File: geometryRefinement.py

package info (click to toggle)
pyfai 0.20.0%2Bdfsg1-3
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 78,460 kB
  • sloc: python: 49,743; lisp: 7,059; sh: 225; ansic: 165; makefile: 119
file content (833 lines) | stat: -rw-r--r-- 33,045 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
#    Project: Azimuthal integration
#             https://github.com/silx-kit/pyFAI
#
#    Copyright (C) 2012-2018 European Synchrotron Radiation Facility, Grenoble, France
#
#    Principal author:       Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.

"""Module used to perform the geometric refinement of the model
"""

__author__ = "Jerome Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "04/12/2020"
__status__ = "development"

import os
import tempfile
import subprocess
import logging
import numpy
import types
from math import pi
from . import azimuthalIntegrator
from .calibrant import Calibrant, CALIBRANT_FACTORY
from .utils.ellipse import fit_ellipse
AzimuthalIntegrator = azimuthalIntegrator.AzimuthalIntegrator
from scipy.optimize import fmin, leastsq, fmin_slsqp

logger = logging.getLogger(__name__)

try:
    from scipy.optimize import basinhopping as anneal
except ImportError:
    from scipy.optimize import anneal
try:
    from scipy.optimize import curve_fit
except ImportError:
    logger.debug("Backtrace", exc_info=True)
    curve_fit = None

if os.name != "nt":
    WindowsError = RuntimeError

ROCA = "/opt/saxs/roca"

####################
# GeometryRefinement
####################


class GeometryRefinement(AzimuthalIntegrator):
    PARAM_ORDER = ("dist", "poni1", "poni2", "rot1", "rot2", "rot3", "wavelength")

    def __init__(self, data=None, dist=1, poni1=None, poni2=None,
                 rot1=0, rot2=0, rot3=0,
                 pixel1=None, pixel2=None, splineFile=None, detector=None,
                 wavelength=None, calibrant=None):
        """
        :param data: ndarray float64 shape = n, 3
            col0: pos in dim0 (in pixels)
            col1: pos in dim1 (in pixels)
            col2: ring index in calibrant object
        :param dist: guessed sample-detector distance (optional, in m)
        :param poni1: guessed PONI coordinate along the Y axis (optional, in m)
        :param poni2: guessed PONI coordinate along the X axis (optional, in m)
        :param rot1: guessed tilt of the detector around the Y axis (optional, in rad)
        :param rot2: guessed tilt of the detector around the X axis (optional, in rad)
        :param rot3: guessed tilt of the detector around the incoming beam axis (optional, in rad)
        :param pixel1: Pixel size along the vertical direction of the detector (in m), almost mandatory
        :param pixel2: Pixel size along the horizontal direction of the detector (in m), almost mandatory
        :param splineFile: file describing the detector as 2 cubic splines. Replaces pixel1 & pixel2
        :param detector: name of the detector or Detector instance. Replaces splineFile, pixel1 & pixel2
        :param wavelength: wavelength in m (1.54e-10)
        :param calibrant: instance of pyFAI.calibrant.Calibrant containing the d-Spacing

        """
        if data is None:
            self.data = None
        else:
            self.data = numpy.array(data, dtype=numpy.float64)
            assert self.data.ndim == 2
            assert self.data.shape[1] in [3, 4]  # 3 for non weighted, 4 for weighted refinement
            assert self.data.shape[0] > 0

        if (pixel1 is None) and (pixel2 is None) and (splineFile is None) and (detector is None):
            raise RuntimeError("Setting up the geometry refinement without knowing the detector makes little sense")
        AzimuthalIntegrator.__init__(self, dist, 0, 0,
                                     rot1, rot2, rot3,
                                     pixel1, pixel2, splineFile, detector, wavelength=wavelength)

        if calibrant is None:
            self.calibrant = Calibrant()
        else:
            if isinstance(calibrant, Calibrant):
                self.calibrant = calibrant
            elif type(calibrant) in types.StringTypes:
                if calibrant in CALIBRANT_FACTORY:
                    self.calibrant = CALIBRANT_FACTORY(calibrant)
                else:
                    self.calibrant = Calibrant(filename=calibrant)
            else:
                self.calibrant = Calibrant(calibrant)

        self.calibrant.setWavelength_change2th(self.wavelength)

        if (poni1 is None) or (poni2 is None):
            self.guess_poni()
        else:
            self.poni1 = float(poni1)
            self.poni2 = float(poni2)
        self._dist_min = 0
        self._dist_max = 10
        self._poni1_min = -10000 * self.pixel1
        self._poni1_max = 15000 * self.pixel1
        self._poni2_min = -10000 * self.pixel2
        self._poni2_max = 15000 * self.pixel2
        self._rot1_min = -pi
        self._rot1_max = pi
        self._rot2_min = -pi
        self._rot2_max = pi
        self._rot3_min = -pi
        self._rot3_max = pi
        self._wavelength_min = 1e-15
        self._wavelength_max = 100.e-10

    def guess_poni(self, fixed=None):
        """PONI can be guessed by the centroid of the ring with lowest 2Theta

        It may try to fit an ellipse and sometimes it works
        """

        if len(self.calibrant.dSpacing):
            # logger.warning(self.calibrant.__repr__())s
            tth = self.calc_2th(self.data[:, 2])
        else:  # assume rings are in decreasing dSpacing in the file
            tth = self.data[:, 2]
        asrt = tth.argsort()
        tth = tth[asrt]
        srtdata = self.data[asrt]
        tth_min = tth.min()
        smallRing = srtdata[tth < (tth_min + 1e-6)]
        smallRing1 = smallRing[:, 0]
        smallRing2 = smallRing[:, 1]
        smallRing_in_m = self.detector.calc_cartesian_positions(smallRing1,
                                                                smallRing2)
        nbpt = len(smallRing)
        worked = False
        if nbpt > 5:
            # If there are many control point on the inner-most ring, fit an ellipse
            try:
                ellipse = fit_ellipse(*smallRing_in_m[:2])
                direct_dist = ellipse.half_long_axis / numpy.tan(tth_min)
                tilt = numpy.arctan2(ellipse.half_long_axis - ellipse.half_short_axis, ellipse.half_short_axis)
                cos_tilt = numpy.cos(tilt)
                sin_tilt = numpy.sin(tilt)
                angle = (ellipse.angle + numpy.pi / 2.0) % numpy.pi
                cos_tpr = numpy.cos(angle)
                sin_tpr = numpy.sin(angle)
                dist = direct_dist * cos_tilt
                poni1 = ellipse.center_1 - direct_dist * sin_tilt * sin_tpr
                poni2 = ellipse.center_2 - direct_dist * sin_tilt * cos_tpr
                rot2 = numpy.arcsin(sin_tilt * sin_tpr)  # or pi-
                rot1 = numpy.arccos(min(1.0, max(-1.0, (cos_tilt / numpy.sqrt(1 - sin_tpr * sin_tpr * sin_tilt * sin_tilt)))))  # + or -
                if cos_tpr * sin_tilt > 0:
                    rot1 = -rot1
                rot3 = 0
            except ValueError:
                worked = False
            else:
                if numpy.isnan(dist + poni1 + poni2 + rot1 + rot2 + rot3):
                    worked = False
                else:
                    worked = True
                    self.update_values(dist=dist, poni1=poni1, poni2=poni2,
                                       rot1=rot1, rot2=rot2, rot3=rot3,
                                       fixed=fixed)
        if not worked:
            poni1 = smallRing_in_m[0].sum() / nbpt
            poni2 = smallRing_in_m[1].sum() / nbpt
            self.update_values(poni1=poni1, poni2=poni2, fixed=fixed)

    def update_values(self, dist=None, wavelength=None, poni1=None, poni2=None,
                      rot1=None, rot2=None, rot3=None, fixed=None):
        """Update values taking care of fixed parameters.
        """
        # TODO: Take care of ranges too
        if fixed is None:
            fixed = set([])
        if dist is not None and "dist" not in fixed:
            self.dist = dist
        if wavelength is not None and "wavelength" not in fixed:
            self.wavelength = wavelength
        if poni1 is not None and "poni1" not in fixed:
            self.poni1 = poni1
        if poni2 is not None and "poni2" not in fixed:
            self.poni2 = poni2
        if rot1 is not None and "rot1" not in fixed:
            self.rot1 = rot1
        if rot2 is not None and "rot2" not in fixed:
            self.rot2 = rot2
        if rot3 is not None and "rot3" not in fixed:
            self.rot3 = rot3

    def set_tolerance(self, value=10):
        """
        Set the tolerance for a refinement of the geometry; in percent of the original value

        :param value: Tolerance as a percentage

        """
        low = 1.0 - value / 100.
        hi = 1.0 + value / 100.
        self.dist_min = low * self.dist
        self.dist_max = hi * self.dist
        if abs(self.poni1) > (value / 100.) ** 2:
            self.poni1_min = min(low * self.poni1, hi * self.poni1)
            self.poni1_max = max(low * self.poni1, hi * self.poni1)
        else:
            self.poni1_min = -(value / 100.) ** 2
            self.poni1_max = (value / 100.) ** 2
        if abs(self.poni2) > (value / 100.) ** 2:
            self.poni2_min = min(low * self.poni2, hi * self.poni2)
            self.poni2_max = max(low * self.poni2, hi * self.poni2)
        else:
            self.poni2_min = -(value / 100.) ** 2
            self.poni2_max = (value / 100.) ** 2
        if abs(self.rot1) > (value / 100.) ** 2:
            self.rot1_min = min(low * self.rot1, hi * self.rot1)
            self.rot1_max = max(low * self.rot1, hi * self.rot1)
        else:
            self.rot1_min = -(value / 100.) ** 2
            self.rot1_max = (value / 100.) ** 2
        if abs(self.rot2) > (value / 100.) ** 2:
            self.rot2_min = min(low * self.rot2, hi * self.rot2)
            self.rot2_max = max(low * self.rot2, hi * self.rot2)
        else:
            self.rot2_min = -(value / 100.) ** 2
            self.rot2_max = (value / 100.) ** 2
        if abs(self.rot3) > (value / 100.) ** 2:
            self.rot3_min = min(low * self.rot3, hi * self.rot3)
            self.rot3_max = max(low * self.rot3, hi * self.rot3)
        else:
            self.rot3_min = -(value / 100.) ** 2
            self.rot3_max = (value / 100.) ** 2
        self.wavelength_min = low * self.wavelength
        self.wavelength_max = hi * self.wavelength

    def calc_2th(self, rings, wavelength=None):
        """
        :param rings: indices of the rings. starts at 0 and self.dSpacing should be long enough !!!
        :param wavelength: wavelength in meter
        """
        if wavelength is None:
            wavelength = self.wavelength
        if wavelength <= 0:
            return [numpy.finfo("float32").max] * len(rings)
        rings = numpy.ascontiguousarray(rings, dtype=numpy.int32)

        if wavelength != self.calibrant.wavelength:
            self.calibrant.setWavelength_change2th(wavelength)
        ary = self.calibrant.get_2th()
        if len(ary) < rings.max():
            # complete turn ~ 2pi ~ 7: help the optimizer to find the right way
            ary += [10.0 * (rings.max() - len(ary))] * (1 + rings.max() - len(ary))
        tth = numpy.array(ary, dtype=numpy.float64)
        if rings.max() >= len(tth):
            raise IndexError("Ring indices %s are not all available at this wavelength (%s)" % (numpy.unique(rings), wavelength))
        return tth[rings]

    def calc_param7(self, param, free, const):
        """Calculate the "legacy" 6/7 parameters from a number of free and fixed parameters"""
        param7 = [   ]
        for name in self.PARAM_ORDER:
            if name in free:
                value = param[free.index(name)]
                if name == "wavelength":
                    param7.append(value * 1e-10)
                else:
                    param7.append(value)
            else:
                param7.append(const[name])
        return param7

    def residu1(self, param, d1, d2, rings):
        return self.tth(d1, d2, param) - self.calc_2th(rings, self.wavelength)

    def residu1_wavelength(self, param, d1, d2, rings):
        return self.tth(d1, d2, param) - self.calc_2th(rings, param[6] * 1e-10)

    def residu2(self, param, d1, d2, rings):
        # dot product is faster ...
        # return (self.residu1(param, d1, d2, rings) ** 2).sum()
        t = self.residu1(param, d1, d2, rings)
        return numpy.dot(t, t)

    def residu2_weighted(self, param, d1, d2, rings, weight):
        # return (weight * self.residu1(param, d1, d2, rings) ** 2).sum()
        t = weight * self.residu1(param, d1, d2, rings)
        return numpy.dot(t, t)

    def residu2_wavelength(self, param, d1, d2, rings):
        # return (self.residu1_wavelength(param, d1, d2, rings) ** 2).sum()
        t = self.residu1_wavelength(param, d1, d2, rings)
        return numpy.dot(t, t)

    def residu2_wavelength_weighted(self, param, d1, d2, rings, weight):
        # return (weight * self.residu1_wavelength(param, d1, d2, rings) ** 2).sum()
        t = weight * self.residu1_wavelength(param, d1, d2, rings)
        return numpy.dot(t, t)

    def residu3(self, param, free, const, d1, d2, rings, weights=None):
        "Preform the calculation of $sum_(2\theta_e-2\theta_i)²$"
        param7 = self.calc_param7(param, free, const)
        delta_theta = self.tth(d1, d2, param7[:6]) - self.calc_2th(rings, param7[6])
        if weights:
            delta_theta *= weights
        return numpy.dot(delta_theta, delta_theta)

    def refine1(self):
        self.param = numpy.array([self._dist, self._poni1, self._poni2,
                                  self._rot1, self._rot2, self._rot3],
                                 dtype=numpy.float64)
        new_param, rc = leastsq(self.residu1, self.param,
                                args=(self.data[:, 0],
                                      self.data[:, 1],
                                      self.data[:, 2]))
        oldDeltaSq = self.chi2(tuple(self.param))
        newDeltaSq = self.chi2(tuple(new_param))
        logger.info("Least square retcode=%s %s --> %s",
                    rc, oldDeltaSq, newDeltaSq)
        if newDeltaSq < oldDeltaSq:
            i = abs(self.param - new_param).argmax()
            d = ["dist", "poni1", "poni2", "rot1", "rot2", "rot3"]
            logger.info("maxdelta on %s: %s --> %s ",
                        d[i], self.param[i], new_param[i])
            self.set_param(new_param)
            return newDeltaSq
        else:
            return oldDeltaSq

    def refine3(self, maxiter=1000000, fix=None):
        """
        Same as refine2 except it does not rely on upper_bound == lower_bound to fix parameters
        
        This is a work around the regression introduced with scipy 1.5
        
        :param maxiter: maximum number of iteration for finding the solution
        :param fix: parameters to be fixed. Does not assume the wavelength to be fixed by default
        :return: $sum_(2\theta_e-2\theta_i)²$
        """
        npt, ncol = self.data.shape
        if  ncol >= 3:
            pos0 = self.data[:, 0]
            pos1 = self.data[:, 1]
            ring = self.data[:, 2].astype(numpy.int32)
        if ncol == 4:
            weight = self.data[:, 3]
        else:
            weight = None

        free = []
        param = []
        bounds = []
        const = {}
        for name in self.PARAM_ORDER:
            value = getattr(self, name)
            if name in fix:
                const[name] = value
            else:
                minmax = (getattr(self, "_%s_min" % name), getattr(self, "_%s_max" % name))
                if name == "wavelength":
                    # enforces an upper limit to the wavelength depending on the number of rings.
                    max_wavelength = self.calibrant.get_max_wavelength(ring.max())
                    value = min(value, max_wavelength)
                    value = value * 1e10
                    minmax = (1e10 * minmax[0], 1e10 * min(minmax[1], max_wavelength))
                free.append(name)
                param.append(value)
                bounds.append(minmax)
        param = numpy.array(param)

        old_delta_theta2 = self.residu3(param, free, const, pos0, pos1, ring, weight) / npt

        new_param = fmin_slsqp(self.residu3, param, iter=maxiter,
                               args=(free, const, pos0, pos1, ring, weight),
                               bounds=bounds,
                               acc=1.0e-12,
                               iprint=(logger.getEffectiveLevel() <= logging.INFO))
        new_param7 = self.calc_param7(new_param, free, const)

        new_delta_theta2 = self.residu3(new_param, free, const, pos0, pos1, ring, weight) / npt

        logger.info("Constrained Least square %s --> %s", old_delta_theta2, new_delta_theta2)

        if new_delta_theta2 < old_delta_theta2:
            i = abs(param - new_param).argmax()

            logger.info("maxdelta on %s: %s --> %s ",
                        free[i], param[i], new_param[i])

            param7 = self.calc_param7(new_param, free, const)
            self.set_param(param7)
            return new_delta_theta2
        else:
            return old_delta_theta2

    def refine2(self, maxiter=1000000, fix=None):
        if not fix:
            fix = ["wavelength"]
        return self.refine3(maxiter=maxiter, fix=fix)

    def refine2_wavelength(self, maxiter=1000000, fix=None):
        """Refine all parameters including the wavelength.

        This implies that it enforces an upper limit to the wavelength depending
        on the number of rings.
        """
        if fix is None:
            fix = ["wavelength"]
        return self.refine3(maxiter=maxiter, fix=fix)

    def simplex(self, maxiter=1000000):
        self.param = numpy.array([self.dist, self.poni1, self.poni2,
                                  self.rot1, self.rot2, self.rot3],
                                 dtype=numpy.float64)
        new_param = fmin(self.residu2, self.param,
                         args=(self.data[:, 0],
                               self.data[:, 1],
                               self.data[:, 2]),
                         maxiter=maxiter,
                         xtol=1.0e-12)
        oldDeltaSq = self.chi2(tuple(self.param)) / self.data.shape[0]
        newDeltaSq = self.chi2(tuple(new_param)) / self.data.shape[0]
        logger.info("Simplex %s --> %s", oldDeltaSq, newDeltaSq)
        if newDeltaSq < oldDeltaSq:
            i = abs(self.param - new_param).argmax()
            d = ["dist", "poni1", "poni2", "rot1", "rot2", "rot3"]
            logger.info("maxdelta on %s : %s --> %s ",
                        d[i], self.param[i], new_param[i])
            self.set_param(new_param)
            return newDeltaSq
        else:
            return oldDeltaSq

    def anneal(self, maxiter=1000000):
        self.param = [self.dist, self.poni1, self.poni2,
                      self.rot1, self.rot2, self.rot3]
        result = anneal(self.residu2, self.param,
                        args=(self.data[:, 0],
                              self.data[:, 1],
                              self.data[:, 2]),
                        lower=[self._dist_min,
                               self._poni1_min,
                               self._poni2_min,
                               self._rot1_min,
                               self._rot2_min,
                               self._rot3_min],
                        upper=[self._dist_max,
                               self._poni1_max,
                               self._poni2_max,
                               self._rot1_max,
                               self._rot2_max,
                               self._rot3_max],
                        maxiter=maxiter)
        new_param = result[0]
        oldDeltaSq = self.chi2() / self.data.shape[0]
        newDeltaSq = self.chi2(new_param) / self.data.shape[0]
        logger.info("Anneal  %s --> %s", oldDeltaSq, newDeltaSq)
        if newDeltaSq < oldDeltaSq:
            i = abs(self.param - new_param).argmax()
            d = ["dist", "poni1", "poni2", "rot1", "rot2", "rot3"]
            logger.info("maxdelta on %s : %s --> %s ",
                        d[i], self.param[i], new_param[i])
            self.set_param(new_param)
            return newDeltaSq
        else:
            return oldDeltaSq

    def chi2(self, param=None):
        if param is None:
            param = self.param[:]
        return self.residu2(param,
                            self.data[:, 0], self.data[:, 1], self.data[:, 2])

    def chi2_wavelength(self, param=None):
        if param is None:
            param = self.param
            if len(param) == 6:
                param.append(1e10 * self.wavelength)
        return self.residu2_wavelength(param,
                                       self.data[:, 0],
                                       self.data[:, 1],
                                       self.data[:, 2])

    def curve_fit(self, with_rot=True):
        """Refine the geometry and provide confidence interval
        Use curve_fit from scipy.optimize to not only refine the geometry (unconstrained fit)

        :param with_rot: include rotation intro error measurment
        :return: std_dev, confidence
        """
        if not curve_fit:
            import scipy
            logger.error("curve_fit method needs a newer scipy: at lease scipy 0.9, you are running: %s", scipy.version.version)
        d1 = self.data[:, 0]
        d2 = self.data[:, 1]
        size = d1.size
        x = d1, d2
        rings = self.data[:, 2].astype(numpy.int32)

        def f_with_rot(x, *param):
            return self.tth(x[0], x[1], numpy.concatenate((param, [self.rot3])))

        def f_no_rot(x, *param):
            return self.tth(x[0], x[1], numpy.concatenate((param, [self.rot1, self.rot2, self.rot3])))

        y = self.calc_2th(rings, self.wavelength)
        param0 = numpy.array([self.dist, self.poni1, self.poni2, self.rot1, self.rot2, self.rot3], dtype=numpy.float64)
        ref = self.residu2(param0, d1, d2, rings)
        print("param0: %s %s" % (param0, ref))
        if with_rot:
            popt, pcov = curve_fit(f_with_rot, x, y, param0[:-1])
            popt = numpy.concatenate((popt, [self.rot3]))
        else:
            popt, pcov = curve_fit(f_no_rot, x, y, param0[:-3])
            popt = numpy.concatenate((popt, [self.rot1, self.rot2, self.rot3]))
        obt = self.residu2(popt, d1, d2, rings)
        print("param1: %s %s" % (popt, obt))
        print(pcov)
        err = numpy.sqrt(numpy.diag(pcov))
        print("err: %s" % err)
        if obt < ref:
            self.set_param(popt)
        error = {}
        confidence = {}
        for k, v in zip(("dist", "poni1", "poni2", "rot1", "rot2", "rot3"), err):
            error[k] = v
            confidence[k] = 1.96 * v / numpy.sqrt(size)

        print("Std dev  as sqrt of the diag of covariance:\n%s" % error)
        print("Confidence as 1.95 sigma/sqrt(n):\n%s" % confidence)
        return error, confidence

    def confidence(self, with_rot=True):
        """Confidence interval obtained from the second derivative of the error function
        next to its minimum value.

        Note the confidence interval increases with the number of points which is "surprizing"

        :param with_rot: if true include rot1 & rot2 in the parameter set.
        :return: std_dev, confidence
        """
        epsilon = 1e-5
        d1 = self.data[:, 0]
        d2 = self.data[:, 1]
        r = self.data[:, 2].astype(numpy.int32)
        param0 = numpy.array([self.dist, self.poni1, self.poni2, self.rot1, self.rot2, self.rot3], dtype=numpy.float64)
        ref = self.residu2(param0, d1, d2, r)
        print(ref)
        if with_rot:
            size = 5
        else:
            size = 3
        hessian = numpy.zeros((size, size), dtype=numpy.float64)

        delta = abs(epsilon * param0)
        delta[abs(param0) < epsilon] = epsilon
        print(delta)
        for i in range(size):
            # Diagonal terms:
            deltai = delta[i]
            param = param0.copy()
            param[i] += deltai
            value_plus = self.residu2(param, d1, d2, r)
            param = param0.copy()
            param[i] -= deltai
            value_moins = self.residu2(param, d1, d2, r)
            hessian[i, i] = (value_plus + value_moins - 2.0 * ref) / (deltai ** 2)

            for j in range(i + 1, size):
                # if i == j: continue
                deltaj = delta[j]
                param = param0.copy()
                param[i] += deltai
                param[j] += deltaj
                value_plus_plus = self.residu2(param, d1, d2, r)
                param = param0.copy()
                param[i] -= deltai
                param[j] -= deltaj
                value_moins_moins = self.residu2(param, d1, d2, r)
                param = param0.copy()
                param[i] += deltai
                param[j] -= deltaj
                value_plus_moins = self.residu2(param, d1, d2, r)
                param = param0.copy()
                param[i] -= deltai
                param[j] += deltaj
                value_moins_plus = self.residu2(param, d1, d2, r)
                hessian[j, i] = hessian[i, j] = (value_plus_plus + value_moins_moins - value_plus_moins - value_moins_plus) / (4.0 * deltai * deltaj)
        print(hessian)
        w, v = numpy.linalg.eigh(hessian)
        print("eigen val: %s" % w)
        print("eigen vec: %s" % v)
        cov = numpy.linalg.inv(hessian)
        print(cov)
        err = numpy.sqrt(numpy.diag(cov))
        print("err: %s" % err)
        error = {}
        for k, v in zip(("dist", "poni1", "poni2", "rot1", "rot2", "rot3"), err):
            error[k] = v
        confidence = {}
        for i, k in enumerate(("dist", "poni1", "poni2", "rot1", "rot2", "rot3")):
            if i < size:
                confidence[k] = numpy.sqrt(ref / hessian[i, i])
        print("std_dev as sqrt of the diag of inv hessian:\n%s" % error)
        print("Convidence as sqrt of the error function /  hessian:\n%s" % confidence)
        return error, confidence

    def roca(self):
        """
        run roca to optimise the parameter set
        """
        tmpf = tempfile.NamedTemporaryFile()
        for line in self.data:
            tmpf.write("%s %s %s %s" % (line[2], line[0], line[1], os.linesep))
        tmpf.flush()
        roca = subprocess.Popen(
            [ROCA, "debug=8", "maxdev=1", "input=" + tmpf.name,
             str(self.pixel1), str(self.pixel2),
             str(self.poni1 / self.pixel1), str(self.poni2 / self.pixel2),
             str(self.dist), str(self.rot1), str(self.rot2), str(self.rot3)],
            stdout=subprocess.PIPE)
        new_param = [self.dist, self.poni1, self.poni2,
                     self.rot1, self.rot2, self.rot3]
        for line in roca.stdout:
            word = line.split()
            if len(word) == 3:
                if word[0] == "cen1":
                    new_param[1] = float(word[1]) * self.pixel1
                if word[0] == "cen2":
                    new_param[2] = float(word[1]) * self.pixel2
                if word[0] == "dis":
                    new_param[0] = float(word[1])
                if word[0] == "rot1":
                    new_param[3] = float(word[1])
                if word[0] == "rot2":
                    new_param[4] = float(word[1])
                if word[0] == "rot3":
                    new_param[5] = float(word[1])
        print("Roca %s --> %s" % (self.chi2() / self.data.shape[0], self.chi2(new_param) / self.data.shape[0]))
        if self.chi2(tuple(new_param)) < self.chi2(tuple(self.param)):
            self.param = new_param
            self.dist, self.poni1, self.poni2, \
                self.rot1, self.rot2, self.rot3 = tuple(new_param)

        tmpf.close()

    def set_dist_max(self, value):
        if isinstance(value, float):
            self._dist_max = value
        else:
            self._dist_max = float(value)

    def get_dist_max(self):
        return self._dist_max

    dist_max = property(get_dist_max, set_dist_max)

    def set_dist_min(self, value):
        if isinstance(value, float):
            self._dist_min = value
        else:
            self._dist_min = float(value)

    def get_dist_min(self):
        return self._dist_min

    dist_min = property(get_dist_min, set_dist_min)

    def set_poni1_min(self, value):
        if isinstance(value, float):
            self._poni1_min = value
        else:
            self._poni1_min = float(value)

    def get_poni1_min(self):
        return self._poni1_min

    poni1_min = property(get_poni1_min, set_poni1_min)

    def set_poni1_max(self, value):
        if isinstance(value, float):
            self._poni1_max = value
        else:
            self._poni1_max = float(value)

    def get_poni1_max(self):
        return self._poni1_max

    poni1_max = property(get_poni1_max, set_poni1_max)

    def set_poni2_min(self, value):
        if isinstance(value, float):
            self._poni2_min = value
        else:
            self._poni2_min = float(value)

    def get_poni2_min(self):
        return self._poni2_min

    poni2_min = property(get_poni2_min, set_poni2_min)

    def set_poni2_max(self, value):
        if isinstance(value, float):
            self._poni2_max = value
        else:
            self._poni2_max = float(value)

    def get_poni2_max(self):
        return self._poni2_max

    poni2_max = property(get_poni2_max, set_poni2_max)

    def set_rot1_min(self, value):
        if isinstance(value, float):
            self._rot1_min = value
        else:
            self._rot1_min = float(value)

    def get_rot1_min(self):
        return self._rot1_min

    rot1_min = property(get_rot1_min, set_rot1_min)

    def set_rot1_max(self, value):
        if isinstance(value, float):
            self._rot1_max = value
        else:
            self._rot1_max = float(value)

    def get_rot1_max(self):
        return self._rot1_max

    rot1_max = property(get_rot1_max, set_rot1_max)

    def set_rot2_min(self, value):
        if isinstance(value, float):
            self._rot2_min = value
        else:
            self._rot2_min = float(value)

    def get_rot2_min(self):
        return self._rot2_min

    rot2_min = property(get_rot2_min, set_rot2_min)

    def set_rot2_max(self, value):
        if isinstance(value, float):
            self._rot2_max = value
        else:
            self._rot2_max = float(value)

    def get_rot2_max(self):
        return self._rot2_max

    rot2_max = property(get_rot2_max, set_rot2_max)

    def set_rot3_min(self, value):
        if isinstance(value, float):
            self._rot3_min = value
        else:
            self._rot3_min = float(value)

    def get_rot3_min(self):
        return self._rot3_min

    rot3_min = property(get_rot3_min, set_rot3_min)

    def set_rot3_max(self, value):
        if isinstance(value, float):
            self._rot3_max = value
        else:
            self._rot3_max = float(value)

    def get_rot3_max(self):
        return self._rot3_max

    rot3_max = property(get_rot3_max, set_rot3_max)

    def set_wavelength_min(self, value):
        if isinstance(value, float):
            self._wavelength_min = value
        else:
            self._wavelength_min = float(value)

    def get_wavelength_min(self):
        return self._wavelength_min

    wavelength_min = property(get_wavelength_min, set_wavelength_min)

    def set_wavelength_max(self, value):
        if isinstance(value, float):
            self._wavelength_max = value
        else:
            self._wavelength_max = float(value)

    def get_wavelength_max(self):
        return self._wavelength_max

    wavelength_max = property(get_wavelength_max, set_wavelength_max)