1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
# -*- coding: utf-8 -*-
#cython: embedsignature=True, language_level=3
#cython: boundscheck=False, wraparound=False, cdivision=True, initializedcheck=False,
## This is for developping:
##cython: profile=True, warn.undeclared=True, warn.unused=True, warn.unused_result=False, warn.unused_arg=True
#
# Project: Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2015-2020 European Synchrotron Radiation Facility, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""Common Look-Up table/CSR object creation tools and conversion"""
__author__ = "Jerome Kieffer"
__contact__ = "Jerome.kieffer@esrf.fr"
__date__ = "26/06/2020"
__status__ = "stable"
__license__ = "MIT"
include "regrid_common.pxi"
include "CSR_common.pxi"
include "LUT_common.pxi"
def LUT_to_CSR(lut):
"""Conversion between sparse matrix representations
:param lut: Look-up table as 2D array of (int idx, float coef)
:return: the same matrix as CSR representation
:rtype: 3-tuple of numpy array (data, indices, indptr)
"""
cdef:
int nrow, ncol
ncol = lut.shape[1]
nrow = lut.shape[0]
cdef:
lut_t[:, ::1] lut_ = numpy.ascontiguousarray(lut, lut_d)
data_t[::1] data = numpy.zeros(nrow * ncol, data_d)
index_t[::1] indices = numpy.zeros(nrow * ncol, index_d)
index_t[::1] indptr = numpy.zeros(nrow + 1, index_d)
int i, j, nelt
lut_t point
with nogil:
nelt = 0
for i in range(nrow):
indptr[i] = nelt
for j in range(ncol):
point = lut_[i, j]
if point.coef <= 0.0:
continue
else:
data[nelt] = point.coef
indices[nelt] = point.idx
nelt += 1
indptr[nrow] = nelt
return numpy.asarray(data[:nelt]), numpy.asarray(indices[:nelt]), numpy.asarray(indptr)
def CSR_to_LUT(data, indices, indptr):
"""Conversion between sparse matrix representations
:param data: coef of the sparse matrix as 1D array
:param indices: index of the col position in input array as 1D array
:param indptr: index of the start of the row in the indices array
:return: the same matrix as LUT representation
:rtype: record array of (int idx, float coef)
"""
cdef:
int nrow, ncol
nrow = indptr.shape[0] - 1
ncol = (indptr[1:] - indptr[:nrow]).max()
assert nrow > 0, "nrow >0"
assert ncol > 0, "ncol >0"
cdef:
data_t[::1] data_ = numpy.ascontiguousarray(data, dtype=data_d)
index_t[::1] indices_ = numpy.ascontiguousarray(indices, dtype=index_d)
index_t[::1] indptr_ = numpy.ascontiguousarray(indptr, dtype=index_d)
lut_t[:, ::1] lut = numpy.zeros((nrow, ncol), dtype=lut_d)
lut_t point
int i, j, nelt
float coef
with nogil:
for i in range(nrow):
nelt = 0
for j in range(indptr_[i], indptr_[i + 1]):
coef = data_[j]
if coef <= 0.0:
continue
point.coef = coef
point.idx = indices_[j]
lut[i, nelt] = point
nelt += 1
return numpy.asarray(lut)
cdef class Vector:
"""Variable size vector"""
cdef:
readonly int size, allocated
data_t[::1] coef
index_t[::1] idx
def __cinit__(self, int min_size=4):
self.allocated = min_size
self.coef = numpy.empty(self.allocated, dtype=data_d)
self.idx = numpy.empty(self.allocated, dtype=index_d)
self.size = 0
def __dealloc__(self):
self.coef = self.idx = None
def __len__(self):
return self.size
def __repr__(self):
return "Vector of size %i (%i elements allocated)" % (self.size, self.allocated)
@property
def nbytes(self):
"Calculate the actual size of the object (in bytes)"
return (self.allocated + 1) * 8
def get_data(self):
return numpy.asarray(self.idx[:self.size]), numpy.asarray(self.coef[:self.size])
cdef inline void _append(self, int idx, float coef):
cdef:
int pos, new_allocated
index_t[::1] newidx
data_t[::1] newcoef
pos = self.size
self.size = pos + 1
if pos >= self.allocated - 1:
new_allocated = self.allocated * 2
newcoef = numpy.empty(new_allocated, dtype=data_d)
newcoef[:pos] = self.coef[:pos]
self.coef = newcoef
newidx = numpy.empty(new_allocated, dtype=index_d)
newidx[:pos] = self.idx[:pos]
self.idx = newidx
self.allocated = new_allocated
self.coef[pos] = coef
self.idx[pos] = idx
def append(self, idx, coef):
"Python implementation of _append in cython"
self._append(<int> idx, <float> coef)
cdef class ArrayBuilder:
cdef:
readonly int size
Vector[:] lines
def __cinit__(self, int nlines, min_size=4):
cdef int i
self.size = nlines
nullarray = numpy.array([None] * nlines)
self.lines = nullarray
for i in range(nlines):
self.lines[i] = Vector(min_size=min_size)
def __dealloc__(self):
cdef int i
for i in range(self.size):
self.lines[i] = None
self.lines = None
def __len__(self):
return self.size
def __repr__(self):
cdef int i, max_line = 0
for i in range(self.size):
max_line = max(max_line, self.lines[i].size)
return "ArrayBuilder of %i lines, the longest is %i" % (self.size, max_line)
@property
def nbytes(self):
"Calculate the actual size of the object (in bytes)"
cdef int i, sum = 0
for i in range(self.size):
sum += self.lines[i].nbytes
return sum
cdef inline void _append(self, int line, int col, float value):
cdef:
Vector vector
vector = self.lines[line]
vector._append(col, value)
def append(self, line, col, value):
'Python wrapper for _append in cython'
self._append(<int> line, <int> col, <float> value)
def as_LUT(self):
cdef:
int i, j, max_size = 0
index_t[::1] local_idx
data_t[:] local_coef
lut_t[:, :] lut
Vector vector
for i in range(len(self.lines)):
if len(self.lines[i]) > max_size:
max_size = len(self.lines[i])
lut = numpy.zeros((len(self.lines), max_size), dtype=lut_d)
for i in range(len(self.lines)):
vector = self.lines[i]
local_idx, local_coef = vector.get_data()
for j in range(len(vector)):
lut[i, j] = lut_t(local_idx[j], local_coef[j])
return numpy.asarray(lut, dtype=lut_d)
def as_CSR(self):
cdef:
int i, start, end, total_size = 0
Vector vector
index_t[:] idptr, idx, local_idx
data_t[:] coef, local_coef
idptr = numpy.zeros(len(self.lines) + 1, dtype=index_d)
for i in range(len(self.lines)):
total_size += len(self.lines[i])
idptr[i + 1] = total_size
coef = numpy.zeros(total_size, dtype=numpy.float32)
idx = numpy.zeros(total_size, dtype=numpy.int32)
for i in range(len(self.lines)):
vector = self.lines[i]
local_idx, local_coef = vector.get_data()
start = idptr[i]
end = start + len(vector)
idx[start:end] = local_idx
coef[start:end] = local_coef
return numpy.asarray(idptr), numpy.asarray(idx), numpy.asarray(coef)
|