1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
|
# !/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Project: Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2012-2019 European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""This modules contains only one (large) class in charge of:
* calculating the geometry, i.e. the position in the detector space of each pixel of the detector
* manages caches to store intermediate results
NOTA: The Geometry class is not a "transformation class" which would take a
detector and transform it. It is rather a description of the experimental setup.
"""
__author__ = "Jerome Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "08/01/2021"
__status__ = "production"
__docformat__ = 'restructuredtext'
import logging
from math import pi
from numpy import radians, degrees, arccos, arctan2, sin, cos, sqrt
import numpy
import os
import threading
import json
from collections import namedtuple, OrderedDict
from . import detectors
from . import units
from .utils.decorators import deprecated
from .utils import crc32, deg2rad
from . import utils
from .io import ponifile, integration_config
logger = logging.getLogger(__name__)
try:
from .ext import _geometry
except ImportError:
logger.debug("Backtrace", exc_info=True)
_geometry = None
try:
from .ext import bilinear
except ImportError:
logger.debug("Backtrace", exc_info=True)
bilinear = None
PolarizationArray = namedtuple("PolarizationArray", ["array", "checksum"])
PolarizationDescription = namedtuple("PolarizationDescription",
["polarization_factor", "axis_offset"])
class Geometry(object):
"""This class is the parent-class of azimuthal integrator.
This class contains a detector (using composition) which provides the
position of all pixels, or only a limited set of pixel indices.
The Geometry class is responsible for translating/rotating those pixel to
their position in reference to the sample position.
The description of the experimental setup is inspired by the work of P. Boesecke
Detector is assumed to be corrected from "raster orientation" effect.
It is not addressed here but rather in the Detector object or at read time.
Considering there is no tilt:
- Detector fast dimension (dim2) is supposed to be horizontal
(dimension X of the image)
- Detector slow dimension (dim1) is supposed to be vertical, upwards
(dimension Y of the image)
- The third dimension is chose such as the referential is
orthonormal, so dim3 is along incoming X-ray beam
Demonstration of the equation done using Mathematica:
.. literalinclude:: ../../mathematica/geometry.txt
:language: mathematica
"""
_LAST_POLARIZATION = "last_polarization"
def __init__(self, dist=1, poni1=0, poni2=0, rot1=0, rot2=0, rot3=0,
pixel1=None, pixel2=None, splineFile=None, detector=None, wavelength=None):
"""
:param dist: distance sample - detector plan (orthogonal distance, not along the beam), in meter.
:param poni1: coordinate of the point of normal incidence along the detector's first dimension, in meter
:param poni2: coordinate of the point of normal incidence along the detector's second dimension, in meter
:param rot1: first rotation from sample ref to detector's ref, in radians
:param rot2: second rotation from sample ref to detector's ref, in radians
:param rot3: third rotation from sample ref to detector's ref, in radians
:param pixel1: Deprecated. Pixel size of the fist dimension of the detector, in meter.
If both pixel1 and pixel2 are not None, detector pixel size is overwritten.
Prefer defining the detector pixel size on the provided detector object.
Prefer defining the detector pixel size on the provided detector
object (``detector.pixel1 = 5e-6``).
:type pixel1: float
:param pixel2: Deprecated. Pixel size of the second dimension of the detector, in meter.
If both pixel1 and pixel2 are not None, detector pixel size is overwritten.
Prefer defining the detector pixel size on the provided detector
object (``detector.pixel2 = 5e-6``).
:type pixel2: float
:param splineFile: Deprecated. File containing the geometric distortion of the detector.
If not None, pixel1 and pixel2 are ignored and detector spline is overwritten.
Prefer defining the detector spline manually
(``detector.splineFile = "file.spline"``).
:type splineFile: str
:param detector: name of the detector or Detector instance. String
description is deprecated. Prefer using the result of the detector
factory: ``pyFAI.detector_factory("eiger4m")``
:type detector: str or pyFAI.Detector
:param wavelength: Wave length used in meter
:type wavelength: float
"""
self._dist = dist
self._poni1 = poni1
self._poni2 = poni2
self._rot1 = rot1
self._rot2 = rot2
self._rot3 = rot3
self.param = [self._dist, self._poni1, self._poni2,
self._rot1, self._rot2, self._rot3]
self.chiDiscAtPi = True # chi discontinuity (radians), pi by default
self._cached_array = {} # dict for caching all arrays
self._dssa_order = 3 # by default we correct for 1/cos(2th), fit2d corrects for 1/cos^3(2th)
self._wavelength = wavelength
self._oversampling = None
self._correct_solid_angle_for_spline = True
self._sem = threading.Semaphore()
self._transmission_normal = None
if detector:
if isinstance(detector, utils.StringTypes):
self.detector = detectors.detector_factory(detector)
else:
self.detector = detector
else:
self.detector = detectors.Detector()
if splineFile:
self.detector.splineFile = os.path.abspath(splineFile)
elif pixel1 and pixel2:
self.detector.pixel1 = pixel1
self.detector.pixel2 = pixel2
def __repr__(self, dist_unit="m", ang_unit="rad", wl_unit="m"):
"""Nice representation of the class
:param dist_unit: units for distances
:param ang_unit: units used for angles
:param wl_unit: units used for wavelengths
:return: nice string representing the configuration in use
"""
dist_unit = units.to_unit(dist_unit, units.LENGTH_UNITS) or units.l_m
ang_unit = units.to_unit(ang_unit, units.ANGLE_UNITS) or units.A_rad
wl_unit = units.to_unit(wl_unit, units.LENGTH_UNITS) or units.l_m
self.param = [self._dist, self._poni1, self._poni2,
self._rot1, self._rot2, self._rot3]
lstTxt = [self.detector.__repr__()]
if self._wavelength:
lstTxt.append("Wavelength= %.6e%s" %
(self._wavelength * wl_unit.scale, wl_unit))
lstTxt.append(("SampleDetDist= %.6e%s\tPONI= %.6e, %.6e%s\trot1=%.6f"
" rot2= %.6f rot3= %.6f %s") %
(self._dist * dist_unit.scale, dist_unit, self._poni1 * dist_unit.scale,
self._poni2 * dist_unit.scale, dist_unit,
self._rot1 * ang_unit.scale, self._rot2 * ang_unit.scale,
self._rot3 * ang_unit.scale, ang_unit))
if self.detector.pixel1:
f2d = self.getFit2D()
lstTxt.append(("DirectBeamDist= %.3fmm\tCenter: x=%.3f, y=%.3f pix"
"\tTilt=%.3f deg tiltPlanRotation= %.3f deg") %
(f2d["directDist"], f2d["centerX"], f2d["centerY"],
f2d["tilt"], f2d["tiltPlanRotation"]))
return os.linesep.join(lstTxt)
def check_chi_disc(self, azimuth_range):
"""Check the position of the :math:`\\chi` discontinuity
:param range: range of chi for the integration
:return: True if there is a problem
"""
lower, upper = azimuth_range
error_msg = "Azimuthal range issue: Range [%s, %s] not in valid region %s in radians: Expect %s results !"
if self.chiDiscAtPi:
txt_range = "[-π; π["
lower_bound = -pi
upper_bound = pi
else:
txt_range = "[-0; 2π["
lower_bound = 0
upper_bound = 2 * pi
if lower < lower_bound:
if upper < lower_bound:
logger.warning(error_msg, lower, upper, txt_range, "empty")
else:
logger.warning(error_msg, lower, upper, txt_range, "partial")
return True
elif lower > upper_bound:
logger.warning(error_msg, lower, upper, txt_range, "empty")
return True
else:
if upper > upper_bound:
logger.warning(error_msg, lower, upper, txt_range, "partial")
return True
return False
def normalize_azimuth_range(self, azimuth_range):
"""Convert the azimuth range from degrees to radians
This method takes care of the position of the discontinuity and adapts the range accordingly!
:param azimuth_range: 2-tuple of float in degrees
:return: 2-tuple of float in radians in a range such to avoid the discontinuity
"""
if azimuth_range is None:
return
azimuth_range = tuple(deg2rad(azimuth_range[i], self.chiDiscAtPi) for i in (0, -1))
if azimuth_range[1] <= azimuth_range[0]:
azimuth_range = (azimuth_range[0], azimuth_range[1] + 2 * pi)
self.check_chi_disc(azimuth_range)
return azimuth_range
def _calc_cartesian_positions(self, d1, d2, poni1=None, poni2=None):
"""
Calculate the position in cartesian coordinate (centered on the PONI)
and in meter of a couple of coordinates.
The half pixel offset is taken into account here !!!
:param d1: ndarray of dimention 1/2 containing the Y pixel positions
:param d2: ndarray of dimention 1/2 containing the X pixel positions
:param poni1: value in the Y direction of the poni coordinate (meter)
:param poni2: value in the X direction of the poni coordinate (meter)
:return: 2-arrays of same shape as d1 & d2 with the position in meter
d1 and d2 must have the same shape, returned array will have
the same shape.
"""
if poni1 is None:
poni1 = self.poni1
if poni2 is None:
poni2 = self.poni2
p1, p2, p3 = self.detector.calc_cartesian_positions(d1, d2)
return p1 - poni1, p2 - poni2, p3
def calc_pos_zyx(self, d0=None, d1=None, d2=None, param=None, corners=False, use_cython=True):
"""Calculate the position of a set of points in space in the sample's centers referential.
This is usually used for calculating the pixel position in space.
Nota: dim3 is the same as dim0
:param d0: altitude on the point compared to the detector (i.e. z), may be None
:param d1: position on the detector along the slow dimension (i.e. y)
:param d2: position on the detector along the fastest dimension (i.e. x)
:param corners: return positions on the corners (instead of center)
:return: 3-tuple of nd-array, with dim0=along the beam,
dim1=along slowest dimension
dim2=along fastest dimension
"""
if param is None:
dist = self._dist
poni1 = self._poni1
poni2 = self._poni2
rot1 = self._rot1
rot2 = self._rot2
rot3 = self._rot3
else:
dist, poni1, poni2, rot1, rot2, rot3 = param[:6]
if d0 is None:
L = dist
else:
L = dist + d0
if corners:
tmp = self.detector.get_pixel_corners(correct_binning=True)
p1 = tmp[..., 1]
p2 = tmp[..., 2]
p3 = tmp[..., 0]
else:
p1, p2, p3 = self.detector.calc_cartesian_positions(d1, d2)
if use_cython and (_geometry is not None):
t3, t1, t2 = _geometry.calc_pos_zyx(L, poni1, poni2, rot1, rot2, rot3, p1, p2, p3)
else:
shape = p1.shape
size = p1.size
p1 = (p1 - poni1).ravel()
p2 = (p2 - poni2).ravel()
# we did make copies with the subtraction
assert size == p2.size
# note the change of sign in the third dimension:
# Before the rotation we are in the detector's referential,
# the sample position is at d3= -L <0
# the sample detector distance is always positive.
if p3 is None:
p3 = numpy.zeros(size) + L
else:
p3 = (L + p3).ravel()
assert size == p3.size
coord_det = numpy.vstack((p1, p2, p3))
coord_sample = numpy.dot(self.rotation_matrix(param), coord_det)
t1, t2, t3 = coord_sample
t1.shape = shape
t2.shape = shape
t3.shape = shape
return (t3, t1, t2)
def tth(self, d1, d2, param=None, path="cython"):
"""
Calculates the 2theta value for the center of a given pixel
(or set of pixels)
:param d1: position(s) in pixel in first dimension (c order)
:type d1: scalar or array of scalar
:param d2: position(s) in pixel in second dimension (c order)
:type d2: scalar or array of scalar
:param path: can be "cos", "tan" or "cython"
:return: 2theta in radians
:rtype: float or array of floats.
"""
if (path == "cython") and (_geometry is not None):
if param is None:
dist, poni1, poni2 = self._dist, self._poni1, self._poni2
rot1, rot2, rot3 = self._rot1, self._rot2, self._rot3
else:
dist, poni1, poni2, rot1, rot2, rot3 = param[:6]
p1, p2, p3 = self._calc_cartesian_positions(d1, d2, poni1, poni2)
tmp = _geometry.calc_tth(L=dist,
rot1=rot1,
rot2=rot2,
rot3=rot3,
pos1=p1,
pos2=p2,
pos3=p3)
else:
t3, t1, t2 = self.calc_pos_zyx(d0=None, d1=d1, d2=d2, param=param)
if path == "cos":
tmp = arccos(t3 / sqrt(t1 ** 2 + t2 ** 2 + t3 ** 2))
else:
tmp = arctan2(sqrt(t1 ** 2 + t2 ** 2), t3)
return tmp
def qFunction(self, d1, d2, param=None, path="cython"):
"""
Calculates the q value for the center of a given pixel (or set
of pixels) in nm-1
q = 4pi/lambda sin( 2theta / 2 )
:param d1: position(s) in pixel in first dimension (c order)
:type d1: scalar or array of scalar
:param d2: position(s) in pixel in second dimension (c order)
:type d2: scalar or array of scalar
:return: q in in nm^(-1)
:rtype: float or array of floats.
"""
if not self.wavelength:
raise RuntimeError(("Scattering vector q cannot be calculated"
" without knowing wavelength !!!"))
if (_geometry is not None) and (path == "cython"):
if param is None:
dist, poni1, poni2 = self._dist, self._poni1, self._poni2
rot1, rot2, rot3 = self._rot1, self._rot2, self._rot3
else:
dist, poni1, poni2, rot1, rot2, rot3 = param[:6]
p1, p2, p3 = self._calc_cartesian_positions(d1, d2, poni1, poni2)
out = _geometry.calc_q(L=dist,
rot1=rot1,
rot2=rot2,
rot3=rot3,
pos1=p1,
pos2=p2,
pos3=p3,
wavelength=self.wavelength)
else:
out = 4.0e-9 * numpy.pi / self.wavelength * \
numpy.sin(self.tth(d1=d1, d2=d2, param=param, path=path) / 2.0)
return out
def rFunction(self, d1, d2, param=None, path="cython"):
"""
Calculates the radius value for the center of a given pixel
(or set of pixels) in m
r = distance to the incident beam
:param d1: position(s) in pixel in first dimension (c order)
:type d1: scalar or array of scalar
:param d2: position(s) in pixel in second dimension (c order)
:type d2: scalar or array of scalar
:return: r in in m
:rtype: float or array of floats.
"""
if (_geometry is not None) and (path == "cython"):
if param is None:
dist, poni1, poni2 = self._dist, self._poni1, self._poni2
rot1, rot2, rot3 = self._rot1, self._rot2, self._rot3
else:
dist, poni1, poni2, rot1, rot2, rot3 = param[:6]
p1, p2, p3 = self._calc_cartesian_positions(d1, d2, poni1, poni2)
out = _geometry.calc_r(L=dist,
rot1=rot1,
rot2=rot2,
rot3=rot3,
pos1=p1,
pos2=p2,
pos3=p3)
else:
# Before 03/2016 it was the distance at beam-center
# cosTilt = cos(self._rot1) * cos(self._rot2)
# directDist = self._dist / cosTilt # in m
# out = directDist * numpy.tan(self.tth(d1=d1, d2=d2, param=param))
_, t1, t2 = self.calc_pos_zyx(d0=None, d1=d1, d2=d2, param=param)
out = numpy.sqrt(t1 * t1 + t2 * t2)
return out
def qArray(self, shape=None):
"""
Generate an array of the given shape with q(i,j) for all
elements.
"""
shape = self.get_shape(shape)
if shape is None:
logger.error("Shape is neither specified in the method call, "
"neither in the detector: %s", self.detector)
if self._cached_array.get("q_center") is None:
with self._sem:
if self._cached_array.get("q_center") is None:
qa = numpy.fromfunction(self.qFunction, shape,
dtype=numpy.float32)
self._cached_array["q_center"] = qa
return self._cached_array["q_center"]
def rArray(self, shape=None):
"""Generate an array of the given shape with r(i,j) for all elements;
The radius r being in meters.
:param shape: expected shape of the detector
:return: 2d array of the given shape with radius in m from beam center on detector.
"""
shape = self.get_shape(shape)
if shape is None:
logger.error("Shape is neither specified in the method call, "
"neither in the detector: %s", self.detector)
if self._cached_array.get("r_center") is None:
with self._sem:
if self._cached_array.get("r_center") is None:
self._cached_array["r_center"] = numpy.fromfunction(self.rFunction, shape,
dtype=numpy.float32)
return self._cached_array.get("r_center")
def rd2Array(self, shape=None):
"""Generate an array of the given shape with (d*(i,j))^2 for all pixels.
d*^2 is the reciprocal spacing squared in inverse nm squared
:param shape: expected shape of the detector
:return: 2d array of the given shape with reciprocal spacing squared
"""
qArray = self.qArray(shape)
if self._cached_array.get("d*2_center") is None:
with self._sem:
if self._cached_array.get("d*2_center") is None:
self._cached_array["d*2_center"] = (qArray / (2.0 * numpy.pi)) ** 2
return self._cached_array["d*2_center"]
@deprecated
def qCornerFunct(self, d1, d2):
"""Calculate the q_vector for any pixel corner (in nm^-1)
:param shape: expected shape of the detector
"""
return self.qFunction(d1 - 0.5, d2 - 0.5)
@deprecated
def rCornerFunct(self, d1, d2):
"""
Calculate the radius array for any pixel corner (in m)
"""
return self.rFunction(d1 - 0.5, d2 - 0.5)
@deprecated
def tth_corner(self, d1, d2):
"""
Calculates the 2theta value for the corner of a given pixel
(or set of pixels)
:param d1: position(s) in pixel in first dimension (c order)
:type d1: scalar or array of scalar
:param d2: position(s) in pixel in second dimension (c order)
:type d2: scalar or array of scalar
:return: 2theta in radians
:rtype: floar or array of floats.
"""
return self.tth(d1 - 0.5, d2 - 0.5)
def twoThetaArray(self, shape=None):
"""Generate an array of two-theta(i,j) in radians for each pixel in detector
the 2theta array values are in radians
:param shape: shape of the detector
:return: array of 2theta position in radians
"""
shape = self.get_shape(shape)
if shape is None:
logger.error("Shape is neither specified in the method call, "
"neither in the detector: %s", self.detector)
if self._cached_array.get("2th_center") is None:
with self._sem:
if self._cached_array.get("2th_center") is None:
ttha = numpy.fromfunction(self.tth,
shape,
dtype=numpy.float32)
self._cached_array["2th_center"] = ttha
return self._cached_array["2th_center"]
def chi(self, d1, d2, path="cython"):
"""
Calculate the chi (azimuthal angle) for the centre of a pixel
at coordinate d1, d2.
Conversion to lab coordinate system is performed in calc_pos_zyx.
:param d1: pixel coordinate along the 1st dimention (C convention)
:type d1: float or array of them
:param d2: pixel coordinate along the 2nd dimention (C convention)
:type d2: float or array of them
:param path: can be "tan" (i.e via numpy) or "cython"
:return: chi, the azimuthal angle in rad
"""
if (path == "cython") and (_geometry is not None):
p1, p2, p3 = self._calc_cartesian_positions(d1, d2, self._poni1, self._poni2)
chi = _geometry.calc_chi(L=self._dist,
rot1=self._rot1, rot2=self._rot2, rot3=self._rot3,
pos1=p1, pos2=p2, pos3=p3)
chi.shape = d1.shape
else:
_, t1, t2 = self.calc_pos_zyx(d0=None, d1=d1, d2=d2, corners=False, use_cython=False)
chi = numpy.arctan2(t1, t2)
return chi
def chi_corner(self, d1, d2):
"""
Calculate the chi (azimuthal angle) for the corner of a pixel
at coordinate d1,d2 which in the lab ref has coordinate:
:param d1: pixel coordinate along the 1st dimention (C convention)
:type d1: float or array of them
:param d2: pixel coordinate along the 2nd dimention (C convention)
:type d2: float or array of them
:return: chi, the azimuthal angle in rad
"""
return self.chi(d1 - 0.5, d2 - 0.5)
def chiArray(self, shape=None):
"""Generate an array of azimuthal angle chi(i,j) for all elements in the detector.
Azimuthal angles are in radians
Nota: Refers to the pixel centers !
:param shape: the shape of the chi array
:return: the chi array as numpy.ndarray
"""
shape = self.get_shape(shape)
if shape is None:
logger.error("Shape is neither specified in the method call, "
"neither in the detector: %s", self.detector)
if self._cached_array.get("chi_center") is None:
with self._sem:
if self._cached_array.get("chi_center") is None:
chia = numpy.fromfunction(self.chi, shape,
dtype=numpy.float32)
if not self.chiDiscAtPi:
chia = chia % (2.0 * numpy.pi)
self._cached_array["chi_center"] = chia
return self._cached_array["chi_center"]
def position_array(self, shape=None, corners=False, dtype=numpy.float64, use_cython=True):
"""Generate an array for the pixel position given the shape of the detector.
if corners is False, the coordinates of the center of the pixel
is returned in an array of shape: (shape[0], shape[1], 3)
where the 3 coordinates are:
* z: along incident beam,
* y: to the top/sky,
* x: towards the center of the ring
If is True, the corner of each pixels are then returned.
the output shape is then (shape[0], shape[1], 4, 3)
:param shape: shape of the array expected
:param corners: set to true to receive a (...,4,3) array of corner positions
:param dtype: output format requested. Double precision is needed for fitting the geometry
:param (bool) use_cython: set to false to test the Python path (slower)
:return: 3D coodinates as nd-array of size (...,3) or (...,3) (default)
Nota: this value is not cached and actually generated on demand (costly)
"""
shape = self.get_shape(shape)
if shape is None:
logger.error("Shape is neither specified in the method call, "
"neither in the detector: %s", self.detector)
pos = numpy.fromfunction(lambda d1, d2: self.calc_pos_zyx(d0=None, d1=d1, d2=d2,
corners=corners,
use_cython=use_cython),
shape,
dtype=dtype)
outshape = pos[0].shape + (3,)
tpos = numpy.empty(outshape, dtype=dtype)
for idx in range(3):
tpos[..., idx] = pos[idx]
return tpos
@deprecated
def positionArray(self, *arg, **kwarg):
"""Deprecated version of :meth:`position_array`, left for compatibility see doc of position_array"""
return self.position_array(*arg, **kwarg)
def corner_array(self, shape=None, unit=None, use_cython=True, scale=True):
"""
Generate a 3D array of the given shape with (i,j) (radial
angle 2th, azimuthal angle chi ) for all elements.
:param shape: expected shape
:type shape: 2-tuple of integer
:param unit: string like "2th_deg" or an instance of pyFAI.units.Unit
:param use_cython: set to False to use the slower Python path (for tests)
:param scale: set to False for returning the internal representation
(S.I. often) which is faster
:return: 3d array with shape=(\\*shape,4,2) the two elements are:
- dim3[0]: radial angle 2th, q, r...
- dim3[1]: azimuthal angle chi
"""
shape = self.get_shape(shape)
if shape is None:
logger.error("Shape is neither specified in the method call, "
"neither in the detector: %s", self.detector)
if unit:
unit = units.to_unit(unit)
space = unit.name.split("_")[0]
else:
# If no unit is asked, any is OK for extracting the Chi array
unit = None
for space in [u.split("_")[0] for u in units.ANGLE_UNITS]:
ary = self._cached_array.get(space + "_corner")
if (ary is not None) and (shape == ary.shape[:2]):
return ary
space = "r" # This is the fastest to calculate
key = space + "_corner"
if self._cached_array.get(key) is None or shape != self._cached_array.get(key).shape[:2]:
with self._sem:
if self._cached_array.get(key) is None or shape != self._cached_array.get(key).shape[:2]:
corners = None
if (_geometry is not None) and use_cython:
if self.detector.IS_CONTIGUOUS:
d1 = utils.expand2d(numpy.arange(shape[0] + 1.0), shape[1] + 1.0, False)
d2 = utils.expand2d(numpy.arange(shape[1] + 1.0), shape[0] + 1.0, True)
p1, p2, p3 = self.detector.calc_cartesian_positions(d1, d2, center=False, use_cython=True)
else:
det_corners = self.detector.get_pixel_corners()
p1 = det_corners[..., 1]
p2 = det_corners[..., 2]
p3 = det_corners[..., 0]
try:
res = _geometry.calc_rad_azim(self.dist, self.poni1, self.poni2,
self.rot1, self.rot2, self.rot3,
p1, p2, p3,
space, self._wavelength,
chi_discontinuity_at_pi=self.chiDiscAtPi)
except KeyError:
logger.warning("No fast path for space: %s", space)
except AttributeError as err:
logger.warning("AttributeError: The binary extension _geomety may be missing: %s", err)
else:
if self.detector.IS_CONTIGUOUS:
if bilinear:
# convert_corner_2D_to_4D needs contiguous arrays as input
radi = numpy.ascontiguousarray(res[..., 0], numpy.float32)
azim = numpy.ascontiguousarray(res[..., 1], numpy.float32)
corners = bilinear.convert_corner_2D_to_4D(2, radi, azim)
else:
corners = numpy.zeros((shape[0], shape[1], 4, 2),
dtype=numpy.float32)
corners[:,:, 0,:] = res[:-1,:-1,:]
corners[:,:, 1,:] = res[1:,:-1,:]
corners[:,:, 2,:] = res[1:, 1:,:]
corners[:,:, 3,:] = res[:-1, 1:,:]
else:
corners = res
if corners is None:
# In case the fast-path is not implemented
pos = self.position_array(shape, corners=True)
x = pos[..., 2]
y = pos[..., 1]
z = pos[..., 0]
chi = numpy.arctan2(y, x)
if not self.chiDiscAtPi:
twoPi = 2.0 * numpy.pi
chi = (chi + twoPi) % twoPi
corners = numpy.zeros((shape[0], shape[1], 4, 2),
dtype=numpy.float32)
if chi.shape[:2] == shape:
corners[..., 1] = chi
else:
corners[:shape[0],:shape[1],:, 1] = chi[:shape[0],:shape[1],:]
if space is not None:
rad = unit.equation(x, y, z, self._wavelength)
if rad.shape[:2] == shape:
corners[..., 0] = rad
else:
corners[:shape[0],:shape[1],:, 0] = rad[:shape[0],:shape[1],:]
self._cached_array[key] = corners
res = self._cached_array[key]
if scale and unit:
return res * unit.scale
else:
return res
@deprecated
def cornerArray(self, shape=None):
"""Generate a 4D array of the given shape with (i,j) (radial
angle 2th, azimuthal angle chi ) for all elements.
:param shape: expected shape
:type shape: 2-tuple of integer
:return: 3d array with shape=(\\*shape,4,2) the two elements are:
* dim3[0]: radial angle 2th
* dim3[1]: azimuthal angle chi
"""
return self.corner_array(shape, unit=units.TTH_RAD, scale=False)
@deprecated
def cornerQArray(self, shape=None):
"""
Generate a 3D array of the given shape with (i,j) (azimuthal
angle) for all elements.
:param shape: expected shape
:type shape: 2-tuple of integer
:return: 3d array with shape=(\\*shape,4,2) the two elements are (scattering vector q, azimuthal angle chi)
"""
return self.corner_array(shape, unit=units.Q, use_cython=False, scale=False)
@deprecated
def cornerRArray(self, shape=None):
"""
Generate a 3D array of the given shape with (i,j) (azimuthal
angle) for all elements.
:param shape: expected shape
:type shape: 2-tuple of integer
:return: 3d array with shape=(\\*shape,4,2) the two elements are (radial distance, azimuthal angle chi)
"""
return self.corner_array(shape, unit=units.R, use_cython=False, scale=False)
@deprecated
def cornerRd2Array(self, shape=None):
"""
Generate a 3D array of the given shape with (i,j) (azimuthal
angle) for all elements.
:param shape: expected shape
:type shape: 2-tuple of integer
:return: 3d array with shape=(\\*shape,4,2) the two elements are (reciprocal spacing squared, azimuthal angle chi)
"""
return self.corner_array(shape, unit=units.RecD2_NM, scale=False)
def center_array(self, shape=None, unit="2th_deg", scale=True):
"""
Generate a 2D array of the given shape with (i,j) (radial
angle ) for all elements.
:param shape: expected shape
:type shape: 2-tuple of integer
:param unit: string like "2th_deg" or an instance of pyFAI.units.Unit
:param scale: set to False for returning the internal representation
(S.I. often) which is faster
:return: 3d array with shape=(\\*shape,4,2) the two elements are:
- dim3[0]: radial angle 2th, q, r...
- dim3[1]: azimuthal angle chi
"""
unit = units.to_unit(unit)
space = unit.name.split("_")[0]
key = space + "_center"
ary = self._cached_array.get(key)
shape = self.get_shape(shape)
if shape is None:
logger.error("Shape is neither specified in the method call, "
"neither in the detector: %s", self.detector)
if (ary is not None) and (ary.shape == shape):
if scale and unit:
return ary * unit.scale
else:
return ary
pos = self.position_array(shape, corners=False)
x = pos[..., 2]
y = pos[..., 1]
z = pos[..., 0]
ary = unit.equation(x, y, z, self.wavelength)
self._cached_array[key] = ary
if scale and unit:
return ary * unit.scale
else:
return ary
def delta_array(self, shape=None, unit="2th_deg", scale=False):
"""
Generate a 2D array of the given shape with (i,j) (delta-radial
angle) for all elements.
:param shape: expected shape
:type shape: 2-tuple of integer
:param unit: string like "2th_deg" or an instance of pyFAI.units.Unit
:param scale: set to False for returning the internal representation
(S.I. often) which is faster
:return: 3d array with shape=(\\*shape,4,2) the two elements are:
- dim3[0]: radial angle 2th, q, r...
- dim3[1]: azimuthal angle chi
"""
unit = units.to_unit(unit)
space = unit.name.split("_")[0] + "_delta"
ary = self._cached_array.get(space)
shape = self.get_shape(shape)
if shape is None:
logger.error("Shape is neither specified in the method call, "
"neither in the detector: %s", self.detector)
if (ary is not None) and (ary.shape == shape):
if scale and unit:
return ary * unit.scale
else:
return ary
center = self.center_array(shape, unit=unit, scale=False)
corners = self.corner_array(shape, unit=unit, scale=False)
delta = abs(corners[..., 0] - numpy.atleast_3d(center))
ary = delta.max(axis=-1)
self._cached_array[space] = ary
if scale and unit:
return ary * unit.scale
else:
return ary
def delta2Theta(self, shape=None):
"""
Generate a 3D array of the given shape with (i,j) with the max
distance between the center and any corner in 2 theta
:param shape: The shape of the detector array: 2-tuple of integer
:return: 2D-array containing the max delta angle between a pixel center and any corner in 2theta-angle (rad)
"""
key = "2th_delta"
if self._cached_array.get(key) is None:
center = self.twoThetaArray(shape)
corners = self.corner_array(shape, unit=units.TTH, scale=False)
with self._sem:
if self._cached_array.get(key) is None:
delta = abs(corners[..., 0] - numpy.atleast_3d(center))
self._cached_array[key] = delta.max(axis=-1)
return self._cached_array[key]
def deltaChi(self, shape=None, use_cython=True):
"""
Generate a 3D array of the given shape with (i,j) with the max
distance between the center and any corner in chi-angle (rad)
:param shape: The shape of the detector array: 2-tuple of integer
:return: 2D-array containing the max delta angle between a pixel center and any corner in chi-angle (rad)
"""
key = "chi_delta"
if self._cached_array.get(key) is None:
center = self.chiArray(shape)
corner = self.corner_array(shape, None)
with self._sem:
if self._cached_array.get(key) is None:
if use_cython and (_geometry is not None):
delta = _geometry.calc_delta_chi(center, corner)
self._cached_array[key] = delta
else:
twoPi = 2.0 * numpy.pi
center = numpy.atleast_3d(center)
delta = numpy.minimum(((corner[:,:,:, 1] - center) % twoPi),
((center - corner[:,:,:, 1]) % twoPi))
self._cached_array[key] = delta.max(axis=-1)
return self._cached_array[key]
def deltaQ(self, shape=None):
"""
Generate a 2D array of the given shape with (i,j) with the max
distance between the center and any corner in q_vector unit
(nm^-1)
:param shape: The shape of the detector array: 2-tuple of integer
:return: array 2D containing the max delta Q between a pixel center and any corner in q_vector unit (nm^-1)
"""
key = "q_delta"
if self._cached_array.get(key) is None:
center = self.qArray(shape)
corners = self.corner_array(shape, unit=units.Q, scale=False)
with self._sem:
if self._cached_array.get(key) is None:
delta = abs(corners[..., 0] - numpy.atleast_3d(center))
self._cached_array[key] = delta.max(axis=-1)
return self._cached_array[key]
def deltaR(self, shape=None):
"""
Generate a 2D array of the given shape with (i,j) with the max
distance between the center and any corner in radius unit (mm)
:param shape: The shape of the detector array: 2-tuple of integer
:return: array 2D containing the max delta Q between a pixel center and any corner in q_vector unit (nm^-1)
"""
key = "r_delta"
if self._cached_array.get(key) is None:
center = self.rArray(shape)
corners = self.corner_array(shape, unit=units.R, scale=False)
with self._sem:
if self._cached_array.get(key) is None:
delta = abs(corners[..., 0] - numpy.atleast_3d(center))
self._cached_array[key] = delta.max(axis=-1)
return self._cached_array[key]
def deltaRd2(self, shape=None):
"""
Generate a 2D array of the given shape with (i,j) with the max
distance between the center and any corner in unit: reciprocal spacing squarred (1/nm^2)
:param shape: The shape of the detector array: 2-tuple of integer
:return: array 2D containing the max delta (d*)^2 between a pixel center and any corner in reciprocal spacing squarred (1/nm^2)
"""
if self._cached_array.get("d*2_delta") is None:
center = self.center_array(shape, unit=units.RecD2_NM, scale=False)
corners = self.corner_array(shape, unit=units.RecD2_NM, scale=False)
with self._sem:
if self._cached_array.get("d*2_delta") is None:
delta = abs(corners[..., 0] - numpy.atleast_3d(center))
self._cached_array["d*2_delta"] = delta.max(axis=-1)
return self._cached_array.get("d*2_delta")
def array_from_unit(self, shape=None, typ="center", unit=units.TTH, scale=True):
"""
Generate an array of position in different dimentions (R, Q,
2Theta)
:param shape: shape of the expected array, leave it to None for safety
:type shape: ndarray.shape
:param typ: "center", "corner" or "delta"
:type typ: str
:param unit: can be Q, TTH, R for now
:type unit: pyFAI.units.Enum
:param scale: set to False for returning the internal representation
(S.I. often) which is faster
:return: R, Q or 2Theta array depending on unit
:rtype: ndarray
"""
shape = self.get_shape(shape)
if shape is None:
logger.error("Shape is neither specified in the method call, "
"neither in the detector: %s", self.detector)
if typ not in ("center", "corner", "delta"):
logger.warning("Unknown type of array %s,"
" defaulting to 'center'" % typ)
typ = "center"
unit = units.to_unit(unit)
meth_name = unit.get(typ)
if meth_name and meth_name in dir(Geometry):
# fast path may be available
out = Geometry.__dict__[meth_name](self, shape)
if scale and unit:
out = out * unit.scale
else:
# fast path is definitely not available, use the generic formula
if typ == "center":
out = self.center_array(shape, unit, scale=scale)
elif typ == "corner":
out = self.corner_array(shape, unit, scale=scale)
else: # typ == "delta":
out = self.delta_array(shape, unit, scale=scale)
return out
def cos_incidence(self, d1, d2, path="cython"):
"""
Calculate the incidence angle (alpha) for current pixels (P).
The poni being the point of normal incidence,
it's incidence angle is :math:`\\{alpha} = 0` hence :math:`cos(\\{alpha}) = 1`.
:param d1: 1d or 2d set of points in pixel coord
:param d2: 1d or 2d set of points in pixel coord
:return: cosine of the incidence angle
"""
p1, p2, p3 = self._calc_cartesian_positions(d1, d2)
if p3 is not None:
# case for non-planar detector ...
# Calculate the sample-pixel vector (center of pixel) and norm it
z, y, x = self.calc_pos_zyx(d0=None, d1=d1, d2=d2, corners=False)
t = numpy.zeros((z.size, 3))
for i, v in enumerate((z, y, x)):
t[..., i] = v.ravel()
length = numpy.sqrt((t * t).sum(axis=-1))
length.shape = (length.size, 1)
length.strides = (length.strides[0], 0)
t /= length
# extract the 4 corners of each pixel and calculate the cross product of the diagonal to get the normal
z, y, x = self.calc_pos_zyx(d0=None, d1=d1, d2=d2, corners=True)
corners = numpy.zeros(z.shape + (3,))
for i, v in enumerate((z, y, x)):
corners[..., i] = v
A = corners[..., 0,:]
B = corners[..., 1,:]
C = corners[..., 2,:]
D = corners[..., 3,:]
A.shape = -1, 3
B.shape = -1, 3
C.shape = -1, 3
D.shape = -1, 3
orth = numpy.cross(C - A, D - B)
# normalize the normal vector
length = numpy.sqrt((orth * orth).sum(axis=-1))
length.shape = length.shape + (1,)
length.strides = length.strides[:-1] + (0,)
orth /= length
# calculate the cosine of the vector using the dot product
return (t * orth).sum(axis=-1).reshape(d1.shape)
if (_geometry is not None) and (path == "cython"):
cosa = _geometry.calc_cosa(self._dist, p1, p2)
else:
cosa = self._dist / numpy.sqrt(self._dist * self._dist + p1 * p1 + p2 * p2)
return cosa
def diffSolidAngle(self, d1, d2):
"""
Calculate the solid angle of the current pixels (P) versus the PONI (C)
.. math::
dOmega = \\frac{Omega(P)}{Omega(C)}
= \\frac{A \\cdot cos(a)}{SP^2} \\cdot \\frac{SC^2}{A \\cdot cos(0)}
= \\frac{3}{cos(a)}
= \\frac{SC^3}{SP^3}
cos(a) = \\frac{SC}{SP}
:param d1: 1d or 2d set of points
:param d2: 1d or 2d set of points (same size&shape as d1)
:return: solid angle correction array
"""
ds = 1.0
# #######################################################
# Nota: the solid angle correction should be done in flat
# field correction. Here is dual-correction
# #######################################################
if self.spline and self._correct_solid_angle_for_spline:
max1 = d1.max() + 1
max2 = d2.max() + 1
sX = self.spline.splineFuncX(numpy.arange(max2 + 1),
numpy.arange(max1) + 0.5)
sY = self.spline.splineFuncY(numpy.arange(max2) + 0.5,
numpy.arange(max1 + 1))
dX = sX[:, 1:] - sX[:,:-1]
dY = sY[1:,:] - sY[:-1,:]
ds = (dX + 1.0) * (dY + 1.0)
cosa = self._cached_array.get("cos_incidence")
if cosa is None:
cosa = self._cached_array["cos_incidence"] = self.cos_incidence(d1, d2)
dsa = ds * cosa ** self._dssa_order
return dsa
def solidAngleArray(self, shape=None, order=3, absolute=False):
"""Generate an array for the solid angle correction
given the shape of the detector.
solid_angle = cos(incidence)^3
:param shape: shape of the array expected
:param order: should be 3, power of the formula just obove
:param absolute: the absolute solid angle is calculated as:
SA = pix1*pix2/dist^2 * cos(incidence)^3
"""
shape = self.get_shape(shape)
if order is True:
self._dssa_order = 3.0
else:
self._dssa_order = float(order)
key = "solid_angle#%s" % (self._dssa_order)
key_crc = "solid_angle#%s_crc" % (self._dssa_order)
dssa = self._cached_array.get(key)
if dssa is None:
dssa = numpy.fromfunction(self.diffSolidAngle,
shape, dtype=numpy.float32)
self._cached_array[key_crc] = crc32(dssa)
self._cached_array[key] = dssa
if absolute:
return dssa * self.pixel1 * self.pixel2 / self._dist / self._dist
else:
return dssa
def get_config(self):
"""
return the configuration as a dictionnary
:return: dictionary with the current configuration
"""
with self._sem:
# TODO: ponifile should not be used here
# if it was only used for IO, it would be better to remove
# this function
poni = ponifile.PoniFile(data=self)
return poni.as_dict()
def _init_from_poni(self, poni):
"""Init the geometry from a poni object."""
if poni.detector is not None:
self.detector = poni.detector
if poni.dist is not None:
self._dist = poni.dist
if poni.poni1 is not None:
self._poni1 = poni.poni1
if poni.poni2 is not None:
self._poni2 = poni.poni2
if poni.rot1 is not None:
self._rot1 = poni.rot1
if poni.rot2 is not None:
self._rot2 = poni.rot2
if poni.rot3 is not None:
self._rot3 = poni.rot3
if poni.rot3 is not None:
self._wavelength = poni.wavelength
self.reset()
def set_config(self, config):
"""
Set the config of the geometry and of the underlying detector
:param config: dictionary with the configuration
:return: itself
"""
# TODO: ponifile should not be used here
# if it was only used for IO, it would be better to remove
# this function
poni = ponifile.PoniFile(config)
self._init_from_poni(poni)
return self
def save(self, filename):
"""
Save the geometry parameters.
:param filename: name of the file where to save the parameters
:type filename: string
"""
try:
with open(filename, "a") as f:
poni = ponifile.PoniFile(self)
poni.write(f)
except IOError:
logger.error("IOError while writing to file %s", filename)
write = save
@classmethod
def sload(cls, filename):
"""
A static method combining the constructor and the loader from
a file
:param filename: name of the file to load
:type filename: string
:return: instance of Geometry of AzimuthalIntegrator set-up with the parameter from the file.
"""
inst = cls()
inst.load(filename)
return inst
def load(self, filename):
"""
Load the refined parameters from a file.
:param filename: name of the file to load
:type filename: string
:return: itself with updated parameters
"""
try:
with open(filename) as f:
dico = json.load(f)
except Exception:
logger.info("Unable to parse %s as JSON file, defaulting to PoniParser", filename)
poni = ponifile.PoniFile(data=filename)
else:
config = integration_config.ConfigurationReader(dico)
poni = config.pop_ponifile()
self._init_from_poni(poni)
return self
read = load
def getPyFAI(self):
"""
Export geometry setup with the geometry of PyFAI
:return: dict with the parameter-set of the PyFAI geometry
"""
with self._sem:
out = self.detector.getPyFAI()
out["dist"] = self._dist
out["poni1"] = self._poni1
out["poni2"] = self._poni2
out["rot1"] = self._rot1
out["rot2"] = self._rot2
out["rot3"] = self._rot3
if self._wavelength:
out["wavelength"] = self._wavelength
return out
def setPyFAI(self, **kwargs):
"""
set the geometry from a pyFAI-like dict
"""
with self._sem:
if "detector" in kwargs:
self.detector = detectors.detector_factory(kwargs["detector"])
else:
self.detector = detectors.Detector()
for key in ["dist", "poni1", "poni2",
"rot1", "rot2", "rot3",
"pixel1", "pixel2", "splineFile", "wavelength"]:
if key in kwargs:
setattr(self, key, kwargs[key])
self.param = [self._dist, self._poni1, self._poni2,
self._rot1, self._rot2, self._rot3]
self.chiDiscAtPi = True # position of the discontinuity of chi in radians, pi by default
self.reset()
# self._wavelength = None
self._oversampling = None
if self.splineFile:
self.detector.set_splineFile(self.splineFile)
return self
def getFit2D(self):
"""
Export geometry setup with the geometry of Fit2D
:return: dict with parameters compatible with fit2D geometry
"""
with self._sem:
cos_tilt = cos(self._rot1) * cos(self._rot2)
sin_tilt = sqrt(1.0 - cos_tilt * cos_tilt)
tan_tilt = sin_tilt / cos_tilt
# This is tilt plane rotation
if sin_tilt == 0:
# tilt plan rotation is undefined when there is no tilt!, does not matter
cos_tilt = 1.0
sin_tilt = 0.0
cos_tpr = 1.0
sin_tpr = 0.0
else:
cos_tpr = max(-1.0, min(1.0, -cos(self._rot2) * sin(self._rot1) / sin_tilt))
sin_tpr = sin(self._rot2) / sin_tilt
directDist = 1.0e3 * self._dist / cos_tilt
tilt = degrees(arccos(cos_tilt))
if sin_tpr < 0:
tpr = -degrees(arccos(cos_tpr))
else:
tpr = degrees(arccos(cos_tpr))
centerX = (self._poni2 + self._dist * tan_tilt * cos_tpr) / self.pixel2
if abs(tilt) < 1e-5: # in degree
centerY = (self._poni1) / self.pixel1
else:
centerY = (self._poni1 + self._dist * tan_tilt * sin_tpr) / self.pixel1
out = self.detector.getFit2D()
out["directDist"] = directDist
out["centerX"] = centerX
out["centerY"] = centerY
out["tilt"] = tilt
out["tiltPlanRotation"] = tpr
return out
def setFit2D(self, directDist, centerX, centerY,
tilt=0., tiltPlanRotation=0.,
pixelX=None, pixelY=None, splineFile=None):
"""
Set the Fit2D-like parameter set: For geometry description see
HPR 1996 (14) pp-240
Warning: Fit2D flips automatically images depending on their file-format.
By reverse engineering we noticed this behavour for Tiff and Mar345 images (at least).
To obtaine correct result you will have to flip images using numpy.flipud.
:param direct: direct distance from sample to detector along the incident beam (in millimeter as in fit2d)
:param tilt: tilt in degrees
:param tiltPlanRotation: Rotation (in degrees) of the tilt plan arround the Z-detector axis
* 0deg -> Y does not move, +X goes to Z<0
* 90deg -> X does not move, +Y goes to Z<0
* 180deg -> Y does not move, +X goes to Z>0
* 270deg -> X does not move, +Y goes to Z>0
:param pixelX,pixelY: as in fit2d they ar given in micron, not in meter
:param centerX, centerY: pixel position of the beam center
:param splineFile: name of the file containing the spline
"""
with self._sem:
try:
cos_tilt = cos(radians(tilt))
sin_tilt = sin(radians(tilt))
cos_tpr = cos(radians(tiltPlanRotation))
sin_tpr = sin(radians(tiltPlanRotation))
except AttributeError as error:
logger.error(("Got strange results with tilt=%s"
" and tiltPlanRotation=%s: %s") %
(tilt, tiltPlanRotation, error))
if splineFile is None:
if pixelX is not None:
self.detector.pixel1 = pixelY * 1.0e-6
if pixelY is not None:
self.detector.pixel2 = pixelX * 1.0e-6
else:
self.detector.set_splineFile(splineFile)
self._dist = directDist * cos_tilt * 1.0e-3
self._poni1 = centerY * self.pixel1 - directDist * sin_tilt * sin_tpr * 1.0e-3
self._poni2 = centerX * self.pixel2 - directDist * sin_tilt * cos_tpr * 1.0e-3
rot2 = numpy.arcsin(sin_tilt * sin_tpr) # or pi-
rot1 = numpy.arccos(min(1.0, max(-1.0, (cos_tilt / numpy.sqrt(1.0 - (sin_tpr * sin_tilt) ** 2))))) # + or -
if cos_tpr * sin_tilt > 0:
rot1 = -rot1
assert abs(cos_tilt - cos(rot1) * cos(rot2)) < 1e-6
if tilt == 0.0:
rot3 = 0
else:
rot3 = numpy.arccos(min(1.0, max(-1.0, (cos_tilt * cos_tpr * sin_tpr - cos_tpr * sin_tpr) / numpy.sqrt(10 - sin_tpr * sin_tpr * sin_tilt * sin_tilt)))) # + or -
rot3 = numpy.pi / 2.0 - rot3
self._rot1 = rot1
self._rot2 = rot2
self._rot3 = rot3
self.reset()
return self
def setSPD(self, SampleDistance, Center_1, Center_2, Rot_1=0, Rot_2=0, Rot_3=0,
PSize_1=None, PSize_2=None, splineFile=None, BSize_1=1, BSize_2=1,
WaveLength=None):
"""
Set the SPD like parameter set: For geometry description see
Peter Boesecke J.Appl.Cryst.(2007).40, s423–s427
Basically the main difference with pyFAI is the order of the axis which are flipped
:param SampleDistance: distance from sample to detector at the PONI (orthogonal projection)
:param Center_1: pixel position of the PONI along fastest axis
:param Center_2: pixel position of the PONI along slowest axis
:param Rot_1: rotation around the fastest axis (x)
:param Rot_2: rotation around the slowest axis (y)
:param Rot_3: rotation around the axis ORTHOGONAL to the detector plan
:param PSize_1: pixel size in meter along the fastest dimention
:param PSize_2: pixel size in meter along the slowst dimention
:param splineFile: name of the file containing the spline
:param BSize_1: pixel binning factor along the fastest dimention
:param BSize_2: pixel binning factor along the slowst dimention
:param WaveLength: wavelength used
"""
# first define the detector
if splineFile:
# let's assume the spline file is for unbinned detectors ...
self.detector = detectors.FReLoN(splineFile)
self.detector.binning = (int(BSize_2), int(BSize_1))
elif PSize_1 and PSize_2:
self.detector = detectors.Detector(PSize_2, PSize_1)
if BSize_2 > 1 or BSize_1 > 1:
# set binning factor without changing pixel size
self.detector._binning = (int(BSize_2), int(BSize_1))
# then the geometry
self._dist = float(SampleDistance)
self._poni1 = float(Center_2) * self.detector.pixel1
self._poni2 = float(Center_1) * self.detector.pixel2
# This is WRONG ... correct it
self._rot1 = Rot_2 or 0
self._rot2 = Rot_1 or 0
self._rot3 = -(Rot_3 or 0)
if Rot_1 or Rot_2 or Rot_3:
# TODO: one-day
raise NotImplementedError("rotation axis not yet implemented for SPD")
# and finally the wavelength
if WaveLength:
self.wavelength = float(WaveLength)
self.reset()
return self
def getSPD(self):
"""
get the SPD like parameter set: For geometry description see
Peter Boesecke J.Appl.Cryst.(2007).40, s423–s427
Basically the main difference with pyFAI is the order of the axis which are flipped
:return: dictionnary with those parameters:
SampleDistance: distance from sample to detector at the PONI (orthogonal projection)
Center_1, pixel position of the PONI along fastest axis
Center_2: pixel position of the PONI along slowest axis
Rot_1: rotation around the fastest axis (x)
Rot_2: rotation around the slowest axis (y)
Rot_3: rotation around the axis ORTHOGONAL to the detector plan
PSize_1: pixel size in meter along the fastest dimention
PSize_2: pixel size in meter along the slowst dimention
splineFile: name of the file containing the spline
BSize_1: pixel binning factor along the fastest dimention
BSize_2: pixel binning factor along the slowst dimention
WaveLength: wavelength used in meter
"""
res = OrderedDict((("PSize_1", self.detector.pixel2),
("PSize_2", self.detector.pixel1),
("BSize_1", self.detector.binning[1]),
("BSize_2", self.detector.binning[0]),
("splineFile", self.detector.splineFile),
("Rot_3", None),
("Rot_2", None),
("Rot_1", None),
("Center_2", self._poni1 / self.detector.pixel1),
("Center_1", self._poni2 / self.detector.pixel2),
("SampleDistance", self.dist)))
if self._wavelength:
res["WaveLength"] = self._wavelength
if abs(self.rot1) > 1e-6 or abs(self.rot2) > 1e-6 or abs(self.rot3) > 1e-6:
logger.warning("Rotation conversion from pyFAI to SPD is not yet implemented")
return res
def getImageD11(self):
"""Export the current geometry in ImageD11 format.
Please refer to the documentation in doc/source/geometry_conversion.rst
for the orientation and units of those values.
:return: an Ordered dict with those parameters:
distance 294662.658 #in nm
o11 1
o12 0
o21 0
o22 -1
tilt_x 0.00000
tilt_y -0.013173
tilt_z 0.002378
wavelength 0.154
y_center 1016.328171
y_size 48.0815
z_center 984.924425
z_size 46.77648
"""
f2d = self.getFit2D()
distance = f2d.get("directDist", 0) * 1e3 # mm -> µm
y_center = f2d.get("centerX", 0) # in pixel
z_center = f2d.get("centerY", 0) # in pixel
tilt_x = self.rot3
tilt_y = self.rot2
tilt_z = -self.rot1
out = OrderedDict([("distance", distance),
("o11", 1),
("o12", 0),
("o21", 0),
("o22", -1),
("tilt_x", tilt_x),
("tilt_y", tilt_y),
("tilt_z", tilt_z),
])
if self._wavelength:
out["wavelength"] = self.wavelength * 1e9 # nm
if y_center:
out["y_center"] = y_center
out["y_size"] = self.detector.pixel2 * 1e6 # µm
if z_center:
out["z_center"] = z_center
out["z_size"] = self.detector.pixel1 * 1e6 # µm
return out
def setImageD11(self, param):
"""Set the geometry from the parameter set which contains distance,
o11, o12, o21, o22, tilt_x, tilt_y tilt_z, wavelength, y_center, y_size,
z_center and z_size.
Please refer to the documentation in doc/source/geometry_conversion.rst
for the orientation and units of those values.
:param param: dict with the values to set.
"""
o11 = param.get("o11")
if o11 is not None:
assert o11 == 1, "Only canonical orientation is supported"
o12 = param.get("o12")
if o12 is not None:
assert o12 == 0, "Only canonical orientation is supported"
o21 = param.get("o21")
if o21 is not None:
assert o21 == 0, "Only canonical orientation is supported"
o22 = param.get("o22")
if o22 is not None:
assert o22 == -1, "Only canonical orientation is supported"
self.rot3 = param.get("tilt_x", 0.0)
self.rot2 = param.get("tilt_y", 0.0)
self.rot1 = -param.get("tilt_z", 0.0)
distance = param.get("distance", 0.0) * 1e-6 # ->m
self.dist = distance * cos(self.rot2) * cos(self.rot1)
pixel_v = param.get("z_size", 0.0) * 1e-6
pixel_h = param.get("y_size", 0.0) * 1e-6
self.poni1 = -distance * sin(self.rot2) + pixel_v * param.get("z_center", 0.0)
self.poni2 = +distance * cos(self.rot2) * sin(self.rot1) + pixel_h * param.get("y_center", 0.0)
self.detector = detectors.Detector(pixel1=pixel_v, pixel2=pixel_h)
wl = param.get("wavelength")
if wl:
self.wavelength = wl * 1e-9
self.reset()
return self
def set_param(self, param):
"""set the geometry from a 6-tuple with dist, poni1, poni2, rot1, rot2,
rot3
"""
if len(param) == 6:
self._dist, self._poni1, self._poni2, self._rot1, self._rot2, self._rot3 = param
elif len(param) == 7:
self._dist, self._poni1, self._poni2, self._rot1, self._rot2, self._rot3, self.wavelength = param
else:
raise RuntimeError("Only 6 or 7-uplet are possible")
self.reset()
def set_rot_from_quaternion(self, w, x, y, z):
"""Quaternions are convieniant ways to represent 3D rotation
This method allows to define rot1(left-handed), rot2(left-handed) and
rot3 (right handed) as definied in the documentation from a quaternion,
expressed in the right handed (x1, x2, x3) basis set.
Uses the transformations-library from C. Gohlke
:param w: Real part of the quaternion (correspond to cos alpha/2)
:param x: Imaginary part of the quaternion, correspond to u1*sin(alpha/2)
:param y: Imaginary part of the quaternion, correspond to u2*sin(alpha/2)
:param z: Imaginary part of the quaternion, correspond to u3*sin(alpha/21)
"""
from .third_party.transformations import euler_from_quaternion
euler = euler_from_quaternion((w, x, y, z), axes='sxyz')
self._rot1 = -euler[0]
self._rot2 = -euler[1]
self._rot3 = euler[2]
def quaternion(self, param=None):
"""Calculate the quaternion associated to the current rotations
from rot1, rot2, rot3.
Uses the transformations-library from C. Gohlke
:param param: use this set of parameters instead of the default one.
:return: numpy array with 4 elements [w, x, y, z]
"""
from .third_party.transformations import quaternion_from_euler
if param is None:
rot1 = self.rot1
rot2 = self.rot2
rot3 = self.rot3
else:
rot1 = param[3]
rot2 = param[4]
rot3 = param[5]
return quaternion_from_euler(-rot1, -rot2, rot3, axes="sxyz")
def make_headers(self, type_="list"):
"""Create a configuration for the
:param type: can be "list" or "dict"
:return: the header with the proper format
"""
res = None
if type_ == "dict":
res = self.getPyFAI()
else: # type_ == "list":
f2d = self.getFit2D()
res = ["== pyFAI calibration ==",
"Distance Sample to Detector: %s m" % self.dist,
"PONI: %.3e, %.3e m" % (self.poni1, self.poni2),
"Rotations: %.6f %.6f %.6f rad" % (self.rot1, self.rot2, self.rot3),
"",
"== Fit2d calibration ==",
"Distance Sample-beamCenter: %.3f mm" % f2d["directDist"],
"Center: x=%.3f, y=%.3f pix" % (f2d["centerX"], f2d["centerY"]),
"Tilt: %.3f deg TiltPlanRot: %.3f deg" % (f2d["tilt"], f2d["tiltPlanRotation"]),
"", str(self.detector),
" Detector has a mask: %s " % (self.detector.mask is not None),
" Detector has a dark current: %s " % (self.detector.darkcurrent is not None),
" detector has a flat field: %s " % (self.detector.flatfield is not None),
""]
if self._wavelength is not None:
res.append("Wavelength: %s m" % self._wavelength)
return res
def setChiDiscAtZero(self):
"""
Set the position of the discontinuity of the chi axis between
0 and 2pi. By default it is between pi and -pi
"""
if self.chiDiscAtPi is False:
return
with self._sem:
self.chiDiscAtPi = False
self._cached_array["chi_center"] = None
for key in list(self._cached_array.keys()):
if key.startswith("corner"):
self._cached_array[key] = None
def setChiDiscAtPi(self):
"""
Set the position of the discontinuity of the chi axis between
-pi and +pi. This is the default behavour
"""
if self.chiDiscAtPi is True:
return
with self._sem:
self.chiDiscAtPi = True
self._cached_array["chi_center"] = None
for key in list(self._cached_array.keys()):
if key.startswith("corner"):
self._cached_array[key] = None
@deprecated
def setOversampling(self, iOversampling):
"""
set the oversampling factor
"""
if self._oversampling is None:
lastOversampling = 1.0
else:
lastOversampling = float(self._oversampling)
self._oversampling = iOversampling
self.reset()
self.pixel1 /= self._oversampling / lastOversampling
self.pixel2 /= self._oversampling / lastOversampling
def oversampleArray(self, myarray):
origShape = myarray.shape
origType = myarray.dtype
new = numpy.zeros((origShape[0] * self._oversampling,
origShape[1] * self._oversampling)).astype(origType)
for i in range(self._oversampling):
for j in range(self._oversampling):
new[i::self._oversampling, j::self._oversampling] = myarray
return new
def polarization(self, shape=None, factor=None, axis_offset=0, with_checksum=False):
"""
Calculate the polarization correction accoding to the
polarization factor:
* If the polarization factor is None,
the correction is not applied (returns 1)
* If the polarization factor is 0 (circular polarization),
the correction correspond to (1+(cos2θ)^2)/2
* If the polarization factor is 1 (linear horizontal polarization),
there is no correction in the vertical plane and a node at 2th=90, chi=0
* If the polarization factor is -1 (linear vertical polarization),
there is no correction in the horizontal plane and a node at 2th=90, chi=90
* If the polarization is elliptical, the polarization factor varies between -1 and +1.
The axis_offset parameter allows correction for the misalignement of
the polarization plane (or ellipse main axis) and the the detector's X axis.
:param factor: (Ih-Iv)/(Ih+Iv): varies between 0 (circular/random polarization)
and 1 (where division by 0 could occure at 2th=90, chi=0)
:param axis_offset: Angle between the polarization main axis and
detector's X direction (in radians !!!)
:return: 2D array with polarization correction array
(intensity/polarisation)
"""
shape = self.get_shape(shape)
if shape is None:
raise RuntimeError(("You should provide a shape if the"
" geometry is not yet initiallized"))
if factor is None:
if with_checksum:
one = numpy.ones(shape, dtype=numpy.float32)
return PolarizationArray(one, crc32(one))
else:
return numpy.ones(shape, dtype=numpy.float32)
elif ((factor is True) and
(self._LAST_POLARIZATION in self._cached_array)):
pol = self._cached_array[self._LAST_POLARIZATION]
return pol if with_checksum else pol.array
factor = float(factor)
axis_offset = float(axis_offset)
desc = PolarizationDescription(factor, axis_offset)
pol = self._cached_array.get(desc)
if pol is None or (pol.array.shape != shape):
tth = self.twoThetaArray(shape)
chi = self.chiArray(shape)
with self._sem:
if pol is None or (pol.array.shape != shape):
cos2_tth = numpy.cos(tth) ** 2
pola = 0.5 * (1.0 + cos2_tth -
factor * numpy.cos(2.0 * (chi + axis_offset)) * (1.0 - cos2_tth))
pola = pola.astype(numpy.float32)
polc = crc32(pola)
pol = PolarizationArray(pola, polc)
self._cached_array[desc] = pol
self._cached_array[self._LAST_POLARIZATION] = pol
return pol if with_checksum else pol.array
def calc_transmission(self, t0, shape=None):
"""
Defines the absorption correction for a phosphor screen or a scintillator
from t0, the normal transmission of the screen.
.. math::
Icor = \\frac{Iobs(1-t0)}{1-exp(ln(t0)/cos(incidence))}
let_t = \\frac{1-exp(ln(t0)/cos(incidence))}{1 - t0}
See reference on:
J. Appl. Cryst. (2002). 35, 356–359 G. Wu et al. CCD phosphor
:param t0: value of the normal transmission (from 0 to 1)
:param shape: shape of the array
:return: actual
"""
shape = self.get_shape(shape)
if t0 < 0 or t0 > 1:
logger.error("Impossible value for normal transmission: %s", t0)
return
with self._sem:
if (t0 == self._transmission_normal):
transmission_corr = self._cached_array.get("transmission_corr")
if ((shape is None) or (transmission_corr is not None and shape == transmission_corr.shape)):
return transmission_corr
if shape is None:
raise RuntimeError(("You should provide a shape if the"
" geometry is not yet initiallized"))
with self._sem:
self._transmission_normal = t0
cosa = self._cached_array.get("cos_incidence")
if cosa is None:
cosa = numpy.fromfunction(self.cos_incidence,
shape,
dtype=numpy.float32)
self._cached_array["cos_incidence"] = cosa
transmission_corr = (1.0 - numpy.exp(numpy.log(t0) / cosa)) / (1 - t0)
self._cached_array["transmission_crc"] = crc32(transmission_corr)
self._cached_array["transmission_corr"] = transmission_corr
return transmission_corr
def reset(self):
"""
reset most arrays that are cached: used when a parameter
changes.
"""
self.param = [self._dist, self._poni1, self._poni2,
self._rot1, self._rot2, self._rot3]
self._transmission_normal = None
self._cached_array = {}
def calcfrom1d(self, tth, I, shape=None, mask=None,
dim1_unit=units.TTH, correctSolidAngle=True,
dummy=0.0,
polarization_factor=None, polarization_axis_offset=0,
dark=None, flat=None,
):
"""
Computes a 2D image from a 1D integrated profile
:param tth: 1D array with radial unit, this array needs to be ordered
:param I: scattering intensity, corresponding intensity
:param shape: shape of the image (if not defined by the detector)
:param dim1_unit: unit for the "tth" array
:param correctSolidAngle:
:param dummy: value for masked pixels
:param polarization_factor: set to true to use previously used value
:param polarization_axis_offset: axis_offset to be send to the polarization method
:param dark: dark current correction
:param flat: flatfield corrction
:return: 2D image reconstructed
"""
dim1_unit = units.to_unit(dim1_unit)
tth = tth / dim1_unit.scale
if shape is None:
shape = self.detector.max_shape
try:
ttha = self.__getattribute__(dim1_unit.center)(shape)
except Exception:
raise RuntimeError("in pyFAI.Geometry.calcfrom1d: " +
str(dim1_unit) + " not (yet?) Implemented")
calcimage = numpy.interp(ttha.ravel(), tth, I)
calcimage.shape = shape
if correctSolidAngle:
calcimage *= self.solidAngleArray(shape)
if polarization_factor is not None:
calcimage *= self.polarization(shape, polarization_factor,
axis_offset=polarization_axis_offset,
with_checksum=False)
if flat is not None:
assert flat.shape == tuple(shape)
calcimage *= flat
if dark is not None:
assert dark.shape == tuple(shape)
calcimage += dark
if mask is not None:
assert mask.shape == tuple(shape)
calcimage[numpy.where(mask)] = dummy
return calcimage
def calcfrom2d(self, I, tth, chi, shape=None, mask=None,
dim1_unit=units.TTH, dim2_unit=units.CHI_DEG,
correctSolidAngle=True, dummy=0.0,
polarization_factor=None, polarization_axis_offset=0,
dark=None, flat=None,
):
"""
Computes a 2D image from a cake / 2D integrated image
:param I: scattering intensity, as an image n_tth, n_chi
:param tth: 1D array with radial unit, this array needs to be ordered
:param chi: 1D array with azimuthal unit, this array needs to be ordered
:param shape: shape of the image (if not defined by the detector)
:param dim1_unit: unit for the "tth" array
:param dim2_unit: unit for the "chi" array
:param correctSolidAngle:
:param dummy: value for masked pixels
:param polarization_factor: set to true to use previously used value
:param polarization_axis_offset: axis_offset to be send to the polarization method
:param dark: dark current correction
:param flat: flatfield corrction
:return: 2D image reconstructed
"""
dim1_unit = units.to_unit(dim1_unit)
dim2_unit = units.to_unit(dim2_unit)
tth = numpy.ascontiguousarray(tth, numpy.float64) / dim1_unit.scale
chi = numpy.ascontiguousarray(chi, numpy.float64) / dim2_unit.scale
if shape is None:
shape = self.detector.max_shape
try:
ttha = self.__getattribute__(dim1_unit.center)(shape)
except Exception:
raise RuntimeError("in pyFAI.Geometry.calcfrom2d: " +
str(dim1_unit) + " not (yet?) Implemented")
chia = self.chiArray(shape)
built_mask = numpy.ones(shape, dtype=numpy.int8)
empty_data = numpy.zeros(shape, dtype=numpy.float32)
from .ext.inpainting import polar_interpolate
calcimage = polar_interpolate(empty_data,
mask=built_mask,
radial=ttha,
azimuthal=chia,
polar=I,
rad_pos=tth,
azim_pos=chi)
if correctSolidAngle:
calcimage *= self.solidAngleArray(shape)
if polarization_factor is not None:
calcimage *= self.polarization(shape, polarization_factor,
axis_offset=polarization_axis_offset,
with_checksum=False)
if flat is not None:
assert flat.shape == tuple(shape)
calcimage *= flat
if dark is not None:
assert dark.shape == tuple(shape)
calcimage += dark
if mask is not None:
assert mask.shape == tuple(shape)
calcimage[numpy.where(mask)] = dummy
return calcimage
def __copy__(self):
""":return: a shallow copy of itself.
"""
new = self.__class__(detector=self.detector)
# transfer numerical values:
numerical = ["_dist", "_poni1", "_poni2", "_rot1", "_rot2", "_rot3",
"chiDiscAtPi", "_wavelength",
'_oversampling', '_correct_solid_angle_for_spline',
'_transmission_normal',
]
# array = []
for key in numerical:
new.__setattr__(key, self.__getattribute__(key))
new.param = [new._dist, new._poni1, new._poni2,
new._rot1, new._rot2, new._rot3]
new._cached_array = self._cached_array.copy()
return new
def __deepcopy__(self, memo=None):
"""deep copy
:param memo: dict with modified objects
:return: a deep copy of itself."""
numerical = ["_dist", "_poni1", "_poni2", "_rot1", "_rot2", "_rot3",
"chiDiscAtPi", "_dssa_order", "_wavelength",
'_oversampling', '_correct_solid_angle_for_spline',
'_transmission_normal',
]
if memo is None:
memo = {}
new = self.__class__()
memo[id(self)] = new
new_det = self.detector.__deepcopy__(memo)
new.detector = new_det
for key in numerical:
old_value = self.__getattribute__(key)
memo[id(old_value)] = old_value
new.__setattr__(key, old_value)
new_param = [new._dist, new._poni1, new._poni2,
new._rot1, new._rot2, new._rot3]
memo[id(self.param)] = new_param
new.param = new_param
cached = {}
memo[id(self._cached_array)] = cached
for key, old_value in self._cached_array.copy().items():
if "copy" in dir(old_value):
new_value = old_value.copy()
memo[id(old_value)] = new_value
new._cached_array = cached
return new
def rotation_matrix(self, param=None):
"""Compute and return the detector tilts as a single rotation matrix
Corresponds to rotations about axes 1 then 2 then 3 (=> 0 later on)
For those using spd (PB = Peter Boesecke), tilts relate to
this system (JK = Jerome Kieffer) as follows:
JK1 = PB2 (Y)
JK2 = PB1 (X)
JK3 = PB3 (Z)
...slight differences will result from the order
FIXME: make backwards and forwards converter helper function
axis1 is vertical and perpendicular to beam
axis2 is horizontal and perpendicular to beam
axis3 is along the beam, becomes axis0
see:
http://pyfai.readthedocs.io/en/latest/geometry.html#detector-position
or ../doc/source/img/PONI.png
:param param: list of geometry parameters, defaults to self.param
uses elements [3],[4],[5]
:type param: list of float
:return: rotation matrix
:rtype: 3x3 float array
"""
if param is None:
param = self.param
cos_rot1 = cos(param[3])
cos_rot2 = cos(param[4])
cos_rot3 = cos(param[5])
sin_rot1 = sin(param[3])
sin_rot2 = sin(param[4])
sin_rot3 = sin(param[5])
# Rotation about axis 1: Note this rotation is left-handed
rot1 = numpy.array([[1.0, 0.0, 0.0],
[0.0, cos_rot1, sin_rot1],
[0.0, -sin_rot1, cos_rot1]])
# Rotation about axis 2. Note this rotation is left-handed
rot2 = numpy.array([[cos_rot2, 0.0, -sin_rot2],
[0.0, 1.0, 0.0],
[sin_rot2, 0.0, cos_rot2]])
# Rotation about axis 3: Note this rotation is right-handed
rot3 = numpy.array([[cos_rot3, -sin_rot3, 0.0],
[sin_rot3, cos_rot3, 0.0],
[0.0, 0.0, 1.0]])
rotation_matrix = numpy.dot(numpy.dot(rot3, rot2),
rot1) # 3x3 matrix
return rotation_matrix
# ############################################
# Accessors and public properties of the class
# ############################################
def get_shape(self, shape=None):
"""Guess what is the best shape ....
:param shape: force this value (2-tuple of int)
:return: 2-tuple of int
"""
if shape is None:
shape = self.detector.shape
if shape is None:
for ary in self._cached_array.values():
if ary is not None:
if hasattr(ary, "shape"):
shape = ary.shape[:2]
elif hasattr(ary, "array"):
shape = ary.array.shape[:2]
break
return shape
def set_dist(self, value):
if isinstance(value, float):
self._dist = value
else:
self._dist = float(value)
self.reset()
def get_dist(self):
return self._dist
dist = property(get_dist, set_dist)
def set_poni1(self, value):
if isinstance(value, float):
self._poni1 = value
elif isinstance(value, (tuple, list)):
self._poni1 = float(value[0])
else:
self._poni1 = float(value)
self.reset()
def get_poni1(self):
return self._poni1
poni1 = property(get_poni1, set_poni1)
def set_poni2(self, value):
if isinstance(value, float):
self._poni2 = value
elif isinstance(value, (tuple, list)):
self._poni2 = float(value[0])
else:
self._poni2 = float(value)
self.reset()
def get_poni2(self):
return self._poni2
poni2 = property(get_poni2, set_poni2)
def set_rot1(self, value):
if isinstance(value, float):
self._rot1 = value
elif isinstance(value, (tuple, list)):
self._rot1 = float(value[0])
else:
self._rot1 = float(value)
self.reset()
def get_rot1(self):
return self._rot1
rot1 = property(get_rot1, set_rot1)
def set_rot2(self, value):
if isinstance(value, float):
self._rot2 = value
elif isinstance(value, (tuple, list)):
self._rot2 = float(value[0])
else:
self._rot2 = float(value)
self.reset()
def get_rot2(self):
return self._rot2
rot2 = property(get_rot2, set_rot2)
def set_rot3(self, value):
if isinstance(value, float):
self._rot3 = value
elif isinstance(value, (tuple, list)):
self._rot3 = float(value[0])
else:
self._rot3 = float(value)
self.reset()
def get_rot3(self):
return self._rot3
rot3 = property(get_rot3, set_rot3)
def set_wavelength(self, value):
old_wl = self._wavelength
if isinstance(value, float):
self._wavelength = value
elif isinstance(value, (tuple, list)):
self._wavelength = float(value[0])
else:
self._wavelength = float(value)
qa = dqa = q_corner = None
if old_wl and self._wavelength:
if self._cached_array.get("q_center") is not None:
qa = self._cached_array["q_center"] * old_wl / self._wavelength
q_corner = self._cached_array.get("q_corner")
if q_corner is not None:
q_corner[..., 0] = q_corner[..., 0] * old_wl / self._wavelength
self.reset()
# restore updated values
self._cached_array["q_delta"] = dqa
self._cached_array["q_center"] = qa
self._cached_array["q_corner"] = q_corner
def get_wavelength(self):
return self._wavelength
wavelength = property(get_wavelength, set_wavelength)
def get_ttha(self):
return self._cached_array.get("2th_center")
def set_ttha(self, _):
logger.error("You are not allowed to modify 2theta array")
def del_ttha(self):
self._cached_array["2th_center"] = None
ttha = property(get_ttha, set_ttha, del_ttha, "2theta array in cache")
def get_chia(self):
return self._cached_array.get("chi_center")
def set_chia(self, _):
logger.error("You are not allowed to modify chi array")
def del_chia(self):
self._cached_array["chi_center"] = None
chia = property(get_chia, set_chia, del_chia, "chi array in cache")
def get_dssa(self):
key = "solid_angle#%s" % (self._dssa_order)
return self._cached_array.get(key)
def set_dssa(self, _):
logger.error("You are not allowed to modify solid angle array")
def del_dssa(self):
self._cached_array["solid_angle#%s" % (self._dssa_order)] = None
self._cached_array["solid_angle#%s_crc" % (self._dssa_order)] = None
dssa = property(get_dssa, set_dssa, del_dssa, "solid angle array in cache")
def get_qa(self):
return self._cached_array.get("q_center")
def set_qa(self, _):
logger.error("You are not allowed to modify Q array")
def del_qa(self):
self._cached_array["q_center"] = None
qa = property(get_qa, set_qa, del_qa, "Q array in cache")
def get_ra(self):
return self._cached_array.get("r_center")
def set_ra(self, _):
logger.error("You are not allowed to modify R array")
def del_ra(self):
self.self._cached_array["r_center"] = None
ra = property(get_ra, set_ra, del_ra, "R array in cache")
def get_pixel1(self):
return self.detector.pixel1
def set_pixel1(self, pixel1):
self.detector.pixel1 = pixel1
pixel1 = property(get_pixel1, set_pixel1)
def get_pixel2(self):
return self.detector.pixel2
def set_pixel2(self, pixel2):
self.detector.pixel2 = pixel2
pixel2 = property(get_pixel2, set_pixel2)
def get_splineFile(self):
return self.detector.splineFile
def set_splineFile(self, splineFile):
self.detector.splineFile = splineFile
splineFile = property(get_splineFile, set_splineFile)
def get_spline(self):
return self.detector.spline
def set_spline(self, spline):
self.detector.spline = spline
spline = property(get_spline, set_spline)
def get_correct_solid_angle_for_spline(self):
return self._correct_solid_angle_for_spline
def set_correct_solid_angle_for_spline(self, value):
v = bool(value)
with self._sem:
if v != self._correct_solid_angle_for_spline:
self._dssa = None
self._correct_solid_angle_for_spline = v
correct_SA_spline = property(get_correct_solid_angle_for_spline,
set_correct_solid_angle_for_spline)
def set_maskfile(self, maskfile):
self.detector.set_maskfile(maskfile)
def get_maskfile(self):
return self.detector.get_maskfile()
maskfile = property(get_maskfile, set_maskfile)
def set_mask(self, mask):
self.detector.set_mask(mask)
def get_mask(self):
return self.detector.get_mask()
mask = property(get_mask, set_mask)
# Property to provide _dssa and _dssa_crc and so one to maintain the API
@property
def _dssa(self):
key = "solid_angle#%s" % (self._dssa_order)
return self._cached_array.get(key)
@property
def _dssa_crc(self):
key = "solid_angle#%s_crc" % (self._dssa_order)
return self._cached_array.get(key)
@property
def _cosa(self):
return self._cached_array.get("cos_incidence")
@property
def _transmission_crc(self):
return self._cached_array.get("transmission_crc")
@property
def _transmission_corr(self):
return self._cached_array.get("transmission_corr")
def __getnewargs_ex__(self):
"Helper function for pickling geometry"
return (self.dist, self.poni1, self.poni2,
self.rot1, self.rot2, self.rot3,
self.pixel1, self.pixel2,
self.splineFile, self.detector, self.wavelength), {}
def __getstate__(self):
"""Helper function for pickling geometry
:return: the state of the object
"""
state_blacklist = ('_sem',)
state = self.__dict__.copy()
for key in state_blacklist:
if key in state:
del state[key]
return state
def __setstate__(self, state):
"""Helper function for unpickling geometry
:param state: the state of the object
"""
for statekey, statevalue in state.items():
setattr(self, statekey, statevalue)
self._sem = threading.Semaphore()
|