File: regrid_common.pxi

package info (click to toggle)
pyfai 0.20.0%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 78,460 kB
  • sloc: python: 49,743; lisp: 7,059; sh: 225; ansic: 165; makefile: 119
file content (269 lines) | stat: -rw-r--r-- 9,267 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# coding: utf-8
#
#    Project: Azimuthal integration
#             https://github.com/silx-kit/pyFAI
#
#    Copyright (C) 2015-2018 European Synchrotron Radiation Facility, Grenoble, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.

"""Common cdef constants and functions for preprocessing

Some are defined in the associated header file .pxd 
"""

__author__ = "Jerome Kieffer"
__contact__ = "Jerome.kieffer@esrf.fr"
__date__ = "14/01/2021"
__status__ = "stable"
__license__ = "MIT"


# Imports at the Python level 
import cython
import numpy
import sys

# Work around for issue similar to : https://github.com/pandas-dev/pandas/issues/16358

_numpy_1_12_py2_bug = ((sys.version_info.major == 2) and 
                       ([1, 12] >= [int(i) for i in numpy.version.version.split(".", 2)[:2]]))

# Imports at the C level
from .isnan cimport isnan
from cython cimport floating
from libc.math cimport fabs, M_PI, sqrt

from .shared_types cimport int8_t, uint8_t, int16_t, uint16_t, \
                           int32_t, uint32_t, int64_t, uint64_t,\
                           float32_t, float64_t

# How position are stored
ctypedef float64_t position_t
position_d = numpy.float64

# How weights or data are stored 
ctypedef float32_t data_t
data_d = numpy.float32

# how data are accumulated 
ctypedef float64_t acc_t
acc_d = numpy.float64

# type of the mask:
ctypedef int8_t mask_t
mask_d = numpy.int8

# type of the indexes:
ctypedef int32_t index_t
index_d = numpy.int32

cdef struct lut_t:
    index_t idx
    data_t coef

LUT_ITEMSIZE = int(sizeof(lut_t))

# Work around for issue similar to : https://github.com/pandas-dev/pandas/issues/16358
if _numpy_1_12_py2_bug:
    lut_d = numpy.dtype([(b"idx", index_d), (b"coef", data_d)])
else:
    lut_d = numpy.dtype([("idx", index_d), ("coef", numpy.float32)])

# Type used for propagating variance
if _numpy_1_12_py2_bug:
    prop_d = numpy.dtype([(b'signal', acc_d),
                          (b'variance', acc_d),
                          (b'norm', acc_d),
                          (b'count', acc_d)])
else: 
    prop_d = numpy.dtype([('signal', acc_d),
                          ('variance', acc_d),
                          ('norm', acc_d),
                         ('count', acc_d)])

ctypedef fused any_int_t:
    uint8_t
    uint16_t
    uint32_t
    uint64_t
    int8_t
    int16_t
    int32_t
    int64_t


cdef:
    struct preproc_t:
        data_t signal
        data_t variance
        data_t norm
        data_t count
 
    float pi = <float> M_PI
    float piover2 = <float> (pi * 0.5)
    float onef = <float> 1.0
    float zerof = <float> 1.0
    double EPS32 = (1.0 + numpy.finfo(numpy.float32).eps)


from collections import namedtuple
from ..containers import Integrate1dtpl, Integrate2dtpl


@cython.cdivision(True)
cdef floating  get_bin_number(floating x0, floating pos0_min, floating delta) nogil:
    """
    calculate the bin number for any point (as floating)

    :param x0: current position
    :param pos0_min: position minimum
    :param delta: bin width
    :return: bin number as floating point.
    """
    return (x0 - pos0_min) / delta


@cython.cdivision(True)
cdef inline floating calc_upper_bound(floating maximum_value) nogil:
    """Calculate the upper_bound for an histogram, 
    given the maximum value of all the data.
    
    :param maximum_value: maximum value over all elements
    :return: the smallest 32 bit float greater than the maximum
    """
    return maximum_value * EPS32 if maximum_value > 0 else maximum_value / EPS32  


cdef inline bint preproc_value_inplace(preproc_t* result,
                                       floating data,
                                       floating variance=0.0,
                                       floating dark=0.0,
                                       floating flat=1.0,
                                       floating solidangle=1.0,
                                       floating polarization=1.0,
                                       floating absorption=1.0,
                                       mask_t mask=0,
                                       floating dummy=0.0,
                                       floating delta_dummy=0.0,
                                       bint check_dummy=False,
                                       floating normalization_factor=1.0,
                                       floating dark_variance=0.0) nogil:
    """This is a Function in the C-space that performs the preprocessing
    for one data point 
    
    
    :param result: the container for the result, i.e. output which contains (signal, variance, normalisation, count)
    :param data and variance: the raw value and the associated variance
    :param dark and dark_variance: the dark-noise and the associated variance to be subtracted (signal) or added (variance)  
    :param flat, solidangle, polarization, absorption, normalization_factor: all normalization to be multiplied togeather
    :param dummy, delta_dummy, mask,check_dummy: controls the masking of the pixel 
    :return: isvalid, i.e. True if the pixel is worth further processing 

    where the result is calculated this way:
    * signal = data-dark
    * variance = variance + dark_variance 
    * norm = prod(all normalization)
    
    unless data are invalid (mask, nan, ...) where the result is all null.
    """
    cdef:
        floating signal, norm, count
        bint is_valid

    is_valid = (not isnan(data)) and (mask == 0) 
    if is_valid and check_dummy:
        if delta_dummy == 0.0:
            is_valid = (data != dummy)
        else:
            is_valid = fabs(data - dummy) > delta_dummy

    if is_valid:
        if delta_dummy == 0.0:
            is_valid = (flat != dummy)
        else:
            is_valid = fabs(flat - dummy) > delta_dummy

    if is_valid:
        # Do not use "/=" as they mean reduction for cython
        if dark:
            signal = data - dark
            if dark_variance:
                variance = variance + dark_variance
        else:
            signal = data
        norm = normalization_factor * flat * polarization * solidangle * absorption
        
        if (isnan(signal) or isnan(norm) or isnan(variance) or (norm == 0)):
            signal = 0.0
            variance = 0.0
            norm = 0.0
            count = 0.0
            is_valid = False
        else:
            count = 1.0
    else:
        signal = 0.0
        variance = 0.0
        norm = 0.0
        count = 0.0
    result.signal = signal
    result.variance = variance
    result.norm = norm
    result.count = count
    return is_valid


@cython.boundscheck(False)
cdef inline void update_1d_accumulator(acc_t[:, ::1] out_data,
                                       int bin,
                                       preproc_t value,
                                       double weight=1.0) nogil:
    """Update a 1D array at given position with the proper values 
    
    :param out_data: output 1D+(,4) accumulator
    :param bin: in which bin assign this data
    :param value: 4-uplet with (signal, variance, nomalisation, count)
    :param weight: weight associated with this value 
    :return: Nothing
    """
    out_data[bin, 0] += value.signal * weight
    out_data[bin, 1] += value.variance * weight * weight  # Important for variance propagation
    out_data[bin, 2] += value.norm * weight
    out_data[bin, 3] += value.count * weight


@cython.boundscheck(False)
cdef inline void update_2d_accumulator(acc_t[:, :, ::1] out_data,
                                       int bin0,
                                       int bin1,
                                       preproc_t value,
                                       double weight=1.0) nogil:
    """Update a 2D array at given position with the proper values 
    
    :param out_data: 2D+1 accumulator
    :param bin0, bin1: where to assign data 
    :return: Nothing
    """
    out_data[bin0, bin1, 0] += value.signal * weight
    out_data[bin0, bin1, 1] += value.variance * weight * weight  # Important for variance propagation
    out_data[bin0, bin1, 2] += value.norm * weight
    out_data[bin0, bin1, 3] += value.count * weight