1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
|
# -*- coding: utf-8 -*-
#cython: embedsignature=True, language_level=3
#cython: boundscheck=False, wraparound=False, cdivision=True, initializedcheck=False,
## This is for developping
##cython: profile=True, warn.undeclared=True, warn.unused=True, warn.unused_result=False, warn.unused_arg=True
#
# Project: Fast Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2012-2018 European Synchrotron Radiation Facility, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# .
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# .
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""Calculates histograms of pos0 (tth) weighted by Intensity
Splitting is done on the pixel's bounding box similar to fit2D
"""
__author__ = "Jerome Kieffer"
__contact__ = "Jerome.kieffer@esrf.fr"
__date__ = "14/01/2021"
__status__ = "stable"
__license__ = "MIT"
include "regrid_common.pxi"
import logging
logger = logging.getLogger(__name__)
def histoBBox1d(weights,
pos0,
delta_pos0,
pos1=None,
delta_pos1=None,
size_t bins=100,
pos0Range=None,
pos1Range=None,
dummy=None,
delta_dummy=None,
mask=None,
dark=None,
flat=None,
solidangle=None,
polarization=None,
empty=None,
double normalization_factor=1.0,
int coef_power=1):
"""
Calculates histogram of pos0 (tth) weighted by weights
Splitting is done on the pixel's bounding box like fit2D
:param weights: array with intensities
:param pos0: 1D array with pos0: tth or q_vect
:param delta_pos0: 1D array with delta pos0: max center-corner distance
:param pos1: 1D array with pos1: chi
:param delta_pos1: 1D array with max pos1: max center-corner distance, unused !
:param bins: number of output bins
:param pos0Range: minimum and maximum of the 2th range
:param pos1Range: minimum and maximum of the chi range
:param dummy: value for bins without pixels & value of "no good" pixels
:param delta_dummy: precision of dummy value
:param mask: array (of int8) with masked pixels with 1 (0=not masked)
:param dark: array (of float32) with dark noise to be subtracted (or None)
:param flat: array (of float32) with flat-field image
:param solidangle: array (of float32) with solid angle corrections
:param polarization: array (of float32) with polarization corrections
:param empty: value of output bins without any contribution when dummy is None
:param normalization_factor: divide the result by this value
:param coef_power: set to 2 for variance propagation, leave to 1 for mean calculation
:return: 2theta, I, weighted histogram, unweighted histogram
"""
cdef size_t size = weights.size
assert pos0.size == size, "pos0.size == size"
assert delta_pos0.size == size, "delta_pos0.size == size"
assert bins > 1, "at lease one bin"
cdef:
Py_ssize_t idx, bin0_max, bin0_min
data_t data, cdummy = 0.0, ddummy = 0.0
acc_t epsilon = 1e-10,
position_t pos0_min = 0.0, pos1_min = 0.0, pos0_max = 0.0, pos1_max = 0.0
position_t pos0_maxin = 0.0, pos1_maxin = 0.0, min0 = 0.0, max0 = 0.0, fbin0_min = 0.0, fbin0_max = 0.0
bint check_pos1 = False, check_mask = False, check_dummy = False
bint do_dark = False, do_flat = False, do_polarization = False, do_solidangle = False
double delta
data_t[::1] cdata, cflat, cdark, cpolarization, csolidangle
position_t[::1] cpos0, dpos0, cpos1, dpos1, cpos0_lower, cpos0_upper
mask_t[::1] cmask
acc_t inv_area, delta_right, delta_left
cdata = numpy.ascontiguousarray(weights.ravel(), dtype=data_d)
cpos0 = numpy.ascontiguousarray(pos0.ravel(), dtype=position_d)
dpos0 = numpy.ascontiguousarray(delta_pos0.ravel(), dtype=position_d)
cdef:
acc_t[::1] sum_data = numpy.zeros(bins, dtype=acc_d)
acc_t[::1] sum_count = numpy.zeros(bins, dtype=acc_d)
data_t[::1] out_merge = numpy.zeros(bins, dtype=data_d)
if mask is not None:
assert mask.size == size, "mask size"
check_mask = True
cmask = numpy.ascontiguousarray(mask.ravel(), dtype=mask_d)
if (dummy is not None) and (delta_dummy is not None):
check_dummy = True
cdummy = float(dummy)
ddummy = float(delta_dummy)
elif (dummy is not None):
check_dummy = True
cdummy = float(dummy)
ddummy = 0.0
else:
check_dummy = False
cdummy = empty or 0.0
ddummy = 0.0
if dark is not None:
assert dark.size == size, "dark current array size"
do_dark = True
cdark = numpy.ascontiguousarray(dark.ravel(), dtype=data_d)
if flat is not None:
assert flat.size == size, "flat-field array size"
do_flat = True
cflat = numpy.ascontiguousarray(flat.ravel(), dtype=data_d)
if polarization is not None:
do_polarization = True
assert polarization.size == size, "polarization array size"
cpolarization = numpy.ascontiguousarray(polarization.ravel(), dtype=numpy.float32)
if solidangle is not None:
do_solidangle = True
assert solidangle.size == size, "Solid angle array size"
csolidangle = numpy.ascontiguousarray(solidangle.ravel(), dtype=numpy.float32)
cpos0_lower = numpy.zeros(size, dtype=position_d)
cpos0_upper = numpy.zeros(size, dtype=position_d)
pos0_min = cpos0[0]
pos0_max = cpos0[0]
with nogil:
for idx in range(size):
if (check_mask) and (cmask[idx]):
continue
min0 = cpos0[idx] - dpos0[idx]
max0 = cpos0[idx] + dpos0[idx]
cpos0_upper[idx] = max0
cpos0_lower[idx] = min0
if max0 > pos0_max:
pos0_max = max0
if min0 < pos0_min:
pos0_min = min0
if pos0Range is not None:
pos0_min, pos0_maxin = pos0Range
else:
pos0_maxin = pos0_max
if pos0_min < 0:
pos0_min = 0
pos0_max = calc_upper_bound(pos0_maxin)
if pos1Range is not None:
assert pos1.size == size, "pos1.size == size"
assert delta_pos1.size == size, "delta_pos1.size == size"
check_pos1 = True
cpos1 = numpy.ascontiguousarray(pos1.ravel(), dtype=position_d)
dpos1 = numpy.ascontiguousarray(delta_pos1.ravel(), dtype=position_d)
pos1_min, pos1_maxin = pos1Range
pos1_max = calc_upper_bound(pos1_maxin)
delta = (pos0_max - pos0_min) / (<position_t> (bins))
with nogil:
for idx in range(size):
if (check_mask) and (cmask[idx]):
continue
data = cdata[idx]
if check_dummy and (fabs(data - cdummy) <= ddummy):
continue
min0 = cpos0_lower[idx]
max0 = cpos0_upper[idx]
if check_pos1 and (((cpos1[idx] + dpos1[idx]) < pos1_min) or ((cpos1[idx] - dpos1[idx]) > pos1_max)):
continue
fbin0_min = get_bin_number(min0, pos0_min, delta)
fbin0_max = get_bin_number(max0, pos0_min, delta)
if (fbin0_max < 0) or (fbin0_min >= bins):
continue
if fbin0_max >= bins:
bin0_max = bins - 1
else:
bin0_max = < Py_ssize_t > fbin0_max
if fbin0_min < 0:
bin0_min = 0
else:
bin0_min = < Py_ssize_t > fbin0_min
if do_dark:
data -= cdark[idx]
if do_flat:
data /= cflat[idx]
if do_polarization:
data /= cpolarization[idx]
if do_solidangle:
data /= csolidangle[idx]
if bin0_min == bin0_max:
# All pixel is within a single bin
sum_count[bin0_min] += 1.0
sum_data[bin0_min] += data
else:
# we have pixel splitting.
inv_area = 1.0 / (fbin0_max - fbin0_min)
delta_left = < float > (bin0_min + 1) - fbin0_min
delta_right = fbin0_max - (<float> bin0_max)
sum_count[bin0_min] += (inv_area * delta_left)
sum_data[bin0_min] += (data * (inv_area * delta_left) ** coef_power)
sum_count[bin0_max] += (inv_area * delta_right)
sum_data[bin0_max] += (data * (inv_area * delta_right) ** coef_power)
if bin0_min + 1 < bin0_max:
for idx in range(bin0_min + 1, bin0_max):
sum_count[idx] += inv_area
sum_data[idx] += data * (inv_area ** coef_power)
for idx in range(bins):
if sum_count[idx] > epsilon:
out_merge[idx] = sum_data[idx] / sum_count[idx] / normalization_factor
else:
out_merge[idx] = cdummy
bin_centers = numpy.linspace(pos0_min + 0.5 * delta, pos0_max - 0.5 * delta, bins)
return bin_centers, numpy.asarray(out_merge), numpy.asarray(sum_data), numpy.asarray(sum_count)
def histoBBox1d_engine(weights,
pos0,
delta_pos0,
pos1=None,
delta_pos1=None,
size_t bins=100,
pos0Range=None,
pos1Range=None,
dummy=None,
delta_dummy=None,
mask=None,
variance=None,
dark=None,
flat=None,
solidangle=None,
polarization=None,
bint allow_pos0_neg=False,
data_t empty=0.0,
double normalization_factor=1.0):
"""
Calculates histogram of pos0 (tth) weighted by weights
Splitting is done on the pixel's bounding box like fit2D
New implementation with variance propagation
:param weights: array with intensities
:param pos0: 1D array with pos0: tth or q_vect
:param delta_pos0: 1D array with delta pos0: max center-corner distance
:param pos1: 1D array with pos1: chi
:param delta_pos1: 1D array with max pos1: max center-corner distance, unused !
:param bins: number of output bins
:param pos0Range: minimum and maximum of the 2th range
:param pos1Range: minimum and maximum of the chi range
:param dummy: value for bins without pixels & value of "no good" pixels
:param delta_dummy: precision of dummy value
:param mask: array (of int8) with masked pixels with 1 (0=not masked)
:param dark: array (of float32) with dark noise to be subtracted (or None)
:param flat: array (of float32) with flat-field image
:param solidangle: array (of float32) with solid angle corrections
:param polarization: array (of float32) with polarization corrections
:param empty: value of output bins without any contribution when dummy is None
:param normalization_factor: divide the result by this value
:return: namedtuple with "position intensity error signal variance normalization count"
"""
cdef Py_ssize_t size = weights.size
assert pos0.size == size, "pos0.size == size"
assert delta_pos0.size == size, "delta_pos0.size == size"
assert bins > 1, "at lease one bin"
cdef:
Py_ssize_t i, j, idx
# Related to data: single precision
data_t[::1] cdata = numpy.ascontiguousarray(weights.ravel(), dtype=data_d)
data_t[::1] cflat, cdark, cpolarization, csolidangle, cvariance
data_t cdummy, ddummy=0.0
# Related to positions: double precision
position_t[::1] cpos0 = numpy.ascontiguousarray(pos0.ravel(), dtype=position_d)
position_t[::1] dpos0 = numpy.ascontiguousarray(delta_pos0.ravel(), dtype=position_d)
position_t[::1] cpos0_upper = numpy.empty(size, dtype=position_d)
position_t[::1] cpos0_lower = numpy.empty(size, dtype=position_d)
position_t[::1] cpos1, dpos1, cpos1_upper, cpos1_lower
acc_t[:, ::1] out_data = numpy.zeros((bins, 4), dtype=acc_d)
data_t[::1] out_intensity = numpy.zeros(bins, dtype=data_d)
data_t[::1] out_error
mask_t[::1] cmask
position_t c0, c1, d0, d1
position_t min0, max0, min1, max1, delta
position_t pos0_min, pos0_max, pos1_min, pos1_max, pos0_maxin, pos1_maxin
position_t fbin0_min, fbin0_max, fbin1_min, fbin1_max,
acc_t norm
acc_t inv_area, delta_up, delta_down, delta_right, delta_left
Py_ssize_t bin0_max, bin0_min, bin1_max, bin1_min
bint is_valid, check_mask = False, check_dummy = False, do_variance = False, check_pos1=False
bint do_dark = False, do_flat = False, do_polarization = False, do_solidangle = False
preproc_t value
if variance is not None:
assert variance.size == size, "variance size"
do_variance = True
cvariance = numpy.ascontiguousarray(variance.ravel(), dtype=data_d)
out_error = numpy.zeros(bins, dtype=data_d)
if mask is not None:
assert mask.size == size, "mask size"
check_mask = True
cmask = numpy.ascontiguousarray(mask.ravel(), dtype=mask_d)
if (dummy is not None) and (delta_dummy is not None):
check_dummy = True
cdummy = float(dummy)
ddummy = float(delta_dummy)
elif (dummy is not None):
cdummy = float(dummy)
ddummy = 0.0
check_dummy = True
else:
cdummy = float(empty)
ddummy = 0.0
check_dummy = False
if dark is not None:
assert dark.size == size, "dark current array size"
do_dark = True
cdark = numpy.ascontiguousarray(dark.ravel(), dtype=numpy.float32)
if flat is not None:
assert flat.size == size, "flat-field array size"
do_flat = True
cflat = numpy.ascontiguousarray(flat.ravel(), dtype=numpy.float32)
if polarization is not None:
do_polarization = True
assert polarization.size == size, "polarization array size"
cpolarization = numpy.ascontiguousarray(polarization.ravel(), dtype=numpy.float32)
if solidangle is not None:
do_solidangle = True
assert solidangle.size == size, "Solid angle array size"
csolidangle = numpy.ascontiguousarray(solidangle.ravel(), dtype=numpy.float32)
#Single pass Min-Max
pos0_min = cpos0[0]
pos0_max = cpos0[0]
with nogil:
for idx in range(size):
if (check_mask and cmask[idx]):
continue
min0 = cpos0[idx] - dpos0[idx]
max0 = cpos0[idx] + dpos0[idx]
cpos0_upper[idx] = max0
cpos0_lower[idx] = min0
if max0 > pos0_max:
pos0_max = max0
if min0 < pos0_min:
pos0_min = min0
if pos0Range is not None:
pos0_min, pos0_maxin = pos0Range
else:
pos0_maxin = pos0_max
if (not allow_pos0_neg) and pos0_min < 0:
pos0_min = 0
pos0_max = calc_upper_bound(pos0_maxin)
if pos1Range is not None:
assert pos1.size == size, "pos1.size == size"
assert delta_pos1.size == size, "delta_pos1.size == size"
check_pos1 = True
cpos1 = numpy.ascontiguousarray(pos1.ravel(), dtype=position_d)
dpos1 = numpy.ascontiguousarray(delta_pos1.ravel(), dtype=position_d)
pos1_min, pos1_maxin = pos1Range
pos1_max = calc_upper_bound(pos1_maxin)
delta = (pos0_max - pos0_min) / (<position_t> bins)
#Actual histogramming
with nogil:
for idx in range(size):
if (check_mask) and cmask[idx]:
continue
is_valid = preproc_value_inplace(&value,
cdata[idx],
variance=cvariance[idx] if do_variance else 0.0,
dark=cdark[idx] if do_dark else 0.0,
flat=cflat[idx] if do_flat else 1.0,
solidangle=csolidangle[idx] if do_solidangle else 1.0,
polarization=cpolarization[idx] if do_polarization else 1.0,
absorption=1.0,
mask=0, #previously checked
dummy=cdummy,
delta_dummy=ddummy,
check_dummy=check_dummy,
normalization_factor=normalization_factor,
dark_variance=0.0)
if not is_valid:
continue
min0 = cpos0[idx] - dpos0[idx]
max0 = cpos0[idx] + dpos0[idx]
if (max0 < pos0_min) or (min0 > pos0_maxin):
continue
if check_pos1 and (((cpos1[idx] + dpos1[idx]) < pos1_min) or ((cpos1[idx] - dpos1[idx]) > pos1_max)):
continue
fbin0_min = get_bin_number(min0, pos0_min, delta)
fbin0_max = get_bin_number(max0, pos0_min, delta)
if fbin0_max >= bins:
bin0_max = bins - 1
else:
bin0_max = < Py_ssize_t > fbin0_max
if fbin0_min < 0:
bin0_min = 0
else:
bin0_min = < Py_ssize_t > fbin0_min
# Here starts the pixel distribution
if bin0_min == bin0_max:
# All pixel is within a single bin
update_1d_accumulator(out_data, bin0_max, value, 1.0)
else:
# we have pixel splitting.
inv_area = 1.0 / (fbin0_max - fbin0_min)
delta_left = < float > (bin0_min + 1) - fbin0_min
delta_right = fbin0_max - (<float> bin0_max)
update_1d_accumulator(out_data, bin0_min, value, inv_area * delta_left)
update_1d_accumulator(out_data, bin0_max, value, inv_area * delta_right)
for idx in range(bin0_min + 1, bin0_max):
update_1d_accumulator(out_data, idx, value, inv_area)
for i in range(bins):
norm = out_data[i, 2]
if out_data[i, 3] > 0.0:
"test on count as norm can be negative"
out_intensity[i] = out_data[i, 0] / norm
if do_variance:
out_error[i] = sqrt(out_data[i, 1]) / norm
else:
out_intensity[i] = empty
if do_variance:
out_error[i] = empty
bin_centers = numpy.linspace(pos0_min + 0.5 * delta, pos0_max - 0.5 * delta, bins)
return Integrate1dtpl(bin_centers, numpy.asarray(out_intensity), numpy.asarray(out_error) if do_variance else None,
numpy.asarray(out_data[:, 0]), numpy.asarray(out_data[:, 1]), numpy.asarray(out_data[:, 2]), numpy.asarray(out_data[:, 3]))
histoBBox1d_ng = histoBBox1d_engine
def histoBBox2d(weights,
pos0,
delta_pos0,
pos1,
delta_pos1,
bins=(100, 36),
pos0Range=None,
pos1Range=None,
dummy=None,
delta_dummy=None,
mask=None,
dark=None,
flat=None,
solidangle=None,
polarization=None,
bint allow_pos0_neg=0,
bint chiDiscAtPi=1,
empty=0.0,
double normalization_factor=1.0,
int coef_power=1,
bint clip_pos1=1):
"""
Calculate 2D histogram of pos0(tth),pos1(chi) weighted by weights
Splitting is done on the pixel's bounding box like fit2D
:param weights: array with intensities
:param pos0: 1D array with pos0: tth or q_vect
:param delta_pos0: 1D array with delta pos0: max center-corner distance
:param pos1: 1D array with pos1: chi
:param delta_pos1: 1D array with max pos1: max center-corner distance, unused !
:param bins: number of output bins (tth=100, chi=36 by default)
:param pos0Range: minimum and maximum of the 2th range
:param pos1Range: minimum and maximum of the chi range
:param dummy: value for bins without pixels & value of "no good" pixels
:param delta_dummy: precision of dummy value
:param mask: array (of int8) with masked pixels with 1 (0=not masked)
:param dark: array (of float32) with dark noise to be subtracted (or None)
:param flat: array (of float32) with flat-field image
:param solidangle: array (of float32) with solid angle corrections
:param polarization: array (of float32) with polarization corrections
:param chiDiscAtPi: boolean; by default the chi_range is in the range ]-pi,pi[ set to 0 to have the range ]0,2pi[
:param empty: value of output bins without any contribution when dummy is None
:param normalization_factor: divide the result by this value
:param coef_power: set to 2 for variance propagation, leave to 1 for mean calculation
:param clip_pos1: clip the azimuthal range to -pi/pi (or 0-2pi), set to False to deactivate behavior
:return: I, bin_centers0, bin_centers1, weighted histogram(2D), unweighted histogram (2D)
"""
cdef Py_ssize_t bins0, bins1, i, j, idx
cdef size_t size = weights.size
assert pos0.size == size, "pos0.size == size"
assert pos1.size == size, "pos1.size == size"
assert delta_pos0.size == size, "delta_pos0.size == size"
assert delta_pos1.size == size, "delta_pos1.size == size"
try:
bins0, bins1 = tuple(bins)
except TypeError:
bins0 = bins1 = bins
if bins0 <= 0:
bins0 = 1
if bins1 <= 0:
bins1 = 1
cdef:
#Related to data: single precision
data_t[::1] cdata = numpy.ascontiguousarray(weights.ravel(), dtype=data_d)
data_t[::1] cflat, cdark, cpolarization, csolidangle
data_t cdummy, ddummy
#related to positions: double precision
position_t[::1] cpos0 = numpy.ascontiguousarray(pos0.ravel(), dtype=position_d)
position_t[::1] dpos0 = numpy.ascontiguousarray(delta_pos0.ravel(), dtype=position_d)
position_t[::1] cpos1 = numpy.ascontiguousarray(pos1.ravel(), dtype=position_d)
position_t[::1] dpos1 = numpy.ascontiguousarray(delta_pos1.ravel(), dtype=position_d)
position_t[::1] cpos0_upper = numpy.empty(size, dtype=position_d)
position_t[::1] cpos0_lower = numpy.empty(size, dtype=position_d)
position_t[::1] cpos1_upper = numpy.empty(size, dtype=position_d)
position_t[::1] cpos1_lower = numpy.empty(size, dtype=position_d)
acc_t[:, ::1] sum_data = numpy.zeros((bins0, bins1), dtype=acc_d)
acc_t[:, ::1] sum_count = numpy.zeros((bins0, bins1), dtype=acc_d)
data_t[:, ::1] out_merge = numpy.zeros((bins0, bins1), dtype=data_d)
mask_t[::1] cmask
position_t c0, c1, d0, d1
position_t min0, max0, min1, max1, delta0, delta1
position_t pos0_min, pos0_max, pos1_min, pos1_max, pos0_maxin, pos1_maxin
position_t fbin0_min, fbin0_max, fbin1_min, fbin1_max,
acc_t data, epsilon = 1e-10
acc_t inv_area, delta_up, delta_down, delta_right, delta_left
Py_ssize_t bin0_max, bin0_min, bin1_max, bin1_min
bint check_mask = False, check_dummy = False
bint do_dark = False, do_flat = False, do_polarization = False, do_solidangle = False
if mask is not None:
assert mask.size == size, "mask size"
check_mask = True
cmask = numpy.ascontiguousarray(mask.ravel(), dtype=mask_d)
if (dummy is not None) and delta_dummy is not None:
check_dummy = True
cdummy = float(dummy)
ddummy = float(delta_dummy)
elif (dummy is not None):
cdummy = float(dummy)
else:
cdummy = float(empty)
if dark is not None:
assert dark.size == size, "dark current array size"
do_dark = True
cdark = numpy.ascontiguousarray(dark.ravel(), dtype=numpy.float32)
if flat is not None:
assert flat.size == size, "flat-field array size"
do_flat = True
cflat = numpy.ascontiguousarray(flat.ravel(), dtype=numpy.float32)
if polarization is not None:
do_polarization = True
assert polarization.size == size, "polarization array size"
cpolarization = numpy.ascontiguousarray(polarization.ravel(), dtype=numpy.float32)
if solidangle is not None:
do_solidangle = True
assert solidangle.size == size, "Solid angle array size"
csolidangle = numpy.ascontiguousarray(solidangle.ravel(), dtype=numpy.float32)
pos0_min = cpos0[0]
pos0_max = cpos0[0]
pos1_min = cpos1[0]
pos1_max = cpos1[0]
with nogil:
for idx in range(size):
if (check_mask and cmask[idx]):
continue
c0 = cpos0[idx]
d0 = dpos0[idx]
min0 = c0 - d0
max0 = c0 + d0
c1 = cpos1[idx]
d1 = dpos1[idx]
min1 = c1 - d1
max1 = c1 + d1
if not allow_pos0_neg:
if min0 < 0.0:
min0 = 0.0
if max0 < 0.0:
max0 = 0.0
if clip_pos1:
if max1 > (2 - chiDiscAtPi) * pi:
max1 = (2 - chiDiscAtPi) * pi
if min1 < (-chiDiscAtPi) * pi:
min1 = (-chiDiscAtPi) * pi
cpos0_upper[idx] = max0
cpos0_lower[idx] = min0
cpos1_upper[idx] = max1
cpos1_lower[idx] = min1
if max0 > pos0_max:
pos0_max = max0
if min0 < pos0_min:
pos0_min = min0
if max1 > pos1_max:
pos1_max = max1
if min1 < pos1_min:
pos1_min = min1
if pos0Range is not None:
pos0_min, pos0_maxin = pos0Range
else:
pos0_maxin = pos0_max
if pos1Range is not None:
pos1_min, pos1_maxin = pos1Range
else:
pos1_maxin = pos1_max
if (not allow_pos0_neg) and pos0_min < 0:
pos0_min = 0
pos0_max = calc_upper_bound(pos0_maxin)
pos1_max = calc_upper_bound(pos1_maxin)
delta0 = (pos0_max - pos0_min) / (<position_t> bins0)
delta1 = (pos1_max - pos1_min) / (<position_t> bins1)
with nogil:
for idx in range(size):
if (check_mask) and cmask[idx]:
continue
data = cdata[idx]
if (check_dummy) and (fabs(data - cdummy) <= ddummy):
continue
if do_dark:
data -= cdark[idx]
if do_flat:
data /= cflat[idx]
if do_polarization:
data /= cpolarization[idx]
if do_solidangle:
data /= csolidangle[idx]
min0 = cpos0_lower[idx]
max0 = cpos0_upper[idx]
min1 = cpos1_lower[idx]
max1 = cpos1_upper[idx]
if (max0 < pos0_min) or (max1 < pos1_min) or (min0 > pos0_maxin) or (min1 > pos1_maxin):
continue
if min0 < pos0_min:
min0 = pos0_min
if min1 < pos1_min:
min1 = pos1_min
if max0 > pos0_maxin:
max0 = pos0_maxin
if max1 > pos1_maxin:
max1 = pos1_maxin
fbin0_min = get_bin_number(min0, pos0_min, delta0)
fbin0_max = get_bin_number(max0, pos0_min, delta0)
fbin1_min = get_bin_number(min1, pos1_min, delta1)
fbin1_max = get_bin_number(max1, pos1_min, delta1)
bin0_min = <Py_ssize_t> fbin0_min
bin0_max = <Py_ssize_t> fbin0_max
bin1_min = <Py_ssize_t> fbin1_min
bin1_max = <Py_ssize_t> fbin1_max
if bin0_min == bin0_max:
# No spread along dim0
if bin1_min == bin1_max:
# All pixel is within a single bin
sum_count[bin0_min, bin1_min] += 1.0
sum_data[bin0_min, bin1_min] += data
else:
# spread on 2 or more bins in dim1
delta_down = (<acc_t> (bin1_min + 1)) - fbin1_min
delta_up = fbin1_max - (bin1_max)
inv_area = 1.0 / (fbin1_max - fbin1_min)
sum_count[bin0_min, bin1_min] += inv_area * delta_down
sum_data[bin0_min, bin1_min] += data * (inv_area * delta_down) ** coef_power
sum_count[bin0_min, bin1_max] += inv_area * delta_up
sum_data[bin0_min, bin1_max] += data * (inv_area * delta_up) ** coef_power
for j in range(bin1_min + 1, bin1_max):
sum_count[bin0_min, j] += inv_area
sum_data[bin0_min, j] += data * (inv_area) ** coef_power
else:
# spread on 2 or more bins in dim 0
if bin1_min == bin1_max:
# All pixel fall inside the same bins in dim 1
inv_area = 1.0 / (fbin0_max - fbin0_min)
delta_left = (<acc_t> (bin0_min + 1)) - fbin0_min
sum_count[bin0_min, bin1_min] += inv_area * delta_left
sum_data[bin0_min, bin1_min] += data * (inv_area * delta_left) ** coef_power
delta_right = fbin0_max - (<acc_t> bin0_max)
sum_count[bin0_max, bin1_min] += inv_area * delta_right
sum_data[bin0_max, bin1_min] += data * (inv_area * delta_right) ** coef_power
for i in range(bin0_min + 1, bin0_max):
sum_count[i, bin1_min] += inv_area
sum_data[i, bin1_min] += data * (inv_area) ** coef_power
else:
# spread on n pix in dim0 and m pixel in dim1:
inv_area = 1.0 / (fbin0_max - fbin0_min) * (fbin1_max - fbin1_min)
delta_left = (<acc_t> (bin0_min + 1)) - fbin0_min
delta_right = fbin0_max - (<acc_t> bin0_max)
delta_down = (<acc_t> (bin1_min + 1)) - fbin1_min
delta_up = fbin1_max - (<acc_t> bin1_max)
sum_count[bin0_min, bin1_min] += inv_area * delta_left * delta_down
sum_data[bin0_min, bin1_min] += data * (inv_area * delta_left * delta_down) ** coef_power
sum_count[bin0_min, bin1_max] += inv_area * delta_left * delta_up
sum_data[bin0_min, bin1_max] += data * (inv_area * delta_left * delta_up) ** coef_power
sum_count[bin0_max, bin1_min] += inv_area * delta_right * delta_down
sum_data[bin0_max, bin1_min] += data * (inv_area * delta_right * delta_down) ** coef_power
sum_count[bin0_max, bin1_max] += inv_area * delta_right * delta_up
sum_data[bin0_max, bin1_max] += data * (inv_area * delta_right * delta_up) ** coef_power
for i in range(bin0_min + 1, bin0_max):
sum_count[i, bin1_min] += inv_area * delta_down
sum_data[i, bin1_min] += data * (inv_area * delta_down) ** coef_power
for j in range(bin1_min + 1, bin1_max):
sum_count[i, j] += inv_area
sum_data[i, j] += data * (inv_area) ** coef_power
sum_count[i, bin1_max] += inv_area * delta_up
sum_data[i, bin1_max] += data * (inv_area * delta_up) ** coef_power
for j in range(bin1_min + 1, bin1_max):
sum_count[bin0_min, j] += inv_area * delta_left
sum_data[bin0_min, j] += data * (inv_area * delta_left) ** coef_power
sum_count[bin0_max, j] += inv_area * delta_right
sum_data[bin0_max, j] += data * (inv_area * delta_right) ** coef_power
for i in range(bins0):
for j in range(bins1):
if sum_count[i, j] > epsilon:
out_merge[i, j] = sum_data[i, j] / sum_count[i, j] / normalization_factor
else:
out_merge[i, j] = cdummy
bin_centers0 = numpy.linspace(pos0_min + 0.5 * delta0, pos0_max - 0.5 * delta0, bins0)
bin_centers1 = numpy.linspace(pos1_min + 0.5 * delta1, pos1_max - 0.5 * delta1, bins1)
return (numpy.asarray(out_merge).T,
bin_centers0,
bin_centers1,
numpy.asarray(sum_data).T,
numpy.asarray(sum_count).T)
def histoBBox2d_engine(weights,
pos0,
delta_pos0,
pos1,
delta_pos1,
bins=(100, 36),
pos0Range=None,
pos1Range=None,
dummy=None,
delta_dummy=None,
mask=None,
variance=None,
dark=None,
flat=None,
solidangle=None,
polarization=None,
bint allow_pos0_neg=False,
bint chiDiscAtPi=1,
data_t empty=0.0,
double normalization_factor=1.0,
bint clip_pos1=1
):
"""
Calculate 2D histogram of pos0(tth),pos1(chi) weighted by weights
Splitting is done on the pixel's bounding box, similar to fit2D
New implementation with variance propagation
:param weights: array with intensities
:param pos0: 1D array with pos0: tth or q_vect
:param delta_pos0: 1D array with delta pos0: max center-corner distance
:param pos1: 1D array with pos1: chi
:param delta_pos1: 1D array with max pos1: max center-corner distance, unused !
:param bins: number of output bins (tth=100, chi=36 by default)
:param pos0Range: minimum and maximum of the 2th range
:param pos1Range: minimum and maximum of the chi range
:param dummy: value for bins without pixels & value of "no good" pixels
:param delta_dummy: precision of dummy value
:param mask: array (of int8) with masked pixels with 1 (0=not masked)
:param variance: variance associated with the weights
:param dark: array (of float32) with dark noise to be subtracted (or None)
:param flat: array (of float32) with flat-field image
:param solidangle: array (of float32) with solid angle corrections
:param polarization: array (of float32) with polarization corrections
:param chiDiscAtPi: boolean; by default the chi_range is in the range ]-pi,pi[ set to 0 to have the range ]0,2pi[
:param empty: value of output bins without any contribution when dummy is None
:param normalization_factor: divide the result by this value
:param clip_pos1: clip the azimuthal range to -pi/pi (or 0-2pi), set to False to deactivate behavior
:return: Integrate2dtpl namedtuple: "radial azimuthal intensity error signal variance normalization count"
"""
cdef Py_ssize_t bins0, bins1, i, j, idx
cdef size_t size = weights.size
assert pos0.size == size, "pos0.size == size"
assert pos1.size == size, "pos1.size == size"
assert delta_pos0.size == size, "delta_pos0.size == size"
assert delta_pos1.size == size, "delta_pos1.size == size"
try:
bins0, bins1 = tuple(bins)
except TypeError:
bins0 = bins1 = bins
if bins0 <= 0:
bins0 = 1
if bins1 <= 0:
bins1 = 1
cdef:
# Related to data: single precision
data_t[::1] cdata = numpy.ascontiguousarray(weights.ravel(), dtype=data_d)
data_t[::1] cflat, cdark, cpolarization, csolidangle, cvariance
data_t cdummy, ddummy=0.0
# Related to positions: double precision
position_t[::1] cpos0 = numpy.ascontiguousarray(pos0.ravel(), dtype=position_d)
position_t[::1] dpos0 = numpy.ascontiguousarray(delta_pos0.ravel(), dtype=position_d)
position_t[::1] cpos1 = numpy.ascontiguousarray(pos1.ravel(), dtype=position_d)
position_t[::1] dpos1 = numpy.ascontiguousarray(delta_pos1.ravel(), dtype=position_d)
position_t[::1] cpos0_upper = numpy.empty(size, dtype=position_d)
position_t[::1] cpos0_lower = numpy.empty(size, dtype=position_d)
position_t[::1] cpos1_upper = numpy.empty(size, dtype=position_d)
position_t[::1] cpos1_lower = numpy.empty(size, dtype=position_d)
acc_t[:, :, ::1] out_data = numpy.zeros((bins0, bins1, 4), dtype=acc_d)
data_t[:, ::1] out_intensity = numpy.zeros((bins0, bins1), dtype=data_d)
data_t[:, ::1] out_error
mask_t[::1] cmask
position_t c0, c1, d0, d1
position_t min0, max0, min1, max1, delta0, delta1
position_t pos0_min, pos0_max, pos1_min, pos1_max, pos0_maxin, pos1_maxin
position_t fbin0_min, fbin0_max, fbin1_min, fbin1_max,
acc_t norm
acc_t inv_area, delta_up, delta_down, delta_right, delta_left
Py_ssize_t bin0_max, bin0_min, bin1_max, bin1_min
bint check_mask = False, check_dummy = False, do_variance = False, is_valid
bint do_dark = False, do_flat = False, do_polarization = False, do_solidangle = False
preproc_t value
if variance is not None:
assert variance.size == size, "variance size"
do_variance = True
cvariance = numpy.ascontiguousarray(variance.ravel(), dtype=data_d)
out_error = numpy.zeros((bins0, bins1), dtype=data_d)
if mask is not None:
assert mask.size == size, "mask size"
check_mask = True
cmask = numpy.ascontiguousarray(mask.ravel(), dtype=mask_d)
if (dummy is not None) and (delta_dummy is not None):
check_dummy = True
cdummy = float(dummy)
ddummy = float(delta_dummy)
elif (dummy is not None):
cdummy = float(dummy)
ddummy = 0.0
check_dummy = True
else:
cdummy = float(empty)
ddummy = 0.0
check_dummy = False
if dark is not None:
assert dark.size == size, "dark current array size"
do_dark = True
cdark = numpy.ascontiguousarray(dark.ravel(), dtype=numpy.float32)
if flat is not None:
assert flat.size == size, "flat-field array size"
do_flat = True
cflat = numpy.ascontiguousarray(flat.ravel(), dtype=numpy.float32)
if polarization is not None:
do_polarization = True
assert polarization.size == size, "polarization array size"
cpolarization = numpy.ascontiguousarray(polarization.ravel(), dtype=numpy.float32)
if solidangle is not None:
do_solidangle = True
assert solidangle.size == size, "Solid angle array size"
csolidangle = numpy.ascontiguousarray(solidangle.ravel(), dtype=numpy.float32)
pos0_min = cpos0[0]
pos0_max = cpos0[0]
pos1_min = cpos1[0]
pos1_max = cpos1[0]
with nogil:
for idx in range(size):
if (check_mask and cmask[idx]):
continue
c0 = cpos0[idx]
d0 = dpos0[idx]
min0 = c0 - d0
max0 = c0 + d0
c1 = cpos1[idx]
d1 = dpos1[idx]
min1 = c1 - d1
max1 = c1 + d1
if not allow_pos0_neg:
if min0 < 0.0:
min0 = 0.0
if max0 < 0.0:
max0 = 0.0
if clip_pos1:
if max1 > (2 - chiDiscAtPi) * pi:
max1 = (2 - chiDiscAtPi) * pi
if min1 < (-chiDiscAtPi) * pi:
min1 = (-chiDiscAtPi) * pi
cpos0_upper[idx] = max0
cpos0_lower[idx] = min0
cpos1_upper[idx] = max1
cpos1_lower[idx] = min1
if max0 > pos0_max:
pos0_max = max0
if min0 < pos0_min:
pos0_min = min0
if max1 > pos1_max:
pos1_max = max1
if min1 < pos1_min:
pos1_min = min1
if pos0Range is not None:
pos0_min, pos0_maxin = pos0Range
else:
pos0_maxin = pos0_max
if pos1Range is not None:
pos1_min, pos1_maxin = pos1Range
else:
pos1_maxin = pos1_max
if (not allow_pos0_neg) and pos0_min < 0:
pos0_min = 0
pos0_max = calc_upper_bound(pos0_maxin)
pos1_max = calc_upper_bound(pos1_maxin)
delta0 = (pos0_max - pos0_min) / (<position_t> bins0)
delta1 = (pos1_max - pos1_min) / (<position_t> bins1)
with nogil:
for idx in range(size):
if (check_mask) and cmask[idx]:
continue
is_valid = preproc_value_inplace(&value,
cdata[idx],
variance=cvariance[idx] if do_variance else 0.0,
dark=cdark[idx] if do_dark else 0.0,
flat=cflat[idx] if do_flat else 1.0,
solidangle=csolidangle[idx] if do_solidangle else 1.0,
polarization=cpolarization[idx] if do_polarization else 1.0,
absorption=1.0,
mask=0, #previously checked
dummy=cdummy,
delta_dummy=ddummy,
check_dummy=check_dummy,
normalization_factor=normalization_factor,
dark_variance=0.0)
if not is_valid:
continue
min0 = cpos0_lower[idx]
max0 = cpos0_upper[idx]
min1 = cpos1_lower[idx]
max1 = cpos1_upper[idx]
if (max0 < pos0_min) or (max1 < pos1_min) or (min0 > pos0_maxin) or (min1 > pos1_maxin):
continue
if min0 < pos0_min:
min0 = pos0_min
if min1 < pos1_min:
min1 = pos1_min
if max0 > pos0_maxin:
max0 = pos0_maxin
if max1 > pos1_maxin:
max1 = pos1_maxin
fbin0_min = get_bin_number(min0, pos0_min, delta0)
fbin0_max = get_bin_number(max0, pos0_min, delta0)
fbin1_min = get_bin_number(min1, pos1_min, delta1)
fbin1_max = get_bin_number(max1, pos1_min, delta1)
bin0_min = <Py_ssize_t> fbin0_min
bin0_max = <Py_ssize_t> fbin0_max
bin1_min = <Py_ssize_t> fbin1_min
bin1_max = <Py_ssize_t> fbin1_max
if bin0_min == bin0_max:
# No spread along dim0
if bin1_min == bin1_max:
# All pixel is within a single bin
update_2d_accumulator(out_data, bin0_min, bin1_min, value, 1.0)
else:
# spread on 2 or more bins in dim1
delta_down = (<acc_t> (bin1_min + 1)) - fbin1_min
delta_up = fbin1_max - (bin1_max)
inv_area = 1.0 / (fbin1_max - fbin1_min)
update_2d_accumulator(out_data, bin0_min, bin1_min, value, inv_area * delta_down)
update_2d_accumulator(out_data, bin0_min, bin1_max, value, inv_area * delta_up)
for j in range(bin1_min + 1, bin1_max):
update_2d_accumulator(out_data, bin0_min, j, value, inv_area)
else:
# spread on 2 or more bins in dim 0
if bin1_min == bin1_max:
# All pixel fall inside the same bins in dim 1
inv_area = 1.0 / (fbin0_max - fbin0_min)
delta_left = (<acc_t> (bin0_min + 1)) - fbin0_min
update_2d_accumulator(out_data, bin0_min, bin1_min, value, inv_area * delta_left)
delta_right = fbin0_max - (<acc_t> bin0_max)
update_2d_accumulator(out_data, bin0_max, bin1_min, value, inv_area * delta_right)
for i in range(bin0_min + 1, bin0_max):
update_2d_accumulator(out_data, i, bin1_min, value, inv_area)
else:
# spread on n pix in dim0 and m pixel in dim1:
inv_area = 1.0 / (fbin0_max - fbin0_min) * (fbin1_max - fbin1_min)
delta_left = (<acc_t> (bin0_min + 1)) - fbin0_min
delta_right = fbin0_max - (<acc_t> bin0_max)
delta_down = (<acc_t> (bin1_min + 1)) - fbin1_min
delta_up = fbin1_max - (<acc_t> bin1_max)
update_2d_accumulator(out_data, bin0_min, bin1_min, value, inv_area * delta_left * delta_down)
update_2d_accumulator(out_data, bin0_min, bin1_max, value, inv_area * delta_left * delta_up)
update_2d_accumulator(out_data, bin0_max, bin1_min, value, inv_area * delta_right * delta_down)
update_2d_accumulator(out_data, bin0_max, bin1_max, value, inv_area * delta_right * delta_up)
for i in range(bin0_min + 1, bin0_max):
update_2d_accumulator(out_data, i, bin1_min, value, inv_area * delta_down)
for j in range(bin1_min + 1, bin1_max):
update_2d_accumulator(out_data, i, j, value, inv_area)
update_2d_accumulator(out_data, i, bin1_max, value, inv_area * delta_up)
for j in range(bin1_min + 1, bin1_max):
update_2d_accumulator(out_data, bin0_min, j, value, inv_area * delta_left)
update_2d_accumulator(out_data, bin0_max, j, value, inv_area * delta_right)
for i in range(bins0):
for j in range(bins1):
norm = out_data[i, j, 2]
if out_data[i, j, 3] > 0.0:
"test on count as norm can be negatve"
out_intensity[i, j] = out_data[i, j, 0] / norm
if do_variance:
out_error[i, j] = sqrt(out_data[i, j, 1]) / norm
else:
out_intensity[i, j] = empty
if do_variance:
out_error[i, j] = empty
bin_centers0 = numpy.linspace(pos0_min + 0.5 * delta0, pos0_max - 0.5 * delta0, bins0)
bin_centers1 = numpy.linspace(pos1_min + 0.5 * delta1, pos1_max - 0.5 * delta1, bins1)
return Integrate2dtpl(bin_centers0, bin_centers1,
numpy.asarray(out_intensity).T,
numpy.asarray(out_error).T if do_variance else None,
numpy.asarray(out_data[...,0]).T, numpy.asarray(out_data[...,1]).T, numpy.asarray(out_data[...,2]).T, numpy.asarray(out_data[...,3]).T)
histoBBox2d_ng = histoBBox2d_engine
|