File: splitBBox.pyx

package info (click to toggle)
pyfai 0.20.0%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 78,460 kB
  • sloc: python: 49,743; lisp: 7,059; sh: 225; ansic: 165; makefile: 119
file content (1134 lines) | stat: -rw-r--r-- 48,727 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
# -*- coding: utf-8 -*-
#cython: embedsignature=True, language_level=3
#cython: boundscheck=False, wraparound=False, cdivision=True, initializedcheck=False,
## This is for developping
##cython: profile=True, warn.undeclared=True, warn.unused=True, warn.unused_result=False, warn.unused_arg=True
#
#    Project: Fast Azimuthal integration
#             https://github.com/silx-kit/pyFAI
#
#    Copyright (C) 2012-2018 European Synchrotron Radiation Facility, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
#  Permission is hereby granted, free of charge, to any person obtaining a copy
#  of this software and associated documentation files (the "Software"), to deal
#  in the Software without restriction, including without limitation the rights
#  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#  copies of the Software, and to permit persons to whom the Software is
#  furnished to do so, subject to the following conditions:
#  .
#  The above copyright notice and this permission notice shall be included in
#  all copies or substantial portions of the Software.
#  .
#  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
#  THE SOFTWARE.

"""Calculates histograms of pos0 (tth) weighted by Intensity

Splitting is done on the pixel's bounding box similar to fit2D
"""

__author__ = "Jerome Kieffer"
__contact__ = "Jerome.kieffer@esrf.fr"
__date__ = "14/01/2021"
__status__ = "stable"
__license__ = "MIT"

include "regrid_common.pxi"
import logging
logger = logging.getLogger(__name__)


def histoBBox1d(weights,
                pos0,
                delta_pos0,
                pos1=None,
                delta_pos1=None,
                size_t bins=100,
                pos0Range=None,
                pos1Range=None,
                dummy=None,
                delta_dummy=None,
                mask=None,
                dark=None,
                flat=None,
                solidangle=None,
                polarization=None,
                empty=None,
                double normalization_factor=1.0,
                int coef_power=1):

    """
    Calculates histogram of pos0 (tth) weighted by weights

    Splitting is done on the pixel's bounding box like fit2D

    :param weights: array with intensities
    :param pos0: 1D array with pos0: tth or q_vect
    :param delta_pos0: 1D array with delta pos0: max center-corner distance
    :param pos1: 1D array with pos1: chi
    :param delta_pos1: 1D array with max pos1: max center-corner distance, unused !
    :param bins: number of output bins
    :param pos0Range: minimum and maximum  of the 2th range
    :param pos1Range: minimum and maximum  of the chi range
    :param dummy: value for bins without pixels & value of "no good" pixels
    :param delta_dummy: precision of dummy value
    :param mask: array (of int8) with masked pixels with 1 (0=not masked)
    :param dark: array (of float32) with dark noise to be subtracted (or None)
    :param flat: array (of float32) with flat-field image
    :param solidangle: array (of float32) with solid angle corrections
    :param polarization: array (of float32) with polarization corrections
    :param empty: value of output bins without any contribution when dummy is None
    :param normalization_factor: divide the result by this value
    :param coef_power: set to 2 for variance propagation, leave to 1 for mean calculation

    :return: 2theta, I, weighted histogram, unweighted histogram
    """
    cdef size_t  size = weights.size
    assert pos0.size == size, "pos0.size == size"
    assert delta_pos0.size == size, "delta_pos0.size == size"
    assert bins > 1, "at lease one bin"
    cdef:
        Py_ssize_t  idx, bin0_max, bin0_min
        data_t data, cdummy = 0.0, ddummy = 0.0
        acc_t epsilon = 1e-10,
        position_t pos0_min = 0.0, pos1_min = 0.0, pos0_max = 0.0, pos1_max = 0.0
        position_t pos0_maxin = 0.0, pos1_maxin = 0.0, min0 = 0.0, max0 = 0.0, fbin0_min = 0.0, fbin0_max = 0.0
        bint check_pos1 = False, check_mask = False, check_dummy = False
        bint do_dark = False, do_flat = False, do_polarization = False, do_solidangle = False
        double delta

        data_t[::1] cdata, cflat, cdark, cpolarization, csolidangle
        position_t[::1] cpos0, dpos0, cpos1, dpos1, cpos0_lower, cpos0_upper
        mask_t[::1] cmask
        acc_t inv_area, delta_right, delta_left

    cdata = numpy.ascontiguousarray(weights.ravel(), dtype=data_d)
    cpos0 = numpy.ascontiguousarray(pos0.ravel(), dtype=position_d)
    dpos0 = numpy.ascontiguousarray(delta_pos0.ravel(), dtype=position_d)
    cdef:
        acc_t[::1] sum_data = numpy.zeros(bins, dtype=acc_d)
        acc_t[::1] sum_count = numpy.zeros(bins, dtype=acc_d)
        data_t[::1] out_merge = numpy.zeros(bins, dtype=data_d)

    if mask is not None:
        assert mask.size == size, "mask size"
        check_mask = True
        cmask = numpy.ascontiguousarray(mask.ravel(), dtype=mask_d)

    if (dummy is not None) and (delta_dummy is not None):
        check_dummy = True
        cdummy = float(dummy)
        ddummy = float(delta_dummy)
    elif (dummy is not None):
        check_dummy = True
        cdummy = float(dummy)
        ddummy = 0.0
    else:
        check_dummy = False
        cdummy = empty or 0.0
        ddummy = 0.0
    if dark is not None:
        assert dark.size == size, "dark current array size"
        do_dark = True
        cdark = numpy.ascontiguousarray(dark.ravel(), dtype=data_d)
    if flat is not None:
        assert flat.size == size, "flat-field array size"
        do_flat = True
        cflat = numpy.ascontiguousarray(flat.ravel(), dtype=data_d)
    if polarization is not None:
        do_polarization = True
        assert polarization.size == size, "polarization array size"
        cpolarization = numpy.ascontiguousarray(polarization.ravel(), dtype=numpy.float32)
    if solidangle is not None:
        do_solidangle = True
        assert solidangle.size == size, "Solid angle array size"
        csolidangle = numpy.ascontiguousarray(solidangle.ravel(), dtype=numpy.float32)

    cpos0_lower = numpy.zeros(size, dtype=position_d)
    cpos0_upper = numpy.zeros(size, dtype=position_d)
    pos0_min = cpos0[0]
    pos0_max = cpos0[0]
    with nogil:
        for idx in range(size):
            if (check_mask) and (cmask[idx]):
                continue
            min0 = cpos0[idx] - dpos0[idx]
            max0 = cpos0[idx] + dpos0[idx]
            cpos0_upper[idx] = max0
            cpos0_lower[idx] = min0
            if max0 > pos0_max:
                pos0_max = max0
            if min0 < pos0_min:
                pos0_min = min0

    if pos0Range is not None:
        pos0_min, pos0_maxin = pos0Range
    else:
        pos0_maxin = pos0_max
    if pos0_min < 0:
        pos0_min = 0
    pos0_max = calc_upper_bound(pos0_maxin)

    if pos1Range is not None:
        assert pos1.size == size, "pos1.size == size"
        assert delta_pos1.size == size, "delta_pos1.size == size"
        check_pos1 = True
        cpos1 = numpy.ascontiguousarray(pos1.ravel(), dtype=position_d)
        dpos1 = numpy.ascontiguousarray(delta_pos1.ravel(), dtype=position_d)
        pos1_min, pos1_maxin = pos1Range
        pos1_max = calc_upper_bound(pos1_maxin)

    delta = (pos0_max - pos0_min) / (<position_t> (bins))

    with nogil:
        for idx in range(size):
            if (check_mask) and (cmask[idx]):
                continue

            data = cdata[idx]
            if check_dummy and (fabs(data - cdummy) <= ddummy):
                continue

            min0 = cpos0_lower[idx]
            max0 = cpos0_upper[idx]

            if check_pos1 and (((cpos1[idx] + dpos1[idx]) < pos1_min) or ((cpos1[idx] - dpos1[idx]) > pos1_max)):
                    continue

            fbin0_min = get_bin_number(min0, pos0_min, delta)
            fbin0_max = get_bin_number(max0, pos0_min, delta)
            if (fbin0_max < 0) or (fbin0_min >= bins):
                continue
            if fbin0_max >= bins:
                bin0_max = bins - 1
            else:
                bin0_max = < Py_ssize_t > fbin0_max
            if fbin0_min < 0:
                bin0_min = 0
            else:
                bin0_min = < Py_ssize_t > fbin0_min

            if do_dark:
                data -= cdark[idx]
            if do_flat:
                data /= cflat[idx]
            if do_polarization:
                data /= cpolarization[idx]
            if do_solidangle:
                data /= csolidangle[idx]

            if bin0_min == bin0_max:
                # All pixel is within a single bin
                sum_count[bin0_min] += 1.0
                sum_data[bin0_min] += data

            else:
                # we have pixel splitting.
                inv_area = 1.0 / (fbin0_max - fbin0_min)

                delta_left = < float > (bin0_min + 1) - fbin0_min
                delta_right = fbin0_max - (<float> bin0_max)

                sum_count[bin0_min] += (inv_area * delta_left)
                sum_data[bin0_min] += (data * (inv_area * delta_left) ** coef_power)

                sum_count[bin0_max] += (inv_area * delta_right)
                sum_data[bin0_max] += (data * (inv_area * delta_right) ** coef_power)

                if bin0_min + 1 < bin0_max:
                    for idx in range(bin0_min + 1, bin0_max):
                        sum_count[idx] += inv_area
                        sum_data[idx] += data * (inv_area ** coef_power)

        for idx in range(bins):
                if sum_count[idx] > epsilon:
                    out_merge[idx] = sum_data[idx] / sum_count[idx] / normalization_factor
                else:
                    out_merge[idx] = cdummy

    bin_centers = numpy.linspace(pos0_min + 0.5 * delta, pos0_max - 0.5 * delta, bins)

    return bin_centers, numpy.asarray(out_merge), numpy.asarray(sum_data), numpy.asarray(sum_count)


def histoBBox1d_engine(weights,
                       pos0,
                       delta_pos0,
                       pos1=None,
                       delta_pos1=None,
                       size_t bins=100,
                       pos0Range=None,
                       pos1Range=None,
                       dummy=None,
                       delta_dummy=None,
                       mask=None,
                       variance=None,
                       dark=None,
                       flat=None,
                       solidangle=None,
                       polarization=None,
                       bint allow_pos0_neg=False,
                       data_t empty=0.0,
                       double normalization_factor=1.0):

    """
    Calculates histogram of pos0 (tth) weighted by weights

    Splitting is done on the pixel's bounding box like fit2D
    New implementation with variance propagation

    :param weights: array with intensities
    :param pos0: 1D array with pos0: tth or q_vect
    :param delta_pos0: 1D array with delta pos0: max center-corner distance
    :param pos1: 1D array with pos1: chi
    :param delta_pos1: 1D array with max pos1: max center-corner distance, unused !
    :param bins: number of output bins
    :param pos0Range: minimum and maximum  of the 2th range
    :param pos1Range: minimum and maximum  of the chi range
    :param dummy: value for bins without pixels & value of "no good" pixels
    :param delta_dummy: precision of dummy value
    :param mask: array (of int8) with masked pixels with 1 (0=not masked)
    :param dark: array (of float32) with dark noise to be subtracted (or None)
    :param flat: array (of float32) with flat-field image
    :param solidangle: array (of float32) with solid angle corrections
    :param polarization: array (of float32) with polarization corrections
    :param empty: value of output bins without any contribution when dummy is None
    :param normalization_factor: divide the result by this value
    :return: namedtuple with "position intensity error signal variance normalization count"
    """
    cdef Py_ssize_t size = weights.size
    assert pos0.size == size, "pos0.size == size"
    assert delta_pos0.size == size, "delta_pos0.size == size"
    assert bins > 1, "at lease one bin"

    cdef:
        Py_ssize_t i, j, idx
        # Related to data: single precision
        data_t[::1] cdata = numpy.ascontiguousarray(weights.ravel(), dtype=data_d)
        data_t[::1] cflat, cdark, cpolarization, csolidangle, cvariance
        data_t cdummy, ddummy=0.0

        # Related to positions: double precision
        position_t[::1] cpos0 = numpy.ascontiguousarray(pos0.ravel(), dtype=position_d)
        position_t[::1] dpos0 = numpy.ascontiguousarray(delta_pos0.ravel(), dtype=position_d)        
        position_t[::1] cpos0_upper = numpy.empty(size, dtype=position_d)
        position_t[::1] cpos0_lower = numpy.empty(size, dtype=position_d)
        position_t[::1] cpos1, dpos1, cpos1_upper, cpos1_lower
        acc_t[:, ::1] out_data = numpy.zeros((bins, 4), dtype=acc_d)
        data_t[::1] out_intensity = numpy.zeros(bins, dtype=data_d)
        data_t[::1] out_error
        mask_t[::1] cmask

        position_t c0, c1, d0, d1
        position_t min0, max0, min1, max1, delta
        position_t pos0_min, pos0_max, pos1_min, pos1_max, pos0_maxin, pos1_maxin
        position_t fbin0_min, fbin0_max, fbin1_min, fbin1_max,
        acc_t norm
        acc_t  inv_area, delta_up, delta_down, delta_right, delta_left
        Py_ssize_t  bin0_max, bin0_min, bin1_max, bin1_min
        bint is_valid, check_mask = False, check_dummy = False, do_variance = False, check_pos1=False
        bint do_dark = False, do_flat = False, do_polarization = False, do_solidangle = False
        preproc_t value

    if variance is not None:
        assert variance.size == size, "variance size"
        do_variance = True
        cvariance = numpy.ascontiguousarray(variance.ravel(), dtype=data_d)
        out_error = numpy.zeros(bins, dtype=data_d)

    if mask is not None:
        assert mask.size == size, "mask size"
        check_mask = True
        cmask = numpy.ascontiguousarray(mask.ravel(), dtype=mask_d)

    if (dummy is not None) and (delta_dummy is not None):
        check_dummy = True
        cdummy = float(dummy)
        ddummy = float(delta_dummy)
    elif (dummy is not None):
        cdummy = float(dummy)
        ddummy = 0.0
        check_dummy = True
    else:
        cdummy = float(empty)
        ddummy = 0.0
        check_dummy = False

    if dark is not None:
        assert dark.size == size, "dark current array size"
        do_dark = True
        cdark = numpy.ascontiguousarray(dark.ravel(), dtype=numpy.float32)
    if flat is not None:
        assert flat.size == size, "flat-field array size"
        do_flat = True
        cflat = numpy.ascontiguousarray(flat.ravel(), dtype=numpy.float32)
    if polarization is not None:
        do_polarization = True
        assert polarization.size == size, "polarization array size"
        cpolarization = numpy.ascontiguousarray(polarization.ravel(), dtype=numpy.float32)
    if solidangle is not None:
        do_solidangle = True
        assert solidangle.size == size, "Solid angle array size"
        csolidangle = numpy.ascontiguousarray(solidangle.ravel(), dtype=numpy.float32)

    #Single pass Min-Max
    pos0_min = cpos0[0]
    pos0_max = cpos0[0]
    with nogil:
        for idx in range(size):
            if (check_mask and cmask[idx]):
                continue
            min0 = cpos0[idx] - dpos0[idx]
            max0 = cpos0[idx] + dpos0[idx]
            cpos0_upper[idx] = max0
            cpos0_lower[idx] = min0
            if max0 > pos0_max:
                pos0_max = max0
            if min0 < pos0_min:
                pos0_min = min0
            
    if pos0Range is not None:
        pos0_min, pos0_maxin = pos0Range
    else:
        pos0_maxin = pos0_max

    if (not allow_pos0_neg) and pos0_min < 0:
        pos0_min = 0
    pos0_max = calc_upper_bound(pos0_maxin)

    if pos1Range is not None:
        assert pos1.size == size, "pos1.size == size"
        assert delta_pos1.size == size, "delta_pos1.size == size"
        check_pos1 = True
        cpos1 = numpy.ascontiguousarray(pos1.ravel(), dtype=position_d)
        dpos1 = numpy.ascontiguousarray(delta_pos1.ravel(), dtype=position_d)
        pos1_min, pos1_maxin = pos1Range
        pos1_max = calc_upper_bound(pos1_maxin)

    delta = (pos0_max - pos0_min) / (<position_t> bins)

    #Actual histogramming
    with nogil:
        for idx in range(size):
            if (check_mask) and cmask[idx]:
                continue

            is_valid = preproc_value_inplace(&value,
                                 cdata[idx],
                                 variance=cvariance[idx] if do_variance else 0.0,
                                 dark=cdark[idx] if do_dark else 0.0,
                                 flat=cflat[idx] if do_flat else 1.0,
                                 solidangle=csolidangle[idx] if do_solidangle else 1.0,
                                 polarization=cpolarization[idx] if do_polarization else 1.0,
                                 absorption=1.0,
                                 mask=0, #previously checked
                                 dummy=cdummy,
                                 delta_dummy=ddummy,
                                 check_dummy=check_dummy,
                                 normalization_factor=normalization_factor,
                                 dark_variance=0.0)
            if not is_valid:
                continue

            min0 = cpos0[idx] - dpos0[idx]
            max0 = cpos0[idx] + dpos0[idx]  

            if (max0 < pos0_min) or (min0 > pos0_maxin):
                continue
                      
            if check_pos1 and (((cpos1[idx] + dpos1[idx]) < pos1_min) or ((cpos1[idx] - dpos1[idx]) > pos1_max)):
                continue
        
            fbin0_min = get_bin_number(min0, pos0_min, delta)
            fbin0_max = get_bin_number(max0, pos0_min, delta)

            if fbin0_max >= bins:
                bin0_max = bins - 1
            else:
                bin0_max = < Py_ssize_t > fbin0_max
            if fbin0_min < 0:
                bin0_min = 0
            else:
                bin0_min = < Py_ssize_t > fbin0_min
            
            # Here starts the pixel distribution
            if bin0_min == bin0_max:
                # All pixel is within a single bin
                update_1d_accumulator(out_data, bin0_max, value, 1.0)

            else:
                # we have pixel splitting.
                inv_area = 1.0 / (fbin0_max - fbin0_min)

                delta_left = < float > (bin0_min + 1) - fbin0_min
                delta_right = fbin0_max - (<float> bin0_max)

                update_1d_accumulator(out_data, bin0_min, value, inv_area * delta_left)
                update_1d_accumulator(out_data, bin0_max, value, inv_area * delta_right)
                for idx in range(bin0_min + 1, bin0_max):
                    update_1d_accumulator(out_data, idx, value, inv_area)

        for i in range(bins):
            norm = out_data[i, 2]
            if out_data[i, 3] > 0.0:
                "test on count as norm can be  negative"
                out_intensity[i] = out_data[i, 0] / norm
                if do_variance:
                    out_error[i] = sqrt(out_data[i, 1]) / norm
            else:
                out_intensity[i] = empty
                if do_variance:
                    out_error[i] = empty

    bin_centers = numpy.linspace(pos0_min + 0.5 * delta, pos0_max - 0.5 * delta, bins)

    return Integrate1dtpl(bin_centers, numpy.asarray(out_intensity), numpy.asarray(out_error) if do_variance else None, 
                          numpy.asarray(out_data[:, 0]), numpy.asarray(out_data[:, 1]), numpy.asarray(out_data[:, 2]), numpy.asarray(out_data[:, 3]))


histoBBox1d_ng = histoBBox1d_engine


def histoBBox2d(weights,
                pos0,
                delta_pos0,
                pos1,
                delta_pos1,
                bins=(100, 36),
                pos0Range=None,
                pos1Range=None,
                dummy=None,
                delta_dummy=None,
                mask=None,
                dark=None,
                flat=None,
                solidangle=None,
                polarization=None,
                bint allow_pos0_neg=0,
                bint chiDiscAtPi=1,
                empty=0.0,
                double normalization_factor=1.0,
                int coef_power=1,
                bint clip_pos1=1):
    """
    Calculate 2D histogram of pos0(tth),pos1(chi) weighted by weights

    Splitting is done on the pixel's bounding box like fit2D


    :param weights: array with intensities
    :param pos0: 1D array with pos0: tth or q_vect
    :param delta_pos0: 1D array with delta pos0: max center-corner distance
    :param pos1: 1D array with pos1: chi
    :param delta_pos1: 1D array with max pos1: max center-corner distance, unused !
    :param bins: number of output bins (tth=100, chi=36 by default)
    :param pos0Range: minimum and maximum  of the 2th range
    :param pos1Range: minimum and maximum  of the chi range
    :param dummy: value for bins without pixels & value of "no good" pixels
    :param delta_dummy: precision of dummy value
    :param mask: array (of int8) with masked pixels with 1 (0=not masked)
    :param dark: array (of float32) with dark noise to be subtracted (or None)
    :param flat: array (of float32) with flat-field image
    :param solidangle: array (of float32) with solid angle corrections
    :param polarization: array (of float32) with polarization corrections
    :param chiDiscAtPi: boolean; by default the chi_range is in the range ]-pi,pi[ set to 0 to have the range ]0,2pi[
    :param empty: value of output bins without any contribution when dummy is None
    :param normalization_factor: divide the result by this value
    :param coef_power: set to 2 for variance propagation, leave to 1 for mean calculation
    :param clip_pos1: clip the azimuthal range to -pi/pi (or 0-2pi), set to False to deactivate behavior


    :return: I, bin_centers0, bin_centers1, weighted histogram(2D), unweighted histogram (2D)
    """

    cdef Py_ssize_t bins0, bins1, i, j, idx
    cdef size_t size = weights.size
    assert pos0.size == size, "pos0.size == size"
    assert pos1.size == size, "pos1.size == size"
    assert delta_pos0.size == size, "delta_pos0.size == size"
    assert delta_pos1.size == size, "delta_pos1.size == size"
    try:
        bins0, bins1 = tuple(bins)
    except TypeError:
        bins0 = bins1 = bins
    if bins0 <= 0:
        bins0 = 1
    if bins1 <= 0:
        bins1 = 1
    cdef:
        #Related to data: single precision
        data_t[::1] cdata = numpy.ascontiguousarray(weights.ravel(), dtype=data_d)
        data_t[::1] cflat, cdark, cpolarization, csolidangle
        data_t cdummy, ddummy

        #related to positions: double precision
        position_t[::1] cpos0 = numpy.ascontiguousarray(pos0.ravel(), dtype=position_d)
        position_t[::1] dpos0 = numpy.ascontiguousarray(delta_pos0.ravel(), dtype=position_d)
        position_t[::1] cpos1 = numpy.ascontiguousarray(pos1.ravel(), dtype=position_d)
        position_t[::1] dpos1 = numpy.ascontiguousarray(delta_pos1.ravel(), dtype=position_d)
        position_t[::1] cpos0_upper = numpy.empty(size, dtype=position_d)
        position_t[::1] cpos0_lower = numpy.empty(size, dtype=position_d)
        position_t[::1] cpos1_upper = numpy.empty(size, dtype=position_d)
        position_t[::1] cpos1_lower = numpy.empty(size, dtype=position_d)
        acc_t[:, ::1] sum_data = numpy.zeros((bins0, bins1), dtype=acc_d)
        acc_t[:, ::1] sum_count = numpy.zeros((bins0, bins1), dtype=acc_d)
        data_t[:, ::1] out_merge = numpy.zeros((bins0, bins1), dtype=data_d)
        mask_t[::1] cmask

        position_t c0, c1, d0, d1
        position_t min0, max0, min1, max1, delta0, delta1
        position_t pos0_min, pos0_max, pos1_min, pos1_max, pos0_maxin, pos1_maxin
        position_t fbin0_min, fbin0_max, fbin1_min, fbin1_max,
        acc_t data, epsilon = 1e-10
        acc_t  inv_area, delta_up, delta_down, delta_right, delta_left
        Py_ssize_t  bin0_max, bin0_min, bin1_max, bin1_min
        bint check_mask = False, check_dummy = False
        bint do_dark = False, do_flat = False, do_polarization = False, do_solidangle = False

    if mask is not None:
        assert mask.size == size, "mask size"
        check_mask = True
        cmask = numpy.ascontiguousarray(mask.ravel(), dtype=mask_d)

    if (dummy is not None) and delta_dummy is not None:
        check_dummy = True
        cdummy = float(dummy)
        ddummy = float(delta_dummy)
    elif (dummy is not None):
        cdummy = float(dummy)
    else:
        cdummy = float(empty)

    if dark is not None:
        assert dark.size == size, "dark current array size"
        do_dark = True
        cdark = numpy.ascontiguousarray(dark.ravel(), dtype=numpy.float32)
    if flat is not None:
        assert flat.size == size, "flat-field array size"
        do_flat = True
        cflat = numpy.ascontiguousarray(flat.ravel(), dtype=numpy.float32)
    if polarization is not None:
        do_polarization = True
        assert polarization.size == size, "polarization array size"
        cpolarization = numpy.ascontiguousarray(polarization.ravel(), dtype=numpy.float32)
    if solidangle is not None:
        do_solidangle = True
        assert solidangle.size == size, "Solid angle array size"
        csolidangle = numpy.ascontiguousarray(solidangle.ravel(), dtype=numpy.float32)

    pos0_min = cpos0[0]
    pos0_max = cpos0[0]
    pos1_min = cpos1[0]
    pos1_max = cpos1[0]

    with nogil:
        for idx in range(size):
            if (check_mask and cmask[idx]):
                continue
            c0 = cpos0[idx]
            d0 = dpos0[idx]
            min0 = c0 - d0
            max0 = c0 + d0
            c1 = cpos1[idx]
            d1 = dpos1[idx]
            min1 = c1 - d1
            max1 = c1 + d1
            if not allow_pos0_neg:
                if min0 < 0.0:
                    min0 = 0.0
                if max0 < 0.0:
                    max0 = 0.0
            if clip_pos1:
                if max1 > (2 - chiDiscAtPi) * pi:
                    max1 = (2 - chiDiscAtPi) * pi
                if min1 < (-chiDiscAtPi) * pi:
                    min1 = (-chiDiscAtPi) * pi
            cpos0_upper[idx] = max0
            cpos0_lower[idx] = min0
            cpos1_upper[idx] = max1
            cpos1_lower[idx] = min1
            if max0 > pos0_max:
                pos0_max = max0
            if min0 < pos0_min:
                pos0_min = min0
            if max1 > pos1_max:
                pos1_max = max1
            if min1 < pos1_min:
                pos1_min = min1

    if pos0Range is not None:
        pos0_min, pos0_maxin = pos0Range
    else:
        pos0_maxin = pos0_max

    if pos1Range is not None:
        pos1_min, pos1_maxin = pos1Range
    else:
        pos1_maxin = pos1_max

    if (not allow_pos0_neg) and pos0_min < 0:
        pos0_min = 0

    pos0_max = calc_upper_bound(pos0_maxin)
    pos1_max = calc_upper_bound(pos1_maxin)

    delta0 = (pos0_max - pos0_min) / (<position_t> bins0)
    delta1 = (pos1_max - pos1_min) / (<position_t> bins1)

    with nogil:
        for idx in range(size):
            if (check_mask) and cmask[idx]:
                continue

            data = cdata[idx]
            if (check_dummy) and (fabs(data - cdummy) <= ddummy):
                continue

            if do_dark:
                data -= cdark[idx]
            if do_flat:
                data /= cflat[idx]
            if do_polarization:
                data /= cpolarization[idx]
            if do_solidangle:
                data /= csolidangle[idx]

            min0 = cpos0_lower[idx]
            max0 = cpos0_upper[idx]
            min1 = cpos1_lower[idx]
            max1 = cpos1_upper[idx]

            if (max0 < pos0_min) or (max1 < pos1_min) or (min0 > pos0_maxin) or (min1 > pos1_maxin):
                continue

            if min0 < pos0_min:
                min0 = pos0_min
            if min1 < pos1_min:
                min1 = pos1_min
            if max0 > pos0_maxin:
                max0 = pos0_maxin
            if max1 > pos1_maxin:
                max1 = pos1_maxin

            fbin0_min = get_bin_number(min0, pos0_min, delta0)
            fbin0_max = get_bin_number(max0, pos0_min, delta0)
            fbin1_min = get_bin_number(min1, pos1_min, delta1)
            fbin1_max = get_bin_number(max1, pos1_min, delta1)

            bin0_min = <Py_ssize_t> fbin0_min
            bin0_max = <Py_ssize_t> fbin0_max
            bin1_min = <Py_ssize_t> fbin1_min
            bin1_max = <Py_ssize_t> fbin1_max

            if bin0_min == bin0_max:
                # No spread along dim0
                if bin1_min == bin1_max:
                    # All pixel is within a single bin
                    sum_count[bin0_min, bin1_min] += 1.0
                    sum_data[bin0_min, bin1_min] += data
                else:
                    # spread on 2 or more bins in dim1
                    delta_down = (<acc_t> (bin1_min + 1)) - fbin1_min
                    delta_up = fbin1_max - (bin1_max)
                    inv_area = 1.0 / (fbin1_max - fbin1_min)

                    sum_count[bin0_min, bin1_min] += inv_area * delta_down
                    sum_data[bin0_min, bin1_min] += data * (inv_area * delta_down) ** coef_power

                    sum_count[bin0_min, bin1_max] += inv_area * delta_up
                    sum_data[bin0_min, bin1_max] += data * (inv_area * delta_up) ** coef_power
                    for j in range(bin1_min + 1, bin1_max):
                        sum_count[bin0_min, j] += inv_area
                        sum_data[bin0_min, j] += data * (inv_area) ** coef_power

            else:
                # spread on 2 or more bins in dim 0
                if bin1_min == bin1_max:
                    # All pixel fall inside the same bins in dim 1
                    inv_area = 1.0 / (fbin0_max - fbin0_min)

                    delta_left = (<acc_t> (bin0_min + 1)) - fbin0_min
                    sum_count[bin0_min, bin1_min] += inv_area * delta_left
                    sum_data[bin0_min, bin1_min] += data * (inv_area * delta_left) ** coef_power
                    delta_right = fbin0_max - (<acc_t> bin0_max)
                    sum_count[bin0_max, bin1_min] += inv_area * delta_right
                    sum_data[bin0_max, bin1_min] += data * (inv_area * delta_right) ** coef_power
                    for i in range(bin0_min + 1, bin0_max):
                            sum_count[i, bin1_min] += inv_area
                            sum_data[i, bin1_min] += data * (inv_area) ** coef_power
                else:
                    # spread on n pix in dim0 and m pixel in dim1:
                    inv_area = 1.0 / (fbin0_max - fbin0_min) * (fbin1_max - fbin1_min)

                    delta_left = (<acc_t> (bin0_min + 1)) - fbin0_min
                    delta_right = fbin0_max - (<acc_t> bin0_max)
                    delta_down = (<acc_t> (bin1_min + 1)) - fbin1_min
                    delta_up = fbin1_max - (<acc_t> bin1_max)

                    sum_count[bin0_min, bin1_min] += inv_area * delta_left * delta_down
                    sum_data[bin0_min, bin1_min] += data * (inv_area * delta_left * delta_down) ** coef_power

                    sum_count[bin0_min, bin1_max] += inv_area * delta_left * delta_up
                    sum_data[bin0_min, bin1_max] += data * (inv_area * delta_left * delta_up) ** coef_power

                    sum_count[bin0_max, bin1_min] += inv_area * delta_right * delta_down
                    sum_data[bin0_max, bin1_min] += data * (inv_area * delta_right * delta_down) ** coef_power

                    sum_count[bin0_max, bin1_max] += inv_area * delta_right * delta_up
                    sum_data[bin0_max, bin1_max] += data * (inv_area * delta_right * delta_up) ** coef_power
                    for i in range(bin0_min + 1, bin0_max):
                            sum_count[i, bin1_min] += inv_area * delta_down
                            sum_data[i, bin1_min] += data * (inv_area * delta_down) ** coef_power
                            for j in range(bin1_min + 1, bin1_max):
                                sum_count[i, j] += inv_area
                                sum_data[i, j] += data * (inv_area) ** coef_power
                            sum_count[i, bin1_max] += inv_area * delta_up
                            sum_data[i, bin1_max] += data * (inv_area * delta_up) ** coef_power
                    for j in range(bin1_min + 1, bin1_max):
                            sum_count[bin0_min, j] += inv_area * delta_left
                            sum_data[bin0_min, j] += data * (inv_area * delta_left) ** coef_power

                            sum_count[bin0_max, j] += inv_area * delta_right
                            sum_data[bin0_max, j] += data * (inv_area * delta_right) ** coef_power

        for i in range(bins0):
            for j in range(bins1):
                if sum_count[i, j] > epsilon:
                    out_merge[i, j] = sum_data[i, j] / sum_count[i, j] / normalization_factor
                else:
                    out_merge[i, j] = cdummy

    bin_centers0 = numpy.linspace(pos0_min + 0.5 * delta0, pos0_max - 0.5 * delta0, bins0)
    bin_centers1 = numpy.linspace(pos1_min + 0.5 * delta1, pos1_max - 0.5 * delta1, bins1)
    return (numpy.asarray(out_merge).T,
            bin_centers0,
            bin_centers1,
            numpy.asarray(sum_data).T,
            numpy.asarray(sum_count).T)


def histoBBox2d_engine(weights,
                       pos0,
                       delta_pos0,
                       pos1,
                       delta_pos1,
                       bins=(100, 36),
                       pos0Range=None,
                       pos1Range=None,
                       dummy=None,
                       delta_dummy=None,
                       mask=None,
                       variance=None,
                       dark=None,
                       flat=None,
                       solidangle=None,
                       polarization=None,
                       bint allow_pos0_neg=False,
                       bint chiDiscAtPi=1,
                       data_t empty=0.0,
                       double normalization_factor=1.0,
                       bint clip_pos1=1
                       ):
    """
    Calculate 2D histogram of pos0(tth),pos1(chi) weighted by weights

    Splitting is done on the pixel's bounding box, similar to fit2D
    New implementation with variance propagation

    :param weights: array with intensities
    :param pos0: 1D array with pos0: tth or q_vect
    :param delta_pos0: 1D array with delta pos0: max center-corner distance
    :param pos1: 1D array with pos1: chi
    :param delta_pos1: 1D array with max pos1: max center-corner distance, unused !
    :param bins: number of output bins (tth=100, chi=36 by default)
    :param pos0Range: minimum and maximum  of the 2th range
    :param pos1Range: minimum and maximum  of the chi range
    :param dummy: value for bins without pixels & value of "no good" pixels
    :param delta_dummy: precision of dummy value
    :param mask: array (of int8) with masked pixels with 1 (0=not masked)
    :param variance: variance associated with the weights
    :param dark: array (of float32) with dark noise to be subtracted (or None)
    :param flat: array (of float32) with flat-field image
    :param solidangle: array (of float32) with solid angle corrections
    :param polarization: array (of float32) with polarization corrections
    :param chiDiscAtPi: boolean; by default the chi_range is in the range ]-pi,pi[ set to 0 to have the range ]0,2pi[
    :param empty: value of output bins without any contribution when dummy is None
    :param normalization_factor: divide the result by this value
    :param clip_pos1: clip the azimuthal range to -pi/pi (or 0-2pi), set to False to deactivate behavior
    :return: Integrate2dtpl namedtuple: "radial azimuthal intensity error signal variance normalization count"
    """

    cdef Py_ssize_t bins0, bins1, i, j, idx
    cdef size_t size = weights.size
    assert pos0.size == size, "pos0.size == size"
    assert pos1.size == size, "pos1.size == size"
    assert delta_pos0.size == size, "delta_pos0.size == size"
    assert delta_pos1.size == size, "delta_pos1.size == size"
    try:
        bins0, bins1 = tuple(bins)
    except TypeError:
        bins0 = bins1 = bins
    if bins0 <= 0:
        bins0 = 1
    if bins1 <= 0:
        bins1 = 1
    cdef:
        # Related to data: single precision
        data_t[::1] cdata = numpy.ascontiguousarray(weights.ravel(), dtype=data_d)
        data_t[::1] cflat, cdark, cpolarization, csolidangle, cvariance
        data_t cdummy, ddummy=0.0

        # Related to positions: double precision
        position_t[::1] cpos0 = numpy.ascontiguousarray(pos0.ravel(), dtype=position_d)
        position_t[::1] dpos0 = numpy.ascontiguousarray(delta_pos0.ravel(), dtype=position_d)
        position_t[::1] cpos1 = numpy.ascontiguousarray(pos1.ravel(), dtype=position_d)
        position_t[::1] dpos1 = numpy.ascontiguousarray(delta_pos1.ravel(), dtype=position_d)
        position_t[::1] cpos0_upper = numpy.empty(size, dtype=position_d)
        position_t[::1] cpos0_lower = numpy.empty(size, dtype=position_d)
        position_t[::1] cpos1_upper = numpy.empty(size, dtype=position_d)
        position_t[::1] cpos1_lower = numpy.empty(size, dtype=position_d)
        acc_t[:, :, ::1] out_data = numpy.zeros((bins0, bins1, 4), dtype=acc_d)
        data_t[:, ::1] out_intensity = numpy.zeros((bins0, bins1), dtype=data_d)
        data_t[:, ::1] out_error
        mask_t[::1] cmask

        position_t c0, c1, d0, d1
        position_t min0, max0, min1, max1, delta0, delta1
        position_t pos0_min, pos0_max, pos1_min, pos1_max, pos0_maxin, pos1_maxin
        position_t fbin0_min, fbin0_max, fbin1_min, fbin1_max,
        acc_t norm
        acc_t  inv_area, delta_up, delta_down, delta_right, delta_left
        Py_ssize_t  bin0_max, bin0_min, bin1_max, bin1_min
        bint check_mask = False, check_dummy = False, do_variance = False, is_valid
        bint do_dark = False, do_flat = False, do_polarization = False, do_solidangle = False
        preproc_t value

    if variance is not None:
        assert variance.size == size, "variance size"
        do_variance = True
        cvariance = numpy.ascontiguousarray(variance.ravel(), dtype=data_d)
        out_error = numpy.zeros((bins0, bins1), dtype=data_d)

    if mask is not None:
        assert mask.size == size, "mask size"
        check_mask = True
        cmask = numpy.ascontiguousarray(mask.ravel(), dtype=mask_d)

    if (dummy is not None) and (delta_dummy is not None):
        check_dummy = True
        cdummy = float(dummy)
        ddummy = float(delta_dummy)
    elif (dummy is not None):
        cdummy = float(dummy)
        ddummy = 0.0
        check_dummy = True
    else:
        cdummy = float(empty)
        ddummy = 0.0
        check_dummy = False

    if dark is not None:
        assert dark.size == size, "dark current array size"
        do_dark = True
        cdark = numpy.ascontiguousarray(dark.ravel(), dtype=numpy.float32)
    if flat is not None:
        assert flat.size == size, "flat-field array size"
        do_flat = True
        cflat = numpy.ascontiguousarray(flat.ravel(), dtype=numpy.float32)
    if polarization is not None:
        do_polarization = True
        assert polarization.size == size, "polarization array size"
        cpolarization = numpy.ascontiguousarray(polarization.ravel(), dtype=numpy.float32)
    if solidangle is not None:
        do_solidangle = True
        assert solidangle.size == size, "Solid angle array size"
        csolidangle = numpy.ascontiguousarray(solidangle.ravel(), dtype=numpy.float32)

    pos0_min = cpos0[0]
    pos0_max = cpos0[0]
    pos1_min = cpos1[0]
    pos1_max = cpos1[0]
    with nogil:
        for idx in range(size):
            if (check_mask and cmask[idx]):
                continue
            c0 = cpos0[idx]
            d0 = dpos0[idx]
            min0 = c0 - d0
            max0 = c0 + d0
            c1 = cpos1[idx]
            d1 = dpos1[idx]
            min1 = c1 - d1
            max1 = c1 + d1
            if not allow_pos0_neg:
                if min0 < 0.0:
                    min0 = 0.0
                if max0 < 0.0:
                    max0 = 0.0
            if clip_pos1:
                if max1 > (2 - chiDiscAtPi) * pi:
                    max1 = (2 - chiDiscAtPi) * pi
                if min1 < (-chiDiscAtPi) * pi:
                    min1 = (-chiDiscAtPi) * pi
            cpos0_upper[idx] = max0
            cpos0_lower[idx] = min0
            cpos1_upper[idx] = max1
            cpos1_lower[idx] = min1
            if max0 > pos0_max:
                pos0_max = max0
            if min0 < pos0_min:
                pos0_min = min0
            if max1 > pos1_max:
                pos1_max = max1
            if min1 < pos1_min:
                pos1_min = min1

    if pos0Range is not None:
        pos0_min, pos0_maxin = pos0Range
    else:
        pos0_maxin = pos0_max

    if pos1Range is not None:
        pos1_min, pos1_maxin = pos1Range
    else:
        pos1_maxin = pos1_max

    if (not allow_pos0_neg) and pos0_min < 0:
        pos0_min = 0

    pos0_max = calc_upper_bound(pos0_maxin)
    pos1_max = calc_upper_bound(pos1_maxin)

    delta0 = (pos0_max - pos0_min) / (<position_t> bins0)
    delta1 = (pos1_max - pos1_min) / (<position_t> bins1)

    with nogil:
        for idx in range(size):
            if (check_mask) and cmask[idx]:
                continue

            is_valid = preproc_value_inplace(&value,
                                             cdata[idx],
                                             variance=cvariance[idx] if do_variance else 0.0,
                                             dark=cdark[idx] if do_dark else 0.0,
                                             flat=cflat[idx] if do_flat else 1.0,
                                             solidangle=csolidangle[idx] if do_solidangle else 1.0,
                                             polarization=cpolarization[idx] if do_polarization else 1.0,
                                             absorption=1.0,
                                             mask=0, #previously checked
                                             dummy=cdummy,
                                             delta_dummy=ddummy,
                                             check_dummy=check_dummy,
                                             normalization_factor=normalization_factor,
                                             dark_variance=0.0)

            if not is_valid:
                continue

            min0 = cpos0_lower[idx]
            max0 = cpos0_upper[idx]
            min1 = cpos1_lower[idx]
            max1 = cpos1_upper[idx]

            if (max0 < pos0_min) or (max1 < pos1_min) or (min0 > pos0_maxin) or (min1 > pos1_maxin):
                continue

            if min0 < pos0_min:
                min0 = pos0_min
            if min1 < pos1_min:
                min1 = pos1_min
            if max0 > pos0_maxin:
                max0 = pos0_maxin
            if max1 > pos1_maxin:
                max1 = pos1_maxin

            fbin0_min = get_bin_number(min0, pos0_min, delta0)
            fbin0_max = get_bin_number(max0, pos0_min, delta0)
            fbin1_min = get_bin_number(min1, pos1_min, delta1)
            fbin1_max = get_bin_number(max1, pos1_min, delta1)

            bin0_min = <Py_ssize_t> fbin0_min
            bin0_max = <Py_ssize_t> fbin0_max
            bin1_min = <Py_ssize_t> fbin1_min
            bin1_max = <Py_ssize_t> fbin1_max

            if bin0_min == bin0_max:
                # No spread along dim0
                if bin1_min == bin1_max:
                    # All pixel is within a single bin
                    update_2d_accumulator(out_data, bin0_min, bin1_min, value, 1.0)
                else:
                    # spread on 2 or more bins in dim1
                    delta_down = (<acc_t> (bin1_min + 1)) - fbin1_min
                    delta_up = fbin1_max - (bin1_max)
                    inv_area = 1.0 / (fbin1_max - fbin1_min)

                    update_2d_accumulator(out_data, bin0_min, bin1_min, value, inv_area * delta_down)
                    update_2d_accumulator(out_data, bin0_min, bin1_max, value, inv_area * delta_up)
                    for j in range(bin1_min + 1, bin1_max):
                        update_2d_accumulator(out_data, bin0_min, j, value, inv_area)

            else:
                # spread on 2 or more bins in dim 0
                if bin1_min == bin1_max:
                    # All pixel fall inside the same bins in dim 1
                    inv_area = 1.0 / (fbin0_max - fbin0_min)

                    delta_left = (<acc_t> (bin0_min + 1)) - fbin0_min
                    update_2d_accumulator(out_data, bin0_min, bin1_min, value, inv_area * delta_left)

                    delta_right = fbin0_max - (<acc_t> bin0_max)
                    update_2d_accumulator(out_data, bin0_max, bin1_min, value, inv_area * delta_right)
                    for i in range(bin0_min + 1, bin0_max):
                            update_2d_accumulator(out_data, i, bin1_min, value, inv_area)
                else:
                    # spread on n pix in dim0 and m pixel in dim1:
                    inv_area = 1.0 / (fbin0_max - fbin0_min) * (fbin1_max - fbin1_min)

                    delta_left = (<acc_t> (bin0_min + 1)) - fbin0_min
                    delta_right = fbin0_max - (<acc_t> bin0_max)
                    delta_down = (<acc_t> (bin1_min + 1)) - fbin1_min
                    delta_up = fbin1_max - (<acc_t> bin1_max)

                    update_2d_accumulator(out_data, bin0_min, bin1_min, value, inv_area * delta_left * delta_down)
                    update_2d_accumulator(out_data, bin0_min, bin1_max, value, inv_area * delta_left * delta_up)
                    update_2d_accumulator(out_data, bin0_max, bin1_min, value, inv_area * delta_right * delta_down)
                    update_2d_accumulator(out_data, bin0_max, bin1_max, value, inv_area * delta_right * delta_up)
                    for i in range(bin0_min + 1, bin0_max):
                        update_2d_accumulator(out_data, i, bin1_min, value, inv_area * delta_down)
                        for j in range(bin1_min + 1, bin1_max):
                            update_2d_accumulator(out_data, i, j, value, inv_area)
                        update_2d_accumulator(out_data, i, bin1_max, value, inv_area * delta_up)
                    for j in range(bin1_min + 1, bin1_max):
                        update_2d_accumulator(out_data, bin0_min, j, value, inv_area * delta_left)
                        update_2d_accumulator(out_data, bin0_max, j, value, inv_area * delta_right)

        for i in range(bins0):
            for j in range(bins1):
                norm = out_data[i, j, 2]
                if out_data[i, j, 3] > 0.0:
                    "test on count as norm can be negatve"
                    out_intensity[i, j] = out_data[i, j, 0] / norm
                    if do_variance:
                        out_error[i, j] = sqrt(out_data[i, j, 1]) / norm
                else:
                    out_intensity[i, j] = empty
                    if do_variance:
                        out_error[i, j] = empty

    bin_centers0 = numpy.linspace(pos0_min + 0.5 * delta0, pos0_max - 0.5 * delta0, bins0)
    bin_centers1 = numpy.linspace(pos1_min + 0.5 * delta1, pos1_max - 0.5 * delta1, bins1)
    return Integrate2dtpl(bin_centers0, bin_centers1,
                          numpy.asarray(out_intensity).T,
                          numpy.asarray(out_error).T if do_variance else None,
                          numpy.asarray(out_data[...,0]).T, numpy.asarray(out_data[...,1]).T, numpy.asarray(out_data[...,2]).T, numpy.asarray(out_data[...,3]).T)


histoBBox2d_ng = histoBBox2d_engine