File: reconstruct.pyx

package info (click to toggle)
pyfai 0.20.0%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 78,460 kB
  • sloc: python: 49,743; lisp: 7,059; sh: 225; ansic: 165; makefile: 119
file content (167 lines) | stat: -rw-r--r-- 6,108 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# -*- coding: utf-8 -*-
#cython: embedsignature=True, language_level=3
#cython: boundscheck=False, wraparound=False, cdivision=True, initializedcheck=False,
## This is for developping
## cython: profile=True, warn.undeclared=True, warn.unused=True, warn.unused_result=False, warn.unused_arg=True
#
#    Project: Fast Azimuthal integration
#             https://github.com/silx-kit/pyFAI
#
#    Copyright (C) 2014-2021 European Synchrotron Radiation Facility,  France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
#  Permission is hereby granted, free of charge, to any person obtaining a copy
#  of this software and associated documentation files (the "Software"), to deal
#  in the Software without restriction, including without limitation the rights
#  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#  copies of the Software, and to permit persons to whom the Software is
#  furnished to do so, subject to the following conditions:
#  .
#  The above copyright notice and this permission notice shall be included in
#  all copies or substantial portions of the Software.
#  .
#  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
#  THE SOFTWARE.

"""Cython module to reconstruct the masked values of an image.

It's a simple inpainting module for reconstructing the missing part of an
image (masked) to be able to use more common algorithms.
"""

__author__ = "Jerome Kieffer"
__contact__ = "Jerome.kieffer@esrf.fr"
__date__ = "14/01/2021"
__status__ = "stable"
__license__ = "MIT"


import cython
import numpy
from libc.math cimport sqrt, fabs
from cython.parallel import prange
from libc.stdint cimport int8_t, uint8_t, int16_t, uint16_t, \
                         int32_t, uint32_t, int64_t, uint64_t


cdef float invert_distance(size_t i0, size_t i1, size_t p0, size_t p1) nogil:
    return 1. / sqrt(<float> ((i0 - p0) ** 2 + (i1 - p1) ** 2))


cdef inline float processPoint(float[:, ::1] data,
                               int8_t[:, ::1] mask,
                               size_t p0,
                               size_t p1,
                               size_t d0,
                               size_t d1)nogil:
    cdef:
        size_t dist = 0, i = 0
        float sum = 0.0, count = 0.0, invdst = 0.0
        bint found = 0
        size_t start0 = p0, stop0 = p0, start1 = p1, stop1 = p1
    while not found:
        dist += 1
        if start0 > 0:
            start0 = p0 - dist
        else:
            start0 = 0
        if stop0 < d0 - 1:
            stop0 = p0 + dist
        else:
            stop0 = d0 - 1
        if start1 > 0:
            start1 = p1 - dist
        else:
            start1 = 0
        if stop1 < d1 - 1:
            stop1 = p1 + dist
        else:
            stop1 = d1 - 1
        for i in range(start0, stop0 + 1):
            if mask[i, start1] == 0:
                invdst = invert_distance(i, start1, p0, p1)
                count += invdst
                sum += invdst * data[i, start1]
            if mask[i, stop1] == 0:
                invdst = invert_distance(i, stop1, p0, p1)
                count += invdst
                sum += invdst * data[i, stop1]
        for i in range(start1 + 1, stop1):
            if mask[start0, i] == 0:
                invdst = invert_distance(start0, i, p0, p1)
                count += invdst
                sum += invdst * data[start0, i]
            if mask[stop0, i] == 0:
                invdst = invert_distance(stop0, i, p0, p1)
                count += invdst
                sum += invdst * data[stop0, i]
        if count > 0:
            found = 1
    return sum / count


def reconstruct(data, 
                mask=None, 
                dummy=None, 
                delta_dummy=None):
    """
    reconstruct missing part of an image (tries to be continuous)

    :param data: the input image
    :param mask: where data should be reconstructed.
    :param dummy: value of the dummy (masked out) data
    :param delta_dummy: precision for dummy values

    :return: reconstructed image.
    """
    assert data.ndim == 2, "data.ndim == 2"
    cdef:
        ssize_t d0 = data.shape[0]
        ssize_t d1 = data.shape[1]
        ssize_t p0, p1
        float[:, ::1] cdata
        int8_t[:, ::1] cmask 
        bint is_masked, do_dummy
        float cdummy, cddummy, value
        float[:, ::1] out = numpy.zeros_like(data)
        
    cdata = numpy.ascontiguousarray(data, dtype=numpy.float32)
    if mask is not None:
        cmask = numpy.ascontiguousarray(mask, dtype=numpy.int8)
    else:
        cmask = numpy.zeros((d0, d1), dtype=numpy.int8)
    assert d0 == mask.shape[0], "mask.shape[0]"
    assert d1 == mask.shape[1], "mask.shape[1]"

    if dummy is not None:
        do_dummy = True
        cdummy = <float> dummy
        if delta_dummy is None:
            cddummy = 0.0
        else:
            cddummy = <float> delta_dummy

    #  Nota: this has to go in 2 passes, one to mark, one to reconstruct  
    for p0 in prange(d0, nogil=True, schedule="guided"):
        for p1 in range(d1):
            is_masked = cmask[p0, p1]
            if not is_masked and do_dummy:
                value = cdata[p0, p1]
                if cddummy == 0.0:
                    cmask[p0, p1] += (value == cdummy)
                elif (fabs(value - cdummy) <= cddummy):
                    cmask[p0, p1] += 1
    # Reconstruction phase         
    for p0 in prange(d0, nogil=True, schedule="guided"):
        for p1 in range(d1):
            if cmask[p0, p1]:
                out[p0, p1] += processPoint(cdata, cmask, p0, p1, d0, d1)
            else:
                out[p0, p1] += cdata[p0, p1]
    return numpy.asarray(out)