1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Project: Fast Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2018-2021 European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# .
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# .
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
__author__ = "Valentin Valls"
__license__ = "MIT"
__date__ = "14/01/2021"
__copyright__ = "2018-2021, ESRF"
# include "numpy_common.pxi"
# cimport numpy as cnumpy
import numpy
from .shared_types cimport int32_t, float32_t
from libcpp.vector cimport vector
from libcpp.list cimport list as clist
from libcpp cimport bool
from libc.math cimport fabs
cimport libc.stdlib
cimport libc.string
from cython.operator cimport dereference
from cython.operator cimport preincrement
cimport cython
from .sparse_utils import lut_d
cdef packed struct pixel_t:
int32_t index
float32_t coef
cdef struct chained_pixel_t:
pixel_t data
chained_pixel_t *next
cdef struct compact_bin_t:
int size
chained_pixel_t *front_ptr
chained_pixel_t *back_ptr
cdef packed struct packed_data_t:
int bin_id
pixel_t data
cdef cppclass Heap:
clist[int32_t *] _indexes
clist[float32_t *] _coefs
clist[chained_pixel_t *] _pixels
clist[packed_data_t *] _packed_data
int32_t *_current_index_block
float32_t *_current_coef_block
chained_pixel_t *_current_pixel_block
packed_data_t *_current_packed_block
int _index_pos
int _coef_pos
int _pixel_pos
int _packed_pos
int _block_size
Heap(int block_size) nogil:
this._block_size = block_size
this._index_pos = 0
this._coef_pos = 0
this._packed_pos = 0
this._current_index_block = NULL
this._current_coef_block = NULL
this._current_pixel_block = NULL
this._current_packed_block = NULL
__dealloc__() nogil:
cdef:
clist[int32_t *].iterator it_indexes
clist[float32_t *].iterator it_coefs
clist[chained_pixel_t *].iterator it_pixels
clist[packed_data_t *].iterator it_packed
int32_t *indexes
float32_t *coefs
chained_pixel_t *pixels
packed_data_t *packed
it_indexes = this._indexes.begin()
while it_indexes != this._indexes.end():
indexes = dereference(it_indexes)
libc.stdlib.free(indexes)
preincrement(it_indexes)
it_coefs = this._coefs.begin()
while it_coefs != this._coefs.end():
coefs = dereference(it_coefs)
libc.stdlib.free(coefs)
preincrement(it_coefs)
it_pixels = this._pixels.begin()
while it_pixels != this._pixels.end():
pixels = dereference(it_pixels)
libc.stdlib.free(pixels)
preincrement(it_pixels)
it_packed = this._packed_data.begin()
while it_packed != this._packed_data.end():
packed = dereference(it_packed)
libc.stdlib.free(packed)
preincrement(it_packed)
int32_t * alloc_indexes(int size) nogil:
cdef:
int32_t *data
if this._current_index_block == NULL or this._index_pos + size > this._block_size:
data = <int32_t *>libc.stdlib.malloc(this._block_size * sizeof(int32_t))
this._current_index_block = data
this._indexes.push_back(data)
this._index_pos = 0
data = this._current_index_block + this._index_pos
this._index_pos += size
return data
float32_t * alloc_coefs(int size) nogil:
cdef:
float32_t *data
if this._current_coef_block == NULL or this._coef_pos + size > this._block_size:
data = <float32_t *>libc.stdlib.malloc(this._block_size * sizeof(float32_t))
this._current_coef_block = data
this._coefs.push_back(data)
this._coef_pos = 0
data = this._current_coef_block + this._coef_pos
this._coef_pos += size
return data
chained_pixel_t* alloc_pixel() nogil:
cdef:
chained_pixel_t *data
# int foo
if this._current_pixel_block == NULL or this._pixel_pos + 1 > this._block_size:
data = <chained_pixel_t *>libc.stdlib.malloc(this._block_size * sizeof(chained_pixel_t))
this._current_pixel_block = data
this._pixels.push_back(data)
this._pixel_pos = 0
data = this._current_pixel_block + this._pixel_pos
this._pixel_pos += 1
return data
packed_data_t* alloc_packed_data() nogil:
cdef:
packed_data_t *data
# int foo
if this._current_packed_block == NULL or this._packed_pos + 1 > this._block_size:
data = <packed_data_t *>libc.stdlib.malloc(this._block_size * sizeof(packed_data_t))
this._current_packed_block = data
this._packed_data.push_back(data)
this._packed_pos = 0
data = this._current_packed_block + this._packed_pos
this._packed_pos += 1
return data
cdef cppclass PixelElementaryBlock:
int32_t *_indexes
float32_t *_coefs
int _size
int _max_size
bool _allocated
PixelElementaryBlock(int size, Heap *heap) nogil:
if heap == NULL:
this._indexes = <int32_t *>libc.stdlib.malloc(size * sizeof(int32_t))
this._coefs = <float32_t *>libc.stdlib.malloc(size * sizeof(float32_t))
this._allocated = True
else:
this._indexes = heap.alloc_indexes(size)
this._coefs = heap.alloc_coefs(size)
this._allocated = False
this._size = 0
this._max_size = size
__dealloc__() nogil:
if this._allocated:
libc.stdlib.free(this._indexes)
libc.stdlib.free(this._coefs)
void push(pixel_t &pixel) nogil:
this._indexes[this._size] = pixel.index
this._coefs[this._size] = pixel.coef
this._size += 1
int size() nogil:
return this._size
bool is_full() nogil:
return this._size >= this._max_size
bool has_space(int size) nogil:
return this._size + size <= this._max_size
cdef cppclass PixelBlock:
clist[PixelElementaryBlock*] _blocks
int _block_size
Heap *_heap
PixelElementaryBlock* _current_block
PixelBlock(int block_size, Heap *heap) nogil:
this._block_size = block_size
this._heap = heap
this._current_block = NULL
__dealloc__() nogil:
cdef:
PixelElementaryBlock* element
# int i = 0
clist[PixelElementaryBlock*].iterator it
it = this._blocks.begin()
while it != this._blocks.end():
element = dereference(it)
del element
preincrement(it)
this._blocks.clear()
void push(pixel_t &pixel) nogil:
cdef:
PixelElementaryBlock *block
if this._current_block == NULL or this._current_block.is_full():
block = new PixelElementaryBlock(this._block_size, this._heap)
this._blocks.push_back(block)
this._current_block = block
block = this._current_block
block.push(pixel)
int size() nogil:
cdef:
int size = 0
clist[PixelElementaryBlock*].iterator it
it = this._blocks.begin()
while it != this._blocks.end():
size += dereference(it).size()
preincrement(it)
return size
void copy_indexes_to(int32_t *dest) nogil:
cdef:
clist[PixelElementaryBlock*].iterator it
PixelElementaryBlock* block
it = this._blocks.begin()
while it != this._blocks.end():
block = dereference(it)
if block.size() != 0:
libc.string.memcpy(dest, block._indexes, block.size() * sizeof(int32_t))
dest += block.size()
preincrement(it)
void copy_coefs_to(float32_t *dest) nogil:
cdef:
clist[PixelElementaryBlock*].iterator it
PixelElementaryBlock* block
it = this._blocks.begin()
while it != this._blocks.end():
block = dereference(it)
if block.size() != 0:
libc.string.memcpy(dest, block._coefs, block.size() * sizeof(float32_t))
dest += block.size()
preincrement(it)
void copy_data_to(pixel_t *dest) nogil:
cdef:
clist[PixelElementaryBlock*].iterator it
PixelElementaryBlock* block
int i
it = this._blocks.begin()
while it != this._blocks.end():
block = dereference(it)
for i in range(block.size()):
dest.index = block._indexes[i]
dest.coef = block._coefs[i]
dest += 1
preincrement(it)
cdef cppclass PixelBin:
clist[pixel_t] _pixels
PixelBlock *_pixels_in_block
PixelBin(int block_size, Heap *heap) nogil:
if block_size > 0:
this._pixels_in_block = new PixelBlock(block_size, heap)
else:
this._pixels_in_block = NULL
__dealloc__() nogil:
if this._pixels_in_block != NULL:
del this._pixels_in_block
this._pixels_in_block = NULL
else:
this._pixels.clear()
void push(pixel_t &pixel) nogil:
if this._pixels_in_block != NULL:
this._pixels_in_block.push(pixel)
else:
this._pixels.push_back(pixel)
int size() nogil:
if this._pixels_in_block != NULL:
return this._pixels_in_block.size()
else:
return this._pixels.size()
void copy_indexes_to(int32_t *dest) nogil:
cdef:
clist[pixel_t].iterator it_points
if this._pixels_in_block != NULL:
this._pixels_in_block.copy_indexes_to(dest)
it_points = this._pixels.begin()
while it_points != this._pixels.end():
dest[0] = dereference(it_points).index
preincrement(it_points)
dest += 1
void copy_coefs_to(float32_t *dest) nogil:
cdef:
clist[pixel_t].iterator it_points
if this._pixels_in_block != NULL:
this._pixels_in_block.copy_coefs_to(dest)
it_points = this._pixels.begin()
while it_points != this._pixels.end():
dest[0] = dereference(it_points).coef
preincrement(it_points)
dest += 1
void copy_data_to(pixel_t *dest) nogil:
cdef:
clist[pixel_t].iterator it_points
if this._pixels_in_block != NULL:
this._pixels_in_block.copy_data_to(dest)
it_points = this._pixels.begin()
while it_points != this._pixels.end():
dest[0] = dereference(it_points)
preincrement(it_points)
dest += 1
cdef struct sparse_builder_internal_t:
PixelBin **_bins
compact_bin_t *_compact_bins
Heap *_heap
cdef inline sparse_builder_internal_t *get_internal_data(sparse_builder_private_t* data) nogil:
return <sparse_builder_internal_t*> data
cdef class SparseBuilder(object):
"""
This class provade an API to build a sparse matrix from bin data
It provides different internal structure to be able to use it in different
context. It can boost a fast insert, or speed up fast convertion to CSR
format.
:param: int nbin: Number of bin to store
:param str mode: Internal structure used to store the data:
- "pack": Alloc a `heap_size` and feed it with tuple (bin, indice, value).
The insert is very fast, conversion to CSR is done using sequencial
read and a random write.
- "heaplist": Alloc a `heap_size` and feed it with a linked list per bins
containing (indice, value, next).
The insert is very fast, conversion to CSR is done using random read
and a sequencial write.
- "block": Alloc `block_size` per bins and feed it with values and indices.
The conversion to CSR is done sequencially using block copy.
The `heap_size` should be a multiple of the `block_size`. If the
`heap_size` is zero, block are allocated one by one without management.
- "stdlist": Use standard C++ list. It is head as reference for testing.
:param Union[None|int] block_size: Number of element in a block if used. If more
space is needed another block are allocated on the fly.
:param Union[None|int] heap_size: Number of element in the global memory
managment. This system allocation a single time memory for many needs.
It reduce the overhead of memory allocation. If set to `None` or `0`,
this management is disabled.
"""
def __init__(self, nbin, mode="block", block_size=512, heap_size=0):
modes = ["pack", "heaplist", "block", "stdlist"]
if mode not in modes:
raise ValueError("Mode %s unsupported. Supported modes are: %s" % (mode, ", ".join(modes)))
self._use_linked_list = False
self._use_blocks = False
self._use_heap_linked_list = False
self._use_packed_list = False
if mode == "block":
self._use_blocks = True
if heap_size != 0:
if heap_size < block_size:
raise ValueError("Heap size is supposed to be bigger than block size")
elif mode == "heaplist":
self._use_heap_linked_list = True
if heap_size in [0, None]:
raise ValueError("A heap size is expected for this mode")
elif mode == "stdlist":
self._use_linked_list = True
block_size = 0
heap_size = 0
elif mode == "pack":
self._use_packed_list = True
if heap_size in [0, None]:
raise ValueError("A heap size is expected for this mode")
else:
assert(False)
self._block_size = block_size
self._nbin = nbin
if heap_size not in [None, 0]:
get_internal_data(&self._data)._heap = new Heap(heap_size)
else:
get_internal_data(&self._data)._heap = NULL
if self._use_blocks or self._use_linked_list:
get_internal_data(&self._data)._bins = <PixelBin **>libc.stdlib.malloc(self._nbin * sizeof(PixelBin *))
libc.string.memset(get_internal_data(&self._data)._bins, 0, self._nbin * sizeof(PixelBin *))
elif self._use_heap_linked_list:
get_internal_data(&self._data)._compact_bins = <compact_bin_t *>libc.stdlib.malloc(self._nbin * sizeof(compact_bin_t))
libc.string.memset(get_internal_data(&self._data)._compact_bins, 0, self._nbin * sizeof(compact_bin_t))
elif self._use_packed_list:
self._sizes = <int *>libc.stdlib.malloc(self._nbin * sizeof(int))
libc.string.memset(self._sizes, 0, self._nbin * sizeof(int))
self._mode = mode
def __dealloc__(self):
"""Release memory."""
cdef:
PixelBin *pixel_bin
# clist[PixelElementaryBlock*].iterator it_points
# PixelElementaryBlock* heap
int i
if self._use_blocks:
for i in range(self._nbin):
pixel_bin = get_internal_data(&self._data)._bins[i]
if pixel_bin != NULL:
del pixel_bin
libc.stdlib.free(get_internal_data(&self._data)._bins)
elif self._use_heap_linked_list:
libc.stdlib.free(get_internal_data(&self._data)._compact_bins)
elif self._use_packed_list:
libc.stdlib.free(self._sizes)
if get_internal_data(&self._data)._heap != NULL:
del get_internal_data(&self._data)._heap
def mode(self):
"""Returns the storage mode used by the builder.
:rtype: str
"""
return self._mode
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
cdef void *_create_bin(self) nogil:
"""Create a bin object used to statore data for some formats.
:rtype: PixelBin
"""
return new PixelBin(self._block_size, get_internal_data(&self._data)._heap)
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
cdef void cinsert(self, int bin_id, int index, float32_t coef) nogil:
"""Insert an indice and a value in a specific bin.
This function to not have any overhead like `insert`. There is no check
on arguments nor managing of Python exceptions.
:param int bin_id: Index of the bin
:param int index: Indice of the data to store
:param int coef: Value of the data to store
"""
cdef:
pixel_t pixel
PixelBin *pixel_bin
chained_pixel_t* chained_pixel
packed_data_t* packed_data
if bin_id < 0 or bin_id >= self._nbin:
return
pixel.index = index
pixel.coef = coef
if self._use_heap_linked_list:
chained_pixel = get_internal_data(&self._data)._heap.alloc_pixel()
chained_pixel.data = pixel
if get_internal_data(&self._data)._compact_bins[bin_id].front_ptr == NULL:
get_internal_data(&self._data)._compact_bins[bin_id].front_ptr = chained_pixel
else:
get_internal_data(&self._data)._compact_bins[bin_id].back_ptr.next = chained_pixel
get_internal_data(&self._data)._compact_bins[bin_id].back_ptr = chained_pixel
get_internal_data(&self._data)._compact_bins[bin_id].size += 1
elif self._use_packed_list:
packed_data = get_internal_data(&self._data)._heap.alloc_packed_data()
packed_data.bin_id = bin_id
packed_data.data = pixel
self._sizes[bin_id] += 1
else:
pixel_bin = get_internal_data(&self._data)._bins[bin_id]
if pixel_bin == NULL:
pixel_bin = <PixelBin*> self._create_bin()
get_internal_data(&self._data)._bins[bin_id] = pixel_bin
get_internal_data(&self._data)._bins[bin_id].push(pixel)
def insert(self, bin_id, index, coef):
"""Insert an indice and a value in a specific bin.
:param int bin_id: Index of the bin
:param int index: Indice of the data to store
:param int coef: Value of the data to store
"""
if bin_id < 0 or bin_id >= self._nbin:
raise ValueError("bin_id out of range")
self.cinsert(bin_id, index, coef)
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
def get_bin_coefs(self, bin_id):
"""Returns the values stored in a specific bin.
:param int bin_id: Index of the bin
:rtype: numpy.array
"""
cdef:
int size
float32_t[:] coefs
float32_t *coefs_ptr
if bin_id < 0 or bin_id >= self._nbin:
raise ValueError("bin_id out of range")
if self._use_packed_list:
raise NotImplementedError("Not implemented for this mode (not efficient)")
size = self.cget_bin_size(bin_id)
coefs = numpy.empty(size, dtype=numpy.float32)
coefs_ptr = &coefs[0]
self._copy_bin_coefs_to(bin_id, coefs_ptr)
return numpy.asarray(coefs)
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
def get_bin_indexes(self, bin_id):
"""Returns the indices stored in a specific bin.
:param int bin_id: Index of the bin
:rtype: numpy.array
"""
cdef:
int size
int32_t[:] indexes
int32_t *indexes_ptr
if bin_id < 0 or bin_id >= self._nbin:
raise ValueError("bin_id out of range")
if self._use_packed_list:
raise NotImplementedError("Not implemented for this mode (not efficient)")
size = self.cget_bin_size(bin_id)
indexes = numpy.empty(size, dtype=numpy.int32)
indexes_ptr = &indexes[0]
self._copy_bin_indexes_to(bin_id, indexes_ptr)
return numpy.asarray(indexes)
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
cdef int cget_bin_size(self, int bin_id) nogil:
"""Returns the size of a specific bin.
:param int bin_id: Index of the bin
:rtype: int
"""
cdef:
PixelBin *pixel_bin
if self._use_heap_linked_list:
return get_internal_data(&self._data)._compact_bins[bin_id].size
elif self._use_packed_list:
return self._sizes[bin_id]
pixel_bin = get_internal_data(&self._data)._bins[bin_id]
if pixel_bin == NULL:
return 0
return pixel_bin.size()
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
def get_bin_size(self, bin_id):
"""Returns the size of a specific bin.
:param int bin_id: Number of the bin requested
:rtype: int
"""
if bin_id < 0 or bin_id >= self._nbin:
raise ValueError("bin_id out of range")
return self.cget_bin_size(bin_id)
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
def get_bin_sizes(self):
"""Returns the size of all the bins.
:rtype: numpy.ndarray(dtype=int)
"""
cdef:
PixelBin *pixel_bin
int bin_id
int32_t[:] sizes
sizes = numpy.empty(self._nbin, dtype=numpy.int32)
if self._use_heap_linked_list:
for bin_id in range(self._nbin):
sizes[bin_id] = get_internal_data(&self._data)._compact_bins[bin_id].size
elif self._use_packed_list:
# FIXME: Can be done with a memcopy
for bin_id in range(self._nbin):
sizes[bin_id] = self._sizes[bin_id]
else:
for bin_id in range(self._nbin):
pixel_bin = get_internal_data(&self._data)._bins[bin_id]
if pixel_bin != NULL:
sizes[bin_id] = pixel_bin.size()
else:
sizes[bin_id] = 0
return numpy.asarray(sizes)
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
def size(self):
"""Returns the number of elements contained in the structure.
:rtype: int
"""
cdef:
PixelBin *pixel_bin
int size
int bin_id
size = 0
if self._use_heap_linked_list:
for bin_id in range(self._nbin):
size += get_internal_data(&self._data)._compact_bins[bin_id].size
elif self._use_packed_list:
for bin_id in range(self._nbin):
size += self._sizes[bin_id]
else:
for bin_id in range(self._nbin):
pixel_bin = get_internal_data(&self._data)._bins[bin_id]
if pixel_bin != NULL:
size += pixel_bin.size()
return size
cdef void _copy_bin_indexes_to(self, int bin_id, int32_t *dest) nogil:
cdef:
PixelBin *pixel_bin
compact_bin_t *compact_bin
chained_pixel_t *chained_pixel
if self._use_heap_linked_list:
compact_bin = &get_internal_data(&self._data)._compact_bins[bin_id]
chained_pixel = compact_bin.front_ptr
while chained_pixel != NULL:
dest[0] = chained_pixel.data.index
dest += 1
if chained_pixel == compact_bin.back_ptr:
# The next ptr of the last element is not initialized
break
chained_pixel = chained_pixel.next
elif self._use_packed_list:
# unsupported
return
else:
pixel_bin = get_internal_data(&self._data)._bins[bin_id]
if pixel_bin != NULL:
pixel_bin.copy_indexes_to(dest)
cdef void _copy_bin_coefs_to(self, int bin_id, float32_t *dest) nogil:
cdef:
PixelBin *pixel_bin
compact_bin_t *compact_bin
chained_pixel_t *chained_pixel
if self._use_heap_linked_list:
compact_bin = &get_internal_data(&self._data)._compact_bins[bin_id]
chained_pixel = compact_bin.front_ptr
while chained_pixel != NULL:
dest[0] = chained_pixel.data.coef
dest += 1
if chained_pixel == compact_bin.back_ptr:
# The next ptr of the last element is not initialized
break
chained_pixel = chained_pixel.next
elif self._use_packed_list:
# unsupported
return
else:
pixel_bin = get_internal_data(&self._data)._bins[bin_id]
if pixel_bin != NULL:
pixel_bin.copy_coefs_to(dest)
cdef void _copy_bin_data_to(self, int bin_id, pixel_t *dest) nogil:
cdef:
PixelBin *pixel_bin
compact_bin_t *compact_bin
chained_pixel_t *chained_pixel
if self._use_heap_linked_list:
compact_bin = &get_internal_data(&self._data)._compact_bins[bin_id]
chained_pixel = compact_bin.front_ptr
while chained_pixel != NULL:
dest[0] = chained_pixel.data
dest += 1
if chained_pixel == compact_bin.back_ptr:
# The next ptr of the last element is not initialized
break
chained_pixel = chained_pixel.next
elif self._use_packed_list:
# unsupported
return
else:
pixel_bin = get_internal_data(&self._data)._bins[bin_id]
if pixel_bin != NULL:
pixel_bin.copy_data_to(dest)
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
def _to_csr_from_packed(self):
cdef:
int32_t[:] nbins
int32_t[:] current_bin_pos
int32_t[:] indexes
int32_t *indexes_ptr
float32_t[:] coefs
float32_t *coefs_ptr
int size
# int begin, end
int bin_id
int bin_size
int pos
packed_data_t *packed_block
packed_data_t *packed_data
# indexes of the first and the last+1 elements of each bins
size = 0
nbins = numpy.empty(self._nbin + 1, dtype=numpy.int32)
current_bin_pos = numpy.empty(self._nbin + 1, dtype=numpy.int32)
nbins[0] = size
current_bin_pos[0] = size
for bin_id in range(self._nbin):
bin_size = self._sizes[bin_id]
size += bin_size
nbins[bin_id + 1] = size
current_bin_pos[bin_id + 1] = size
indexes = numpy.empty(size, dtype=numpy.int32)
coefs = numpy.empty(size, dtype=numpy.float32)
indexes_ptr = &indexes[0]
coefs_ptr = &coefs[0]
it_packed = get_internal_data(&self._data)._heap._packed_data.begin()
while it_packed != get_internal_data(&self._data)._heap._packed_data.end():
packed_block = dereference(it_packed)
for i in range(get_internal_data(&self._data)._heap._block_size):
if get_internal_data(&self._data)._heap._current_packed_block == packed_block:
if i >= get_internal_data(&self._data)._heap._packed_pos:
break
packed_data = &packed_block[i]
bin_id = packed_data.bin_id
pos = current_bin_pos[bin_id]
indexes_ptr[pos] = packed_data.data.index
coefs_ptr[pos] = packed_data.data.coef
current_bin_pos[bin_id] += 1
preincrement(it_packed)
return numpy.asarray(coefs), numpy.asarray(indexes), numpy.asarray(nbins)
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
def to_csr(self):
"""
Returns a CSR representation from the stored data.
- The first array contains all floating values. Sorted by bin number.
- The second array contains all indices. Sorted by bin number.
- Lookup table from the bin index to the first index in the 2 first
arrays. `array[10 + 0]` contains the index of the first element of the
bin 10. `array[10 + 1]` - 1 is the last elements. This array always
starts with `0` and contains one more element than the number of
bins.
:rtype: Tuple(numpy.ndarray, numpy.ndarray, numpy.ndarray)
:returns: A tuple containing values, indices and bin indexes
"""
cdef:
int32_t[:] indexes
float32_t[:] coefs
float32_t *coefs_ptr
int32_t[:] nbins
int32_t *indexes_ptr
int size
int begin, end
int bin_id
int bin_size
if self._use_packed_list:
return self._to_csr_from_packed()
# indexes of the first and the last+1 elements of each bins
size = 0
nbins = numpy.empty(self._nbin + 1, dtype=numpy.int32)
nbins[0] = size
for bin_id in range(self._nbin):
bin_size = self.cget_bin_size(bin_id)
size += bin_size
nbins[bin_id + 1] = size
indexes = numpy.empty(size, dtype=numpy.int32)
coefs = numpy.empty(size, dtype=numpy.float32)
indexes_ptr = &indexes[0]
coefs_ptr = &coefs[0]
for bin_id in range(self._nbin):
begin = nbins[bin_id]
end = nbins[bin_id + 1]
if begin == end:
continue
self._copy_bin_indexes_to(bin_id, indexes_ptr)
self._copy_bin_coefs_to(bin_id, coefs_ptr)
indexes_ptr += end - begin
coefs_ptr += end - begin
return numpy.asarray(coefs), numpy.asarray(indexes), numpy.asarray(nbins)
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
def _to_lut_from_packed(self):
cdef:
# int32_t[:] current_bin_pos
# int32_t[:] indexes
# int32_t *indexes_ptr
# float32_t[:] coefs
# float32_t *coefs_ptr
pixel_t[:, :] lut
int size
int max_size
# int begin, end
int bin_id
# int bin_size
int pos
packed_data_t *packed_block
packed_data_t *packed_data
# Reach the biggest bin size
max_size = 0
for bin_id in range(self._nbin):
size = self.cget_bin_size(bin_id)
if size > max_size:
max_size = size
# Alloc a very big array
lut = numpy.zeros((self._nbin, max_size), dtype=lut_d)
# Feed the array
current_bin_pos = numpy.zeros(self._nbin, dtype=numpy.int32)
it_packed = get_internal_data(&self._data)._heap._packed_data.begin()
while it_packed != get_internal_data(&self._data)._heap._packed_data.end():
packed_block = dereference(it_packed)
for i in range(get_internal_data(&self._data)._heap._block_size):
if get_internal_data(&self._data)._heap._current_packed_block == packed_block:
if i >= get_internal_data(&self._data)._heap._packed_pos:
break
packed_data = &packed_block[i]
bin_id = packed_data.bin_id
pos = current_bin_pos[bin_id]
lut[bin_id, pos] = packed_data.data
current_bin_pos[bin_id] += 1
preincrement(it_packed)
return numpy.asarray(lut, dtype=lut_d)
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.cdivision(True)
def to_lut(self):
"""
Returns a LUT representation from the stored data.
- The first array contains all floating values. Sorted by bin number.
- The second array contains all indices. Sorted by bin number.
- Lookup table from the bin index to the first index in the 2 first
arrays. `array[10 + 0]` contains the index of the first element of the
bin 10. `array[10 + 1]` - 1 is the last elements. This array always
starts with `0` and contains one more element than the number of
bins.
:rtype: numpy.ndarray
:returns: A 2D array tuple containing values, indices and bin indexes
"""
cdef:
pixel_t[:, :] lut
pixel_t *data_ptr
int bin_id
# int i
int max_size
int size
# int32_t[:] indexes
# float32_t[:] coefs
# float32_t *coefs_ptr
# int32_t *indexes_ptr
if self._use_packed_list:
return self._to_lut_from_packed()
# Reach the biggest bin size
max_size = 0
for bin_id in range(self._nbin):
size = self.cget_bin_size(bin_id)
if size > max_size:
max_size = size
# Alloc a very big array
lut = numpy.zeros((self._nbin, max_size), dtype=lut_d)
# Feed the array
for bin_id in range(self._nbin):
data_ptr = &lut[bin_id, 0]
self._copy_bin_data_to(bin_id, data_ptr)
return numpy.asarray(lut, dtype=lut_d)
|