if delta_dummy == 0:
                is_valid = (one_num != dummy)
            else:
                is_valid = fabs(one_num - dummy) > delta_dummy

        if is_valid and do_flat:
            one_flat = flat[i]
            if delta_dummy == 0:
                is_valid = (one_flat != dummy)
            else:
                is_valid = fabs(one_flat - dummy) > delta_dummy

        if is_valid:
            # Do not use "/=" as they mean reduction for cython
            if do_dark:
                one_num = one_num - dark[i]
                if do_dark_variance:
                    one_var = one_var + dark_variance[i]
            if do_flat:
                one_den = one_den * flat[i]
            if do_polarization:
                one_den = one_den * polarization[i]
            if do_solidangle:
                one_den = one_den * solidangle[i]
            if do_absorption:
                one_den = one_den * absorption[i]
            if (isnan(one_num) or isnan(one_den) or isnan(one_var) or (one_den == 0)):
                one_num = 0.0
                one_var = 0.0
                one_den = 0.0
                one_count = 0.0
            else:
                one_count = 1.0
        else:
            one_num = 0.0
            one_var = 0.0
            one_den = 0.0
            one_count = 0.0

        result[i, 0] += one_num
        result[i, 1] += one_var
        result[i, 2] += one_den
        result[i, 3] += one_count

    return result


def _preproc(floating[::1] raw,
             tuple shape,
             bint check_dummy,
             floating dummy,
             floating delta_dummy,
             floating normalization_factor,
             floating[::1] dark=None,
             floating[::1] flat=None,
             floating[::1] solidangle=None,
             floating[::1] polarization=None,
             floating[::1] absorption=None,
             any_int_t[::1] mask=None,
             int split_result=0,
             floating[::1] variance=None,
             floating[::1] dark_variance=None,
             bint poissonian=False,
             ):
    """specialized preprocessing step for all corrections

    :param raw: raw value, as a numpy array, 1D with specialized dtype
    :param mask: array non null  where data should be ignored
    :param dummy: value of invalid data
    :param delta_dummy: precision for invalid data
    :param dark: array containing the value of the dark noise, to be subtracted
    :param flat: Array containing the flatfield image. It is also checked for dummies if relevant.
    :param solidangle: the value of the solid_angle. This processing may be performed during the rebinning instead. left for compatibility
    :param polarization: Correction for polarization of the incident beam
    :param absorption: Correction for absorption in the sensor volume
    :param normalization_factor: final value is divided by this
    :param empty: value to be given for empty bins
    :param variance: variance of the data
    :param dark_variance: variance of the dark
    :param poissonian: set to True to consider the variance is equal to raw signal (minimum 1)

    All calculation are performed in the precision of raw dtype

    NaN are always considered as invalid
    """
    cdef:
        floating[::1] res1d
        floating[:, ::1] res2d
        list out_shape

    if split_result or (variance is not None) or poissonian:
        out_shape = list(shape)
        if split_result == 4:
            out_shape += [4]
            res2d = c4_preproc(raw, dark, flat, solidangle, polarization, absorption,
                               mask, dummy, delta_dummy, check_dummy, normalization_factor,
                               variance, dark_variance, poissonian)
        elif (variance is not None) or poissonian:
            out_shape += [3]
            res2d = c3_preproc(raw, dark, flat, solidangle, polarization, absorption,
                               mask, dummy, delta_dummy, check_dummy, normalization_factor,
                               variance, dark_variance, poissonian)
        else:
            out_shape += [2]
            res2d = c2_preproc(raw, dark, flat, solidangle, polarization, absorption,
                               mask, dummy, delta_dummy, check_dummy, normalization_factor)
        res = numpy.asarray(res2d)
        res.shape = out_shape
    else:
        res1d = c1_preproc(raw, dark, flat, solidangle, polarization, absorption,
                           mask, dummy, delta_dummy, check_dummy, normalization_factor)
        res = numpy.asarray(res1d)
        res.shape = shape
    return res


def preproc(raw,
            dark=None,
            flat=None,
            solidangle=None,
            polarization=None,
            absorption=None,
            mask=None,
            dummy=None,
            delta_dummy=None,
            normalization_factor=None,
            empty=None,
            split_result=False,
            variance=None,
            dark_variance=None,
            bint poissonian=False,
            dtype=numpy.float32
            ):
    """Common preprocessing step for all

    :param raw: raw value, as a numpy array, 1D or 2D
    :param mask: array non null  where data should be ignored
    :param dummy: value of invalid data
    :param delta_dummy: precision for invalid data
    :param dark: array containing the value of the dark noise, to be subtracted
    :param flat: Array containing the flatfield image. It is also checked for dummies if relevant.
    :param solidangle: the value of the solid_angle. This processing may be performed during the rebinning instead. left for compatibility
    :param polarization: Correction for polarization of the incident beam
    :param absorption: Correction for absorption in the sensor volume
    :param normalization_factor: final value is divided by this
    :param empty: value to be given for empty bins
    :param variance: variance of the data
    :param dark_variance: variance of the dark
    :param poissonian: set to True to consider the variance is equal to raw signal (minimum 1)
    :param dtype: type for working: float32 or float64

    All calculation are performed in the `dtype` precision

    NaN are always considered as invalid

    if neither empty nor dummy is provided, empty pixels are 0
    """
    cdef:
        bint check_dummy
        tuple shape
        int size

    shape = raw.shape
    size = raw.size
    raw = numpy.ascontiguousarray(raw.ravel(), dtype=dtype)
    if dark is not None:
        assert dark.size == size, "Dark array size is correct"
        dark = numpy.ascontiguousarray(dark.ravel(), dtype=dtype)

    if flat is not None:
        assert flat.size == size, "Flat array size is correct"
        flat = numpy.ascontiguousarray(flat.ravel(), dtype=dtype)

    if polarization is not None:
        assert polarization.size == size, "Polarization array size is correct"
        polarization = numpy.ascontiguousarray(polarization.ravel(), dtype=dtype)

    if solidangle is not None:
        assert solidangle.size == size, "Solid angle array size is correct"
        solidangle = numpy.ascontiguousarray(solidangle.ravel(), dtype=dtype)

    if absorption is not None:
        assert absorption.size == size, "Absorption array size is correct"
        absorption = numpy.ascontiguousarray(absorption.ravel(), dtype=dtype)

    if variance is not None:
        assert variance.size == size, "Variance array size is correct"
        variance = numpy.ascontiguousarray(variance.ravel(), dtype=dtype)

    if dark_variance is not None:
        assert dark_variance.size == size, "Dark_variance array size is correct"
        dark_variance = numpy.ascontiguousarray(dark_variance.ravel(), dtype=dtype)

    if (dummy is None):
        check_dummy = False
        dummy = delta_dummy = dtype(empty or 0.0)

    else:
        check_dummy = True
        dummy = dtype(dummy)
        if (delta_dummy is None):
            delta_dummy = dtype(0.0)
        else:
            delta_dummy = dtype(delta_dummy)

    if normalization_factor is not None:
        normalization_factor = dtype(normalization_factor)
    else:
        normalization_factor = dtype(1.0)

    if (mask is None) or (mask is False):
        mask = None
    else:
        assert mask.size == size, "Mask array size is correct"
        mask = numpy.ascontiguousarray(mask.ravel(), dtype=numpy.int8)

    return _preproc(raw,
                    shape,
                    check_dummy,
                    dummy,
                    delta_dummy,
                    normalization_factor,
                    dark,
                    flat,
                    solidangle,
                    polarization,
                    absorption,
                    mask,
                    split_result,
                    variance,
                    dark_variance,
                    poissonian)