1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
# !/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Project: Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2017-2018 European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: Jérôme Kieffer (Jerome.Kieffer@ESRF.eu)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
"""Jupyter helper functions
"""
__author__ = "Jerome Kieffer"
__contact__ = "Jerome.Kieffer@ESRF.eu"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "16/10/2020"
__status__ = "Production"
__docformat__ = 'restructuredtext'
import numpy
from pylab import subplots, legend
from matplotlib import lines
def display(img=None, cp=None, ai=None, label=None, sg=None, ax=None):
"""Display an image with the control points and the calibrated rings
in Jupyter notebooks
:param img: 2D numpy array with an image
:param cp: ControlPoint instance
:param ai: azimuthal integrator for iso-2th curves
:param label: name of the curve
:param sg: single geometry object regrouping img, cp and ai
:param ax: subplot object to display in, if None, a new one is created.
:return: Matplotlib subplot
"""
if ax is None:
_fig, ax = subplots()
if sg is not None:
if img is None:
img = sg.image
if cp is None:
cp = sg.control_points
if ai is None:
ai = sg.geometry_refinement
if label is None:
label = sg.label
ax.imshow(numpy.arcsinh(img).astype(numpy.float32), origin="lower", cmap="inferno")
ax.set_title(label)
if cp is not None:
for lbl in cp.get_labels():
pt = numpy.array(cp.get(lbl=lbl).points)
if len(pt) > 0:
ax.scatter(pt[:, 1], pt[:, 0], label=lbl)
if ai is not None and cp.calibrant is not None:
tth = cp.calibrant.get_2th()
ttha = ai.twoThetaArray()
ax.contour(ttha, levels=tth, cmap="autumn", linewidths=2, linestyles="dashed")
legend()
return ax
def plot1d(result, calibrant=None, label=None, ax=None):
"""Display the powder diffraction pattern in the jupyter notebook
:param result: instance of Integrate1dResult
:param calibrant: Calibrant instance to overlay diffraction lines
:param label: (str) name of the curve
:param ax: subplot object to display in, if None, a new one is created.
:return: Matplotlib subplot
"""
if ax is None:
_fig, ax = subplots()
unit = result.unit
if result.sigma is not None:
ax.errorbar(result.radial, result.intensity, result.sigma, label=label)
else:
ax.plot(result.radial, result.intensity, label=label)
if label:
ax.legend()
if calibrant:
x_values = calibrant.get_peaks(unit)
if x_values is not None:
for x in x_values:
line = lines.Line2D([x, x], ax.axis()[2:4],
color='red', linestyle='--')
ax.add_line(line)
ax.set_title("1D integration")
ax.set_xlabel(unit.label)
ax.set_ylabel("Intensity")
return ax
def plot2d(result, calibrant=None, label=None, ax=None):
"""Display the caked image in the jupyter notebook
:param result: instance of Integrate2dResult
:param calibrant: Calibrant instance to overlay diffraction lines
:param label: (str) name of the curve
:param ax: subplot object to display in, if None, a new one is created.
:return: Matplotlib subplot
"""
img = result.intensity
pos_rad = result.radial
pos_azim = result.azimuthal
if ax is None:
_fig, ax = subplots()
ax.imshow(numpy.arcsinh(img),
origin="lower",
extent=[pos_rad.min(), pos_rad.max(), pos_azim.min(), pos_azim.max()],
aspect="auto",
cmap="inferno")
if label:
ax.set_title("2D regrouping")
else:
ax.set_title(label)
ax.set_xlabel(result.unit.label)
ax.set_ylabel(r"Azimuthal angle $\chi$ ($^{o}$)")
if calibrant:
from pyFAI import units
x_values = None
twotheta = numpy.array([i for i in calibrant.get_2th() if i]) # in radian
unit = result.unit
if unit == units.TTH_DEG:
x_values = numpy.rad2deg(twotheta)
elif unit == units.TTH_RAD:
x_values = twotheta
elif unit == units.Q_A:
x_values = (4.e-10 * numpy.pi / calibrant.wavelength) * numpy.sin(.5 * twotheta)
elif unit == units.Q_NM:
x_values = (4.e-9 * numpy.pi / calibrant.wavelength) * numpy.sin(.5 * twotheta)
if x_values is not None:
for x in x_values:
line = lines.Line2D([x, x], [pos_azim.min(), pos_azim.max()],
color='red', linestyle='--')
ax.add_line(line)
return ax
|