File: watershed.pyx

package info (click to toggle)
pyfai 0.20.0%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 78,460 kB
  • sloc: python: 49,743; lisp: 7,059; sh: 225; ansic: 165; makefile: 119
file content (544 lines) | stat: -rw-r--r-- 20,999 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
# -*- coding: utf-8 -*-
#cython: embedsignature=True, language_level=3
#cython: boundscheck=False, wraparound=False, cdivision=True, initializedcheck=False,
## This is for developping:
##cython: profile=True, warn.undeclared=True, warn.unused=True, warn.unused_result=False, warn.unused_arg=True
#
#    Project: Fast Azimuthal integration
#             https://github.com/silx-kit/pyFAI
#
#    Copyright (C) 2012-2020 European Synchrotron Radiation Facility, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
#  Permission is hereby granted, free of charge, to any person obtaining a copy
#  of this software and associated documentation files (the "Software"), to deal
#  in the Software without restriction, including without limitation the rights
#  to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#  copies of the Software, and to permit persons to whom the Software is
#  furnished to do so, subject to the following conditions:
#  .
#  The above copyright notice and this permission notice shall be included in
#  all copies or substantial portions of the Software.
#  .
#  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
#  IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
#  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
#  AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
#  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
#  OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
#  THE SOFTWARE.

#
"""Peak peaking via inverse watershed for connecting region of high intensity
"""

__author__ = "Jerome Kieffer"
__contact__ = "Jerome.kieffer@esrf.fr"
__date__ = "29/04/2020"
__status__ = "stable"
__license__ = "MIT"

import cython
import numpy
cimport numpy
import sys
import logging
logger = logging.getLogger("pyFAI.ext.watershed")
from cython.parallel import prange

include "numpy_common.pxi"
include "bilinear.pxi"

cdef bint get_bit(int byteval, int idx) nogil:
    return ((byteval & (1 << idx)) != 0)


cdef class Region:
    cdef:
        readonly int index, size, pass_to
        readonly float mini, maxi, highest_pass
        readonly list neighbors, border, peaks

    def __cinit__(self, int idx):
        self.index = idx
        self.neighbors = []
        self.border = []  # list of pixel indices of the border
        self.peaks = [idx]
        self.size = 0
        self.pass_to = - 1
        self.mini = - 1
        self.maxi = - 1
        self.highest_pass = -sys.maxsize

    def __dealloc__(self):
        """Destructor"""
        self.neighbors = None
        self.border = None
        self.peaks = None

    def __repr__(self):
        return "Region %s of size %s:\n neighbors: %s\n border: %s\n" % (self.index, self.size, self.neighbors, self.border) + \
               "peaks: %s\n maxi=%s, mini=%s, pass=%s to %s" % (self.peaks, self.maxi, self.mini, self.highest_pass, self.pass_to)

    def init_values(self, float[::1] flat):
        """
        Initialize the values : maxi, mini and pass both height and so on
        :param flat: flat view on the data (intensity)
        :return: True if there is a problem and the region should be removed
        """
        cdef:
            int i, k, imax#, imin
            float mini, maxi, val
            int border_size = len(self.border)
            int neighbors_size = len(self.neighbors)
        self.maxi = flat[self.index]
        if neighbors_size != border_size:
            print(self.index, neighbors_size, border_size)
            print(self)
            return True
        if neighbors_size:
            imax = 0 #imin = 0
            i = self.border[imax]
            val = mini = maxi = flat[i]
            for k in range(1, border_size):
                i = self.border[k]
                val = flat[i]
                if val < mini:
                    mini = val
                    #imin = k
                elif val > maxi:
                    maxi = val
                    imax = k
            if self.mini == - 1:
                self.mini = mini
            self.highest_pass = maxi
            self.pass_to = self.neighbors[imax]
        else:
            return True

    def get_size(self):
        return self.size

    def get_highest_pass(self):
        return self.highest_pass

    def get_maxi(self):
        return self.maxi

    def get_mini(self):
        return self.mini

    def get_pass_to(self):
        return self.pass_to

    def get_index(self):
        return self.index

    def get_borders(self):
        return self.border

    def get_neighbors(self):
        return self.neighbors

    def merge(self, Region other):
        """
        merge 2 regions
        """
        cdef:
            int i
            list new_neighbors = []
            list new_border = []
            Region region
        if other.maxi > self.maxi:
            region = Region(other.index)
            region.maxi = other.maxi
        else:
            region = Region(self.index)
            region.maxi = self.maxi
        region.mini = min(self.mini, other.mini)
        for i in range(len(self.neighbors)):
            if self.neighbors[i] not in other.peaks:
                if self.border[i] not in new_border:
                    new_border.append(self.border[i])
                    new_neighbors.append(self.neighbors[i])
        for i in range(len(other.neighbors)):
            if other.neighbors[i] not in self.peaks:
                if other.border[i] not in new_border:
                    new_border.append(other.border[i])
                    new_neighbors.append(other.neighbors[i])
        region.neighbors = new_neighbors
        region.border = new_border
        region.peaks = self.peaks + other.peaks
        region.size = self.size + other.size
        return region


class InverseWatershed(object):
    """
    Idea:

    * label all peaks
    * define region around those peaks which raise always to this peak
    * define the border of such region
    * search for the pass between two peaks
    * merge region with high pass between them

    """

    NAME = "Inverse watershed"
    VERSION = "1.0"

    def __init__(self, data not None, thres=1.0):
        """
        :param data: 2d image as numpy array

        """
        assert data.ndim == 2, "data.ndim == 2"
        self.data = numpy.ascontiguousarray(data, dtype=numpy.float32)

        self.height, self.width = data.shape
        self.bilinear = Bilinear(data)
        self.regions = {}
        self.labels = numpy.zeros((self.height, self.width), dtype="int32")
        self.borders = numpy.zeros((self.height, self.width), dtype="uint8")
        self.thres = thres
        self._actual_thres = 2

    def __dealloc__(self):
        """destructor"""
        self.data = None
        self.bilinear = None
        self.regions = None
        self.labels = None
        self.borders = None
        self.dict = None

    def save(self, fname):
        """
        Save all regions into a HDF5 file
        """
        import h5py
        with h5py.File(fname, mode="w") as h5:
            h5["NAME"] = self.NAME
            h5["VERSION"] = self.VERSION
            for i in ("data", "height", "width", "labels", "borders", "thres"):
                h5[i] = self.__getattribute__(i)
            r = h5.require_group("regions")

            for i in set(self.regions.values()):
                s = r.require_group(str(i.index))
                for j in ("index", "size", "pass_to", "mini", "maxi", "highest_pass", "neighbors", "border", "peaks"):
                    s[j] = i.__getattribute__(j)

    @classmethod
    def load(cls, fname):
        """
        Load data from a HDF5 file
        """
        import h5py
        with h5py.File(fname, mode="r") as h5:
            assert h5["VERSION"].value == cls.VERSION, "Version of module used for HDF5"
            assert h5["NAME"].value == cls.NAME, "Name of module used for HDF5"
            self = cls(h5["data"].value, h5["thres"].value)
            for i in ("labels", "borders"):
                setattr(self, i, h5[i].value)
            for i in h5["regions"].values():
                r = Region(i["index"].value)
                r.size = i["size"].value
                r.pass_to = i["pass_to"].value
                r.mini = i["mini"].value
                r.maxi = i["maxi"].value
                r.highest_pass = i["highest_pass"].value
                r.neighbors = list(i["neighbors"].value)
                r.border = list(i["border"].value)
                r.peaks = list(i["peaks"].value)
                for j in r.peaks:
                    self.regions[j] = r
        return self

    def init(self):
        self.init_labels()
        self.init_borders()
        self.init_regions()
        self.init_pass()
        # self.merge_singleton()
        # self.merge_twins()
        # self.merge_intense(self.thres)
        logger.info("found %s regions, after merge remains %s" % (len(self.regions), len(set(self.regions.values()))))

    def init_labels(self):
        cdef:
            int i, j, width = self.width, height = self.height, idx, res
            numpy.int32_t[:, :] labels = self.labels
            dict regions = self.regions
            Bilinear bilinear = self.bilinear
        for i in range(height):
            for j in range(width):
                idx = j + i * width
                res = bilinear.c_local_maxi(idx)
                labels[i, j] += res
                if idx == res:
                    regions[res] = Region(res)

    def init_borders(self):
        cdef:
            int i, j, width = self.width, height = self.height, res
            numpy.int32_t[:, :] labels = self.labels
            numpy.uint8_t[:, :] borders = self.borders
            numpy.uint8_t neighb
        for i in range(height):
            for j in range(width):
                neighb = 0
                idx = j + i * width
                res = labels[i, j]
                if (i > 0) and (j > 0) and (labels[i - 1, j - 1] != res):
                    neighb |= 1
                if (i > 0) and (labels[i - 1, j] != res):
                    neighb |= 1 << 1
                if (i > 0) and (j < (width - 1)) and (labels[i - 1, j + 1] != res):
                    neighb |= 1 << 2
                if (j < (width - 1)) and (labels[i, j + 1] != res):
                    neighb |= 1 << 3
                if (i < (height - 1)) and (j < (width - 1)) and (labels[i + 1, j + 1] != res):
                    neighb |= 1 << 4
                if (i < (height - 1)) and (labels[i + 1, j] != res):
                    neighb |= 1 << 5
                if (i < (height - 1)) and (j > 0) and (labels[i + 1, j - 1] != res):
                    neighb |= 1 << 6
                if (j > 0) and (labels[i, j - 1] != res):
                    neighb |= 1 << 7
                borders[i, j] = neighb

    def init_regions(self):
        cdef:
            int i, j, idx, res
            numpy.int32_t[:, ::1] labels = self.labels
            numpy.uint8_t[:, ::1] borders = self.borders
            numpy.uint8_t neighb = 0
            Region region
            dict regions = self.regions
            int width = self.width
            int  height = self.height
        for i in range(height):
            for j in range(width):
                idx = j + i * width
                neighb = borders[i, j]
                res = labels[i, j]
                region = regions[res]
                region.size += 1
                if neighb == 0:
                    continue
                region.border.append(idx)
                if get_bit(neighb, 1):
                    region.neighbors.append(labels[i - 1, j])
                elif get_bit(neighb, 3):
                    region.neighbors.append(labels[i, j + 1])
                elif get_bit(neighb, 5):
                    region.neighbors.append(labels[i + 1, j])
                elif get_bit(neighb, 7):
                    region.neighbors.append(labels[i, j - 1])
                elif get_bit(neighb, 0):
                    region.neighbors.append(labels[i - 1, j - 1])
                elif get_bit(neighb, 2):
                    region.neighbors.append(labels[i - 1, j + 1])
                elif get_bit(neighb, 4):
                    region.neighbors.append(labels[i + 1, j + 1])
                elif get_bit(neighb, 6):
                    region.neighbors.append(labels[i + 1, j - 1])

    def init_pass(self):
        cdef:
            float[::1] flat = self.data.ravel()
            Region region
            dict regions = self.regions
        for region in list(regions.values()):
            if region.init_values(flat):
                regions.pop(region.index)

    def merge_singleton(self):
        "merge single pixel region"
        cdef:
            int idx, i, j, key, key1
            Region region1, region2, region
            dict regions = self.regions
            numpy.uint8_t neighb = 0
            float ref = 0.0
            float[:, :] data = self.data
            numpy.int32_t[:, ::1] labels = self.labels
            numpy.uint8_t[:, ::1] borders = self.borders
            int to_merge = -1
            int width = self.width
            int cnt = 0
            float[:] flat = self.data.ravel()
        for key1 in list(regions.keys()):
            region1 = regions[key1]
            if region1.maxi == region1.mini:
                to_merge = -1
                if region1.size == 1:
                    i = region1.index // width
                    j = region1.index % width
                    neighb = borders[i, j]
                    if get_bit(neighb, 1) and (region1.maxi == data[i - 1, j]):
                        to_merge = labels[i - 1, j]
                    elif get_bit(neighb, 3) and (region1.maxi == data[i, j + 1]):
                        to_merge = labels[i, j + 1]
                    elif get_bit(neighb, 5) and (region1.maxi == data[i + 1, j]):
                        to_merge = labels[i + 1, j]
                    elif get_bit(neighb, 7) and (region1.maxi == data[i, j - 1]):
                        to_merge = labels[i, j - 1]
                    elif get_bit(neighb, 0) and (region1.maxi == data[i - 1, j - 1]):
                        to_merge = labels[i - 1, j - 1]
                    elif get_bit(neighb, 2) and (region1.maxi == data[i - 1, j + 1]):
                        to_merge = labels[i - 1, j + 1]
                    elif get_bit(neighb, 4) and (region1.maxi == data[i + 1, j + 1]):
                        to_merge = labels[i + 1, j + 1]
                    elif get_bit(neighb, 6) and (region1.maxi == data[i + 1, j - 1]):
                        to_merge = labels[i + 1, j - 1]
                if to_merge < 0:
                    if len(region1.neighbors) == 0:
                        print("no neighbors: %s" % region1)
                    elif (len(region1.neighbors) == 1) or \
                         (region1.neighbors == [region1.neighbors[0]] * len(region1.neighbors)):
                        to_merge = region1.neighbors[0]
                    else:
                        to_merge = region1.neighbors[0]
                        region2 = regions[to_merge]
                        ref = region2.maxi
                        for idx in region1.neighbors[1:]:
                            region2 = regions[to_merge]
                            if region2.maxi > ref:
                                to_merge = idx
                                ref = region2.maxi
                if (to_merge < 0):
                    logger.info("error in merging %s" % region1)
                else:
                    region2 = regions[to_merge]
                    region = region1.merge(region2)
                    region.init_values(flat)
                    for key in region.peaks:
                        regions[key] = region
                    cnt += 1
        logger.info("Did %s merge_singleton" % cnt)

    def merge_twins(self):
        """
        Twins are two peak region which are best linked together:
        A -> B and B -> A
        """
        cdef:
            int key1, key2, key
            float[:] flat = self.data.ravel()
            Region region1, region2, region
            dict regions = self.regions
            int cnt = 0
        for key1 in list(regions.keys()):
            region1 = regions[key1]
            key2 = region1.pass_to
            region2 = regions[key2]
            if region1 == region2:
                continue
            if (region2.pass_to in region1.peaks and region1.pass_to in region2.peaks):
                #idx1 = region1.index
                #idx2 = region2.index
                # logger.info("merge %s(%s) %s(%s)" % (idx1, idx1, key2, idx2))
                region = region1.merge(region2)
                region.init_values(flat)
                for key in region.peaks:
                    regions[key] = region
                cnt += 1
        logger.info("Did %s merge_twins" % cnt)

    def merge_intense(self, thres=1.0):
        """
        Merge groups then (pass-mini)/(maxi-mini) >=thres
        """
        if thres > self._actual_thres:
            logger.warning("Cannot increase threshold: was %s, requested %s. You should re-init the object." % self._actual_thres, thres)
        self._actual_thres = thres
        cdef:
            int key1, key2
            Region region1, region2, region
            dict regions = self.regions
            float ratio
            float[:] flat = self.data.ravel()
            int cnt = 0
        for key1 in list(regions.keys()):
            region1 = regions[key1]
            if region1.maxi == region1.mini:
                logger.error(region1)
                continue
            ratio = (region1.highest_pass - region1.mini) / (region1.maxi - region1.mini)
            if ratio >= thres:
                key2 = region1.pass_to
                #idx1 = region1.index
                region2 = regions[key2]
                #idx2 = region2.index
                # print("merge %s(%s) %s(%s)" % (idx1, idx1, key2, idx2))
                region = region1.merge(region2)
                region.init_values(flat)
                for key in region.peaks:
                    regions[key] = region
                cnt += 1
        logger.info("Did %s merge_intense" % cnt)

    def peaks_from_area(self, mask, Imin=None, keep=None, bint refine=True, float dmin=0.0, **kwarg):
        """
        :param mask: mask of data points valid
        :param Imin: Minimum intensity for a peak
        :param keep: Number of  points to keep
        :param refine: refine sub-pixel position
        :param dmin: minimum distance from
        """
        cdef:
            int i, j, x, y, width = self.width
            numpy.uint8_t[:] mask_flat = numpy.ascontiguousarray(mask.ravel(), numpy.uint8)
            int[:] input_points = numpy.where(mask_flat)[0].astype(numpy.int32)
            numpy.int32_t[:] labels = self.labels.ravel()
            dict regions = self.regions
            Region region
            list output_points = [], intensities = [], argsort, tmp_lst, rej_lst
            set keep_regions = set()
            float[:] data = self.data.ravel()
            double d2, dmin2
        for i in input_points:
            label = labels[i]
            region = regions[label]
            keep_regions.add(region.index)
        for i in keep_regions:
            region = regions[i]
            for j in region.peaks:
                if mask_flat[j]:
                    intensities.append(data[j])
                    x = j % width
                    y = j // width
                    output_points.append((y, x))
        if refine:
            for i in range(len(output_points)):
                output_points[i] = self.bilinear.local_maxi(output_points[i])
        if Imin or keep:
            argsort = sorted(range(len(intensities)), key=intensities.__getitem__, reverse=True)
            if Imin:
                argsort = [i for i in argsort if intensities[i] >= Imin]
            output_points = [output_points[i] for i in argsort]

            if dmin:
                dmin2 = dmin * dmin
            else:
                dmin2 = 0.0
            if keep and len(output_points) > keep:
                tmp_lst = output_points
                rej_lst = []
                output_points = []
                for pt in tmp_lst:
                    for pt2 in output_points:
                        d2 = (pt[0] - pt2[0]) ** 2 + (pt[1] - pt2[1]) ** 2
                        if d2 <= dmin2:
                            rej_lst.append(pt)
                            break
                    else:
                        output_points.append(pt)
                        if len(output_points) >= keep:
                            return output_points
                output_points = (output_points + rej_lst)[:keep]
        return output_points